Fourier Analysis Notes, Spring 2020

Total Page:16

File Type:pdf, Size:1020Kb

Fourier Analysis Notes, Spring 2020 Fourier Analysis Notes, Spring 2020 Peter Woit Department of Mathematics, Columbia University [email protected] September 3, 2020 2 Contents 1 Introduction 5 1.1 Fourier series . .5 1.2 The Fourier transform . .7 2 The Poisson Summation Formula, Theta Functions, and the Zeta Function 9 2.1 The Poisson summation formula and some applications . .9 2.1.1 The heat kernel . 10 2.1.2 The Poisson kernel . 11 2.2 Theta functions . 12 2.2.1 The Jacobi theta function . 13 2.3 The Riemann zeta function . 15 2.3.1 The Mellin transform . 16 2.3.2 The zeta function and the Mellin transform of the theta function . 18 2.3.3 The functional equation for the zeta function . 19 3 Distributions 23 3.1 Introduction . 23 3.2 Distributions: definition . 24 3.3 Distributions: examples . 25 3.4 The derivative of a distribution . 28 3.4.1 The transpose of a linear transformation . 29 3.4.2 Translations . 29 3.4.3 The derivative . 30 3.5 The Fourier transform of a distribution . 33 3.6 Convolution of a function and a distribution . 38 3.7 Distributional solutions of differential equations . 41 4 Higher dimensions 43 4.1 Introduction . 43 4.2 Fourier series and the Fourier transform for d > 1 . 43 4.2.1 Fourier series for d > 1.................... 43 4.2.2 The Fourier transform for d > 1............... 44 3 4.3 Rotations and the Fourier transform . 45 4.3.1 Two dimensions . 47 4.3.2 Three dimensions . 48 5 Wave Equations 53 5.1 Introduction . 53 5.2 The heat and Schr¨odingerequations in higher dimensions . 53 5.3 The wave equation in d =1..................... 53 5.4 The wave equation in d =3..................... 59 5.5 The wave equation in d =2..................... 61 6 The finite Fourier transform 65 6.1 Introduction . 65 6.2 The group Z(N)........................... 65 6.3 Fourier analysis on Z(N)...................... 66 6.4 Fourier analysis on commutative groups . 69 6.5 Fourier analysis on Z∗(q)...................... 73 6.6 The zeta function, primes and Dirichlet's theorem . 76 4 Chapter 1 Introduction These are notes from the second half of a spring 2020 Fourier analysis class, written up since the class turned into an online class for the second half of the semester due to the COVID pandemic. The course to some degree followed the textbook [3], with additional material on distributions from other sources. The first part of the course discussed the basic theory of Fourier series and Fourier transforms, with the main application to finding solutions of the heat equation, the Schr¨odinger equation and Laplace's equation. For the Fourier series, we roughly followed chapters 2, 3 and 4 of [3], for the Fourier transform, sections 5.1 and 5.2 . An alternate more detailed source that is not qute as demanding on the students is the first half of the book by Howell, [1]. A quick summary of this material follows. 1.1 Fourier series The subject of Fourier series deals with complex-valued periodic functions, or equivalently, functions defined on a circle. Taking the period or circumference of the circle to be 2π, the Fourier coefficients of a function are 1 Z π fb(n) = f(θ)e−inθdθ 2π −π and the Fourier series for the function is 1 X fb(n)einθ n=−∞ A surprisingly difficult central problem of the subject is that of pointwise- convergence. For what conditions on f does the Fourier series at θ converge to f(θ)? It turns out that differentiability of f is sufficient to imply pointwise- convergence (which we proved), but continuity is not sufficient (we did not prove this). We also looked at examples of the convergence behavior at a jump discontinuity (the \Gibbs phenomenon"). 5 One can consider the Hermitian inner products 1 Z π hf; gi = f(θ)g(θ)dθ 2π −π on functions and on sets of Fourier coefficients 1 X hffbg; fgbgi = fb(n)gb(n) n=−∞ and ask instead about norm-convergence of the Fourier series (i.e. does the norm of the difference between f and its Fourier series converge to zero?). The answer here is simpler than that for pointwise convergence. Functions with finite norm have norm-convergent Fourier series, with the map taking f to the set ffbg of its Fourier coefficients a unitary (inner-product preserving) isomorphism. The discussion of this subject provided an opportunity to explain the limitations of the Riemann integral and advertise (without defining it) the Lebesgue integral. The convolution product f ∗ g on periodic functions was defined, showing that it corresponds to the pointwise product on Fourier coefficients. Given a function g(θ) on the circle, Fourier series were used to find solutions of partial differential equations: f(t; θ) = g ∗ Ht(θ) with Ht(θ) the heat kernel solves the heat equation @ @2 f = f @t @θ2 for f(0; θ) = g(θ) and t ≥ 0 f(t; θ) = g ∗ St(θ) with St(θ) the Schr¨odingerkernel (an imaginary time version of the heat kernel) solves the Schr¨odingerequation @ 2 @2 i f = − ~ f ~@t 2m @θ2 for f(0; θ) = g(θ) and all t. f(r; θ) = g ∗ Pr(θ) with Pr(θ) the Poisson kernel solves the Laplace equation ∆f = 0 for f(1; θ) = g(θ) and 0 ≤ r ≤ 1 6 1.2 The Fourier transform Turning from functions on the circle to functions on R, one gets a more sym- metrical situation, with the Fourier coefficients of a function f now replaced by another function on R, the Fourier transform fe, given by Z 1 fe(p) = f(x)e−2πipxdx −∞ The analog of the Fourier series is the integral Z 1 f(x) = fe(p)e2πipxdx −∞ The problem of convergence of the Fourier series is replaced by the problem of understanding which functions f have a well-defined Fourier transform fe, and for which such fe can f be recovered by the second integral above (this is the problem of \Fourier inversion"). We took a different approach to this problem than the textbook [3], first showing that Fourier inversion holds for a certainly highly restricted class S(R) of functions, the Schwartz functions. A function f is in S(R) if it and all its derivatives exist for all x and fall off faster than any power of x. Functions more general than Schwartz functions (i.e. slower fall-off at ±∞, lack of derivatives or discontinuity for some values of x) will be treated as distributions, a topic not covered in [3] but discussed in detail later in these notes. For the Fourier transform one again can define the convolution f ∗ g of two functions, and show that under Fourier transform the convolution product becomes the usual product (fgf)(p) = fe(p)ge(p) The Fourier transform takes differentiation to multiplication by 2πip and one can as in the Fourier series case use this to find solutions of the heat and Schr¨odinger equations (with θ 2 S1 replaced by x 2 R), as well as solutions to the Laplace equation in the upper half-plane. 7 8 Chapter 2 The Poisson Summation Formula, Theta Functions, and the Zeta Function 2.1 The Poisson summation formula and some applications Given a Schwartz function f 2 S(R) on the real number line R, you can con- struct a periodic function by taking the infinite sum 1 X F1(x) = f(x + n) n=−∞ This has the properties The sum converges for any x, since f is falling off at ±∞ faster than any power. F1(x) is periodic with period 1 F1(x + 1) = F1(x) This is because going from x to x+1 just corresponds to a shift of indexing by 1 in the defining sum for F1(x). Since F1(x) is a periodic function, you can treat it by Fourier series methods. Note that the periodicity here is chosen to be 1, not 2π, so you need slightly dif- ferent formulas. For a function g with period 1 whose Fourier series is pointwise convergent, you have Z 1 −i2πnx gb(n) = g(x)e dx 0 9 1 X g(x) = g^(n)ei2πnx n=−∞ If you compute the Fourier coefficients of F1(x) you find Z 1 1 X −i2πmx Fc1(m) = f(x + n)e dx 0 n=−∞ 1 X Z 1 = f(x + n)e−i2πmxdx n=−∞ 0 1 X Z n+1 = f(x + n)e−i2πmxdx n=−∞ n Z 1 = f(x)e−i2πmxdx −∞ = fb(m) Theorem (Poisson Summation Formula). If f 2 S(R) 1 1 X X f(x + n) = fb(n)ei2πnx n=−∞ n=−∞ Proof. The left hand side is the definition of F1(x), the right hand side is its expression as the sum of its Fourier series. What most often gets used is the special case x = 0, with the general case what you get from this when translating by x: Corollary. If f 2 S(R) 1 1 X X f(n) = fb(n) n=−∞ n=−∞ This is a rather remarkable formula, relating two completely different infinite sums: the sum of the values of f at integer points and the sum of the values of its Fourier transform at integer points. 2.1.1 The heat kernel The Poisson summation formula relates the heat kernel on R and on S1. Recall that the formula for the heat kernel on R is 2 1 − x Ht;R(x) = p e 4t 4πt with Fourier transform −4π2p2t Hbt;R(p) = e 10 Applying the Poisson summation formula to Ht;R gives 1 1 X X −4π2n2t 2πinx Ht;R(x + n) = e e = Ht;S1 (x) (2.1) n=−∞ n=−∞ 1 where Ht;S1 is the heat kernel on S .
Recommended publications
  • The Convolution Theorem
    Module 2 : Signals in Frequency Domain Lecture 18 : The Convolution Theorem Objectives In this lecture you will learn the following We shall prove the most important theorem regarding the Fourier Transform- the Convolution Theorem We are going to learn about filters. Proof of 'the Convolution theorem for the Fourier Transform'. The Dual version of the Convolution Theorem Parseval's theorem The Convolution Theorem We shall in this lecture prove the most important theorem regarding the Fourier Transform- the Convolution Theorem. It is this theorem that links the Fourier Transform to LSI systems, and opens up a wide range of applications for the Fourier Transform. We shall inspire its importance with an application example. Modulation Modulation refers to the process of embedding an information-bearing signal into a second carrier signal. Extracting the information- bearing signal is called demodulation. Modulation allows us to transmit information signals efficiently. It also makes possible the simultaneous transmission of more than one signal with overlapping spectra over the same channel. That is why we can have so many channels being broadcast on radio at the same time which would have been impossible without modulation There are several ways in which modulation is done. One technique is amplitude modulation or AM in which the information signal is used to modulate the amplitude of the carrier signal. Another important technique is frequency modulation or FM, in which the information signal is used to vary the frequency of the carrier signal. Let us consider a very simple example of AM. Consider the signal x(t) which has the spectrum X(f) as shown : Why such a spectrum ? Because it's the simplest possible multi-valued function.
    [Show full text]
  • Lecture 7: Fourier Series and Complex Power Series 1 Fourier
    Math 1d Instructor: Padraic Bartlett Lecture 7: Fourier Series and Complex Power Series Week 7 Caltech 2013 1 Fourier Series 1.1 Definitions and Motivation Definition 1.1. A Fourier series is a series of functions of the form 1 C X + (a sin(nx) + b cos(nx)) ; 2 n n n=1 where C; an; bn are some collection of real numbers. The first, immediate use of Fourier series is the following theorem, which tells us that they (in a sense) can approximate far more functions than power series can: Theorem 1.2. Suppose that f(x) is a real-valued function such that • f(x) is continuous with continuous derivative, except for at most finitely many points in [−π; π]. • f(x) is periodic with period 2π: i.e. f(x) = f(x ± 2π), for any x 2 R. C P1 Then there is a Fourier series 2 + n=1 (an sin(nx) + bn cos(nx)) such that 1 C X f(x) = + (a sin(nx) + b cos(nx)) : 2 n n n=1 In other words, where power series can only converge to functions that are continu- ous and infinitely differentiable everywhere the power series is defined, Fourier series can converge to far more functions! This makes them, in practice, a quite useful concept, as in science we'll often want to study functions that aren't always continuous, or infinitely differentiable. A very specific application of Fourier series is to sound and music! Specifically, re- call/observe that a musical note with frequency f is caused by the propogation of the lon- gitudinal wave sin(2πft) through some medium.
    [Show full text]
  • Fourier Series
    Academic Press Encyclopedia of Physical Science and Technology Fourier Series James S. Walker Department of Mathematics University of Wisconsin–Eau Claire Eau Claire, WI 54702–4004 Phone: 715–836–3301 Fax: 715–836–2924 e-mail: [email protected] 1 2 Encyclopedia of Physical Science and Technology I. Introduction II. Historical background III. Definition of Fourier series IV. Convergence of Fourier series V. Convergence in norm VI. Summability of Fourier series VII. Generalized Fourier series VIII. Discrete Fourier series IX. Conclusion GLOSSARY ¢¤£¦¥¨§ Bounded variation: A function has bounded variation on a closed interval ¡ ¢ if there exists a positive constant © such that, for all finite sets of points "! "! $#&% (' #*) © ¥ , the inequality is satisfied. Jordan proved that a function has bounded variation if and only if it can be expressed as the difference of two non-decreasing functions. Countably infinite set: A set is countably infinite if it can be put into one-to-one £0/"£ correspondence with the set of natural numbers ( +,£¦-.£ ). Examples: The integers and the rational numbers are countably infinite sets. "! "!;: # # 123547698 Continuous function: If , then the function is continuous at the point : . Such a point is called a continuity point for . A function which is continuous at all points is simply referred to as continuous. Lebesgue measure zero: A set < of real numbers is said to have Lebesgue measure ! $#¨CED B ¢ £¦¥ zero if, for each =?>A@ , there exists a collection of open intervals such ! ! D D J# K% $#L) ¢ £¦¥ ¥ ¢ = that <GFIH and . Examples: All finite sets, and all countably infinite sets, have Lebesgue measure zero. "! "! % # % # Odd and even functions: A function is odd if for all in its "! "! % # # domain.
    [Show full text]
  • Lectures on Modular Forms. Fall 1997/98
    Lectures on Modular Forms. Fall 1997/98 Igor V. Dolgachev October 26, 2017 ii Contents 1 Binary Quadratic Forms1 2 Complex Tori 13 3 Theta Functions 25 4 Theta Constants 43 5 Transformations of Theta Functions 53 6 Modular Forms 63 7 The Algebra of Modular Forms 83 8 The Modular Curve 97 9 Absolute Invariant and Cross-Ratio 115 10 The Modular Equation 121 11 Hecke Operators 133 12 Dirichlet Series 147 13 The Shimura-Tanyama-Weil Conjecture 159 iii iv CONTENTS Lecture 1 Binary Quadratic Forms 1.1 The theory of modular form originates from the work of Carl Friedrich Gauss of 1831 in which he gave a geometrical interpretation of some basic no- tions of number theory. Let us start with choosing two non-proportional vectors v = (v1; v2) and w = 2 (w1; w2) in R The set of vectors 2 Λ = Zv + Zw := fm1v + m2w 2 R j m1; m2 2 Zg forms a lattice in R2, i.e., a free subgroup of rank 2 of the additive group of the vector space R2. We picture it as follows: • • • • • • •Gv • ••• •• • w • • • • • • • • Figure 1.1: Lattice in R2 1 2 LECTURE 1. BINARY QUADRATIC FORMS Let v v B(v; w) = 1 2 w1 w2 and v · v v · w G(v; w) = = B(v; w) · tB(v; w): v · w w · w be the Gram matrix of (v; w). The area A(v; w) of the parallelogram formed by the vectors v and w is given by the formula v · v v · w A(v; w)2 = det G(v; w) = (det B(v; w))2 = det : v · w w · w Let x = mv + nw 2 Λ.
    [Show full text]
  • The Summation of Power Series and Fourier Series
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 12&13 (1985) 447-457 447 North-Holland The summation of power series and Fourier . series I.M. LONGMAN Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, Israel Received 27 July 1984 Abstract: The well-known correspondence of a power series with a certain Stieltjes integral is exploited for summation of the series by numerical integration. The emphasis in this paper is thus on actual summation of series. rather than mere acceleration of convergence. It is assumed that the coefficients of the series are given analytically, and then the numerator of the integrand is determined by the aid of the inverse of the two-sided Laplace transform, while the denominator is standard (and known) for all power series. Since Fourier series can be expressed in terms of power series, the method is applicable also to them. The treatment is extended to divergent series, and a fair number of numerical examples are given, in order to illustrate various techniques for the numerical evaluation of the resulting integrals. Keywork Summation of series. 1. Introduction We start by considering a power series, which it is convenient to write in the form s(x)=/.Q-~2x+&x2..., (1) for reasons which will become apparent presently. Here there is no intention to limit ourselves to alternating series since, even if the pLkare all of one sign, x may take negative and even complex values. It will be assumed in this paper that the pLk are real.
    [Show full text]
  • Harmonic Analysis from Fourier to Wavelets
    STUDENT MATHEMATICAL LIBRARY ⍀ IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society Institute for Advanced Study Harmonic Analysis From Fourier to Wavelets STUDENT MATHEMATICAL LIBRARY IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society, Providence, Rhode Island Institute for Advanced Study, Princeton, New Jersey Editorial Board of the Student Mathematical Library Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell Series Editor for the Park City Mathematics Institute John Polking 2010 Mathematics Subject Classification. Primary 42–01; Secondary 42–02, 42Axx, 42B25, 42C40. The anteater on the dedication page is by Miguel. The dragon at the back of the book is by Alexander. For additional information and updates on this book, visit www.ams.org/bookpages/stml-63 Library of Congress Cataloging-in-Publication Data Pereyra, Mar´ıa Cristina. Harmonic analysis : from Fourier to wavelets / Mar´ıa Cristina Pereyra, Lesley A. Ward. p. cm. — (Student mathematical library ; 63. IAS/Park City mathematical subseries) Includes bibliographical references and indexes. ISBN 978-0-8218-7566-7 (alk. paper) 1. Harmonic analysis—Textbooks. I. Ward, Lesley A., 1963– II. Title. QA403.P44 2012 515.2433—dc23 2012001283 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • Abelian Solutions of the Soliton Equations and Riemann–Schottky Problems
    Russian Math. Surveys 63:6 1011–1022 c 2008 RAS(DoM) and LMS Uspekhi Mat. Nauk 63:6 19–30 DOI 10.1070/RM2008v063n06ABEH004576 Abelian solutions of the soliton equations and Riemann–Schottky problems I. M. Krichever Abstract. The present article is an exposition of the author’s talk at the conference dedicated to the 70th birthday of S. P. Novikov. The talk con- tained the proof of Welters’ conjecture which proposes a solution of the clas- sical Riemann–Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers. Contents 1. Introduction 1011 2. Welters’ trisecant conjecture 1014 3. The problem of characterization of Prym varieties 1017 4. Abelian solutions of the soliton equations 1018 Bibliography 1020 1. Introduction The famous Novikov conjecture which asserts that the Jacobians of smooth alge- braic curves are precisely those indecomposable principally polarized Abelian vari- eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili (KP) equation, fundamentally changed the relations between the classical algebraic geometry of Riemann surfaces and the theory of soliton equations. It turns out that the finite-gap, or algebro-geometric, theory of integration of non-linear equa- tions developed in the mid-1970s can provide a powerful tool for approaching the fundamental problems of the geometry of Abelian varieties. The basic tool of the general construction proposed by the author [1], [2]which g+k 1 establishes a correspondence between algebro-geometric data Γ,Pα,zα,S − (Γ) and solutions of some soliton equation, is the notion of Baker–Akhiezer{ function.} Here Γis a smooth algebraic curve of genus g with marked points Pα, in whose g+k 1 neighborhoods we fix local coordinates zα, and S − (Γ) is a symmetric prod- uct of the curve.
    [Show full text]
  • Mirror Symmetry of Abelian Variety and Multi Theta Functions
    1 Mirror symmetry of Abelian variety and Multi Theta functions by Kenji FUKAYA (深谷賢治) Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto Japan Table of contents § 0 Introduction. § 1 Moduli spaces of Lagrangian submanifolds and construction of a mirror torus. § 2 Construction of a sheaf from an affine Lagrangian submanifold. § 3 Sheaf cohomology and Floer cohomology 1 (Construction of a homomorphism). § 4 Isogeny. § 5 Sheaf cohomology and Floer cohomology 2 (Proof of isomorphism). § 6 Extension and Floer cohomology 1 (0 th cohomology). § 7 Moduli space of holomorphic vector bundles on a mirror torus. § 8 Nontransversal or disconnected Lagrangian submanifolds. ∞ § 9 Multi Theta series 1 (Definition and A formulae.) § 10 Multi Theta series 2 (Calculation of the coefficients.) § 11 Extension and Floer cohomology 2 (Higher cohomology). § 12 Resolution and Lagrangian surgery. 2 § 0 Introduction In this paper, we study mirror symmetry of complex and symplectic tori as an example of homological mirror symmetry conjecture of Kontsevich [24], [25] between symplectic and complex manifolds. We discussed mirror symmetry of tori in [12] emphasizing its “noncom- mutative” generalization. In this paper, we concentrate on the case of a commutative (usual) torus. Our result is a generalization of one by Polishchuk and Zaslow [42], [41], who studied the case of elliptic curve. The main results of this paper establish a dictionary of mirror symmetry between symplectic geometry and complex geometry in the case of tori of arbitrary dimension. We wrote this dictionary in the introduction of [12]. We present the argument in a way so that it suggests a possibility of its generalization.
    [Show full text]
  • Theta Function Review G = 1 Case
    The genus 1 case - review Theta Function Review g = 1 case We recall the main de¯nitions of theta functions in the 1-dim'l case: De¯nition 0 Let· ¿ 2¸C such that Im¿ > 0: For "; " real numbers and z 2 C then: " £ (z;¿) = "0 n ¡ ¢ ¡ ¢ ¡ ¢ ³ ´o P 1 " " ² t ²0 l²Z2 exp2¼i 2 l + 2 ¿ l + 2 + l + 2 z + 2 The series· is uniformly¸ and absolutely convergent on compact subsets " C £ H: are called Theta characteristics "0 The genus 1 case - review Theta Function Properties Review for g = 1 case the following properties of theta functions can be obtained by manipulation of the series : · ¸ · ¸ " + 2m " 1. £ (z;¿) = exp¼i f"eg £ (z;¿) and e; m 2 Z "0 + 2e "0 · ¸ · ¸ " " 2. £ (z;¿) = £ (¡z;¿) ¡"0 "0 · ¸ " 3. £ (z + n + m¿; ¿) = "0 n o · ¸ t t 0 " exp 2¼i n "¡m " ¡ mz ¡ m2¿ £ (z;¿) 2 "0 The genus 1 case - review Remarks on the properties of Theta functions g=1 1. Property number 3 describes the transformation properties of theta functions under an element of the lattice L¿ generated by f1;¿g. 2. The same property implies that that the zeros of theta functions are well de¯ned on the torus given· ¸ by C=L¿ : In fact there is only a " unique such 0 for each £ (z;¿): "0 · ¸ · ¸ "i γj 3. Let 0 ; i = 1:::k and 0 ; j = 1:::l and "i γj 2 3 Q "i k θ4 5(z;¿) ³P ´ ³P ´ i=1 "0 k 0 l 0 2 i 3 "i + " ¿ ¡ γj + γ ¿ 2 L¿ Then i=1 i j=1 j Q l 4 γj 5 j=1 θ 0 (z;¿) γj is a meromorphic function on the elliptic curve de¯ned by C=L¿ : The genus 1 case - review Analytic vs.
    [Show full text]
  • Convolution.Pdf
    Convolution March 22, 2020 0.0.1 Setting up [23]: from bokeh.plotting import figure from bokeh.io import output_notebook, show,curdoc from bokeh.themes import Theme import numpy as np output_notebook() theme=Theme(json={}) curdoc().theme=theme 0.1 Convolution Convolution is a fundamental operation that appears in many different contexts in both pure and applied settings in mathematics. Polynomials: a simple case Let’s look at a simple case first. Consider the space of real valued polynomial functions P. If f 2 P, we have X1 i f(z) = aiz i=0 where ai = 0 for i sufficiently large. There is an obvious linear map a : P! c00(R) where c00(R) is the space of sequences that are eventually zero. i For each integer i, we have a projection map ai : c00(R) ! R so that ai(f) is the coefficient of z for f 2 P. Since P is a ring under addition and multiplication of functions, these operations must be reflected on the other side of the map a. 1 Clearly we can add sequences in c00(R) componentwise, and since addition of polynomials is also componentwise we have: a(f + g) = a(f) + a(g) What about multiplication? We know that X Xn X1 an(fg) = ar(f)as(g) = ar(f)an−r(g) = ar(f)an−r(g) r+s=n r=0 r=0 where we adopt the convention that ai(f) = 0 if i < 0. Given (a0; a1;:::) and (b0; b1;:::) in c00(R), define a ∗ b = (c0; c1;:::) where X1 cn = ajbn−j j=0 with the same convention that ai = bi = 0 if i < 0.
    [Show full text]
  • Fourier Series of Functions of A-Bounded Variation
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 74, Number 1, April 1979 FOURIER SERIES OF FUNCTIONS OF A-BOUNDED VARIATION DANIEL WATERMAN1 Abstract. It is shown that the Fourier coefficients of functions of A- bounded variation, A = {A„}, are 0(Kn/n). This was known for \, = n&+l, — 1 < ß < 0. The classes L and HBV are shown to be complementary, but L and ABV are not complementary if ABV is not contained in HBV. The partial sums of the Fourier series of a function of harmonic bounded variation are shown to be uniformly bounded and a theorem analogous to that of Dirichlet is shown for this class of functions without recourse to the Lebesgue test. We have shown elsewhere that functions of harmonic bounded variation (HBV) satisfy the Lebesgue test for convergence of their Fourier series, but if a class of functions of A-bounded variation (ABV) is not properly contained in HBV, it contains functions whose Fourier series diverge [1]. We have also shown that Fourier series of functions of class {nB+x} — BV, -1 < ß < 0, are (C, ß) bounded, implying that the Fourier coefficients are 0(nB) [2]. Here we shall estimate the Fourier coefficients of functions in ABV. Without recourse to the Lebesgue test, we shall prove a theorem for functions of HBV analogous to that of Dirichlet and also show that the partial sums of the Fourier series of an HBV function are uniformly bounded. From this one can conclude that L and HBV are complementary classes, i.e., Parseval's formula holds (with ordinary convergence) for/ G L and g G HBV.
    [Show full text]
  • Theta Function Identities
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 147, 97-121 (1990) Theta Function Identities RONALD J. EVANS Deparlment of Mathematics, University of California, San Diego, La Jolla, California 92093 Submitted by Bruce C. Berndt Received June 3. 1988 1. INTR~D~JcTI~N By 1986, all but one of the identities in the 21 chapters of Ramanujan’s Second Notebook [lo] had been proved; see Berndt’s books [Z-4]. The remaining identity, which we will prove in Theorem 5.1 below, is [ 10, Chap. 20, Entry 8(i)] 1 1 1 V2(Z/P) (1.1) G,(z) G&l + G&J G&J + G&l G,(z) = 4 + dz) ’ where q(z) is the classical eta function given by (2.5) and 2 f( _ q2miP, - q1 - WP) G,(z) = G,,,(z) = (- 1)” qm(3m-p)‘(2p) f(-qm,p, -q,-m,p) 9 (1.2) with q = exp(2niz), p = 13, and Cl(k2+k)/2 (k2pkV2 B . (1.3) k=--13 The author is grateful to Bruce Berndt for bringing (1.1) to his attention. The quotients G,(z) in (1.2) for odd p have been the subject of interest- ing investigations by Ramanujan and others. Ramanujan [ 11, p. 2071 explicitly wrote down a version of the famous quintuple product identity, f(-s’, +)J-(-~*q3, -w?+qfF~, -A2q9) (1.4) f(-43 -Q2) f(-Aq3, -Pq6) ’ which yields as a special case a formula for q(z) G,(z) as a linear combina- tion of two theta functions; see (1.7). In Chapter 16 of his Second 97 0022-247X/90 $3.00 Copyright % 1993 by Academc Press, Inc.
    [Show full text]