100 YEARS of RELATIVITY: CRUCIAL POINTS ∗ V.A

Total Page:16

File Type:pdf, Size:1020Kb

100 YEARS of RELATIVITY: CRUCIAL POINTS ∗ V.A 100 YEARS of RELATIVITY: CRUCIAL POINTS ∗ V.A. Petrov Division of Theoretical Physics, Institute for High Energy Physics, Protvino, Russia This is a concise review of the main steps in the process of making the relativity theory. §1. Introduction The theory of relativity is, probably, a unique theory in the history of human knowledge that attracted so much attention of the general public. The reasons of such an interest are quite diverse and we are not going to discuss them here. We have only to regret that at present physics seems to lose the credit it had not so many years ago. That is why it was very to the point that the year 2005 was declared the World Year of Physics as a sign of a worldwide celebration of the “Annus Mirabilis”, i.e. 1905, the year marked by many outstanding discoveries including the theory of relativity. Unfortunately this very good move was largely spoiled and depreciated by reducing this celebration to glorification of one single person while other contributors to the powerful break- through in physics which happened in the beginning of the XXth century were unfairly put in oblivion. I am aware that I can hardly improve the general trend but I will try, at least in my talk, to correct this unfairness and to give a more balanced vision of the genesis of the theory of relativity. §2. Prehistory Relativity was known in physics long before 1905. Some vague ideas on this subject can be found already in writings of ancient Greek and Arab philosophers or of medieval European scholastics. Actually the principle of relativity can be traced back to Galileo Galilei. In his famous “Dialogo sopra i due Massimi Sistemi del Mondo, Tolemaico e Copernicano”(“Dialogue con- cerning the two Chief World Systems, Ptolemaic and Copernican”), appeared in 1632 and banned by Pope Urban VIII, the great Italian wrote: “...have the ship proceed with any speed you like, so long as the motion is uniform and not fluctuating this way and that. You will discover not the least change in all the effects named, nor could you tell from any of them whether the ship was moving or standing still “[1]. In modern language the mentioned observation of “all the effects” meant all possible physical experiments inside a uniformly moving ship. Galileo Galilei (1564-1642) ∗[email protected] 182 Sir Isaac Newton was also aware of the relativity of the uniform rectilinear motion. He wrote in his famous “Philosophia Naturalis Principia Mathematica” (1687) [2]: “The motions of bodies included in a given space are the same among themselves, whether that space is at rest, or moves uniformly forwards in a right line without any circular motion.” Sir Isaac Newton (1642-1727) Nonetheless Newton devoted special attention to the fundamental concepts of absolute time and absolute space. “Absolute Space, in its own nature, without regard to anything external, remains al- ways similar and immovable.” “Absolute, True and Mathematical Time, of itself and from its own nature flows equa- bly without regard to anything external, and by another name is called Duration.” These Newton’s basic statements survived till the end of the XIXth century. Why did he keep so to these fundamentals? He must have a serious reason for that. The reason was that while one can relatively easily accept the equivalence of the reference systems moving rectilinearly and uniformly relative to each other, it is impossible for reciprocally accelerated systems. The famous “bucket argument” of Newton was quite impressive and persuasive. There just must exist “some- thing” relative to which the rotation proceeds. And this was the Newton Absolute Space. Many years later Ernest Mach dared to challenge this notion and pushed forward some (a bit vague) argument that the acceleration has to be referred to “distant fixed stars” the interaction with which should give to “ponderable bodies” their inertia. He also was quite severe to the abso- lute time: “This absolute time can be measured by comparison with no motion; it has therefore neither a practical nor a scientific value; and no one is justified in saying that he knows aught about it. It is an idle metaphysical conception.” Ernest Mach was neither the first nor the only, who treated these notions quite critically. Nonetheless his writings rendered quite a strong impression on his contemporaries and gave a definite new impetus to further speculations on fundamental issues of time and space. Ernest Mach (1838-1916) 183 §3. Aether Newton, who expressed interbody interactions quantitatively in his Second Law and gave a uni- versal gravitation law, accepted the action at a distance because he, probably, saw that for practi- cal purposes it is quite sufficient while the very nature of the interaction asks for new hypotheses which he endeavoured to avoid (“Hypotheses non fingo”). The problem had been identified long before Newton. Say, Aristotle ( in contrast with Leukippus and Democritus) argued that the empty space is absurd and there must exist some medium which fills the whole space and which was considered as a “ fifth element” or “ quintessence”. The idea of “aether” (below we will use the simplified spelling “ether” as well) was strongly advocated by René Descartes and then by one of the founders of the wave theory of light Christiaan Hyugens (followed by Thomas Young and Augustin Fresnel more than hundred years later). Newton, who vigorously objected Hyugens’ theory, later himself advanced some aether-like model to explain optical phenomena. There were many attempts to construct a mechanical model of the ether (they still con- tinue in our days). Great Scottish physicist James Clerk Maxwell, who systematized a huge num- ber of various results concerning electromagnetic phenomenae and formulated his famous sys- tem of differential equations for electric and magnetic fields, invented quite a complicated model of ether to mechanically interpret his equations. Now some “wise and clever” historians of sci- ence often consider these attempts in a quite arrogant manner as evidently wrong and naïve. We can hardly agree with such an attitude if we try to place ourselves into the XIII-XIX centuries marked by enormous successes of Newton’s mechanics. Moreover mechanical models of the ether were, even if transient, unavoidable and necessary trial steps towards new horizons. And the very idea of the ether played a progressive role. Some discontent had been felt, though, about this important element of nature. Thereof the growing need in more direct manifestations of the ether. As the aether was associated with Newton’s absolute space it was understood quite early that one could detect the effects of motion through the aether experimentally. And this concerned first of all the light propagation which was identified as a propagation of perturbations of the aether. §4. New turn And it was J.C. Maxwell who initiated a new turn in the search for the ether effects when he sug- gested (1878) to measure the effect of the “aether wind”. James Clerk Maxwell (1831-1879) 184 He did this in a year to his death as if indicating to his successors the way to unravel the mystery hidden in his legacy, the Maxwell equations. The way led them in the right direction. The experiment was conducted by American Albert Abraham Michelson in 1881 and later, with better accuracy, in 1887 (together with Edward Williams Morley). Albert A. Michelson (1852-1931) and Edward W. Morley (1838-1923) The scheme of experiment was remarkably simple but Michelson and Morley had to use all their skill and exert their every effort to achieve the necessary accuracy to measure the shift of the interference fringes due to would-be the “aether wind”. Just look at their facility and the scheme of the experiment. 185 The data obtained indicated that within the error bars the effect of the shift was absent, i.e. there was no an “ether wind”. The conclusion was: “It appears, from all that precedes, reasonably certain that if there be any relative motion between the earth and the luminiferous ether, it must be small; quite small enough entirely to refute Fresnel’s explanation of aberration (So called “partial ether drift” hypothesis with help of which A. Fresnel explained the visible position of stars accounting for the Earth movement. V.P.). And further: “If now it were legitimate to conclude from the pre- sent work that the ether is at rest with regard to the earth’s surface, according to Lorentz there could not be a velocity potential, and his own theory also fails.” What was the theory of Lorentz mentioned above? We shall concern it a bit later. Just the same year 1887 as of the Michelson - Morley experiment an article of Göttingen professor Woldemar Voigt appeared. This article dealt with some “elastic theory of light” and was not devoted to the problem of the “aether wind”. But in the course of consideration of the invariance of the wave equation in moving reference systems Voigt has found that corresponding transformations from a system at rest to a system moving with constant velocity v included not only the change of coordinates (Galilei transformations) but also the change of time! Here are Voigt’s transformations (c stands for the velocity of light): 2 x = x – vt, y = y 1 - v 2/c2 , z = z 1 - v 2/c2 , t = t – vx/c ( V ) Woldemar Voigt (1850-1919) For the first time in history of physics time was subjected to a non-trivial change depend- ent on space. What was the meaning of this new time t ? Voigt did not provide an answer, he even did not pose the question.
Recommended publications
  • Philosophy of Science -----Paulk
    PHILOSOPHY OF SCIENCE -----PAULK. FEYERABEND----- However, it has also a quite decisive role in building the new science and in defending new theories against their well-entrenched predecessors. For example, this philosophy plays a most important part in the arguments about the Copernican system, in the development of optics, and in the Philosophy ofScience: A Subject with construction of a new and non-Aristotelian dynamics. Almost every work of Galileo is a mixture of philosophical, mathematical, and physical prin~ a Great Past ciples which collaborate intimately without giving the impression of in­ coherence. This is the heroic time of the scientific philosophy. The new philosophy is not content just to mirror a science that develops independ­ ently of it; nor is it so distant as to deal just with alternative philosophies. It plays an essential role in building up the new science that was to replace 1. While it should be possible, in a free society, to introduce, to ex­ the earlier doctrines.1 pound, to make propaganda for any subject, however absurd and however 3. Now it is interesting to see how this active and critical philosophy is immoral, to publish books and articles, to give lectures on any topic, it gradually replaced by a more conservative creed, how the new creed gener­ must also be possible to examine what is being expounded by reference, ates technical problems of its own which are in no way related to specific not to the internal standards of the subject (which may be but the method scientific problems (Hurne), and how there arises a special subject that according to which a particular madness is being pursued), but to stan­ codifies science without acting back on it (Kant).
    [Show full text]
  • Evolution of Mathematics: a Brief Sketch
    Open Access Journal of Mathematical and Theoretical Physics Mini Review Open Access Evolution of mathematics: a brief sketch Ancient beginnings: numbers and figures Volume 1 Issue 6 - 2018 It is no exaggeration that Mathematics is ubiquitously Sujit K Bose present in our everyday life, be it in our school, play ground, SN Bose National Center for Basic Sciences, Kolkata mobile number and so on. But was that the case in prehistoric times, before the dawn of civilization? Necessity is the mother Correspondence: Sujit K Bose, Professor of Mathematics (retired), SN Bose National Center for Basic Sciences, Kolkata, of invenp tion or discovery and evolution in this case. So India, Email mathematical concepts must have been seen through or created by those who could, and use that to derive benefit from the Received: October 12, 2018 | Published: December 18, 2018 discovery. The creative process of discovery and later putting that to use must have been arduous and slow. I try to look back from my limited Indian perspective, and reflect up on what might have been the course taken up by mathematics during 10, 11, 12, 13, etc., giving place value to each digit. The barrier the long journey, since ancient times. of writing very large numbers was thus broken. For instance, the numbers mentioned in Yajur Veda could easily be represented A very early method necessitated for counting of objects as Dasha 10, Shata (102), Sahsra (103), Ayuta (104), Niuta (enumeration) was the Tally Marks used in the late Stone Age. In (105), Prayuta (106), ArA bud (107), Nyarbud (108), Samudra some parts of Europe, Africa and Australia the system consisted (109), Madhya (1010), Anta (1011) and Parartha (1012).
    [Show full text]
  • Henry Andrews Bumstead 1870-1920
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XIII SECOND MEMOIR BIOGRAPHICAL MEMOIR OF HENRY ANDREWS BUMSTEAD 1870-1920 BY LEIGH PAGE PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1929 HENRY ANDREWS BUMSTEAD BY LIUGH PAGE Henry Andrews Bumstead was born in the small town of Pekin, Illinois, on March 12th, 1870, son of Samuel Josiah Bumstead and Sarah Ellen Seiwell. His father, who was a physician of considerable local prominence, had graduated from the medical school in Philadelphia and was one of the first American students of medicine to go to Vienna to complete his studies. While the family was in Vienna, Bumstead, then a child three years of age, learned to speak German as fluently as he spoke English, an accomplishment which was to prove valuable to him in his subsequent career. Bumstead was descended from an old New England family which traces its origin to Thomas Bumstead, a native of Eng- land, who settled in Boston, Massachusetts, about 1640. Many of his ancestors were engaged in the professions, his paternal grandfather, the Reverend Samuel Andrews Bumstead, being a graduate of Princeton Theological Seminary and a minister in active service. From them he inherited a keen mind and an unusually retentive memory. It is related that long before he had learned to read, his Sunday school teacher surprised his mother by complimenting her on the ease with which her son had rendered the Sunday lesson. It turned out that his mother made a habit of reading the lesson to Bumstead before he left for school, and the child's remarkable performance there was due to his ability to hold in his memory every word of the lesson after hearing it read to him a single time.
    [Show full text]
  • Is It Time for a New Paradigm in Physics?
    Vigier IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012024 doi:10.1088/1742-6596/1251/1/012024 Is it time for a new paradigm in physics? Shukri Klinaku University of Prishtina Sheshi Nëna Terezë, Prishtina, Kosovo [email protected] Abstract. The fact that the two main pillars of modern Physics are incompatible with each other; the fact that some unsolved problems have accumulated in Physics; and, in particular, the fact that Physics has been invaded by weird concepts (as if we were in the Middle Ages); these facts are quite sufficient to confirm the need for a new paradigm in Physics. But the conclusion that a new paradigm is needed is not sufficient, without an answer to the question: is there sufficient sources and resources to construct a new paradigm in Physics? I consider that the answer to this question is also yes. Today, Physics has sufficient material in experimental facts, theoretical achievements and human and technological potential. So, there is the need and opportunity for a new paradigm in Physics. The core of the new paradigm of Physics would be the nature of matter. According to this new paradigm, Physics should give up on wave-particle dualism, should redefine waves, and should end the mystery about light and its privilege in Physics. The consequences of this would make Physics more understandable, and - more importantly - would make it capable of solving current problems and opening up new perspectives in exploring nature and the universe. 1. Introduction Quantum Physics and the theory of relativity are the ‘two main pillars’ of modern Physics.
    [Show full text]
  • Simple Circuit Theory and the Solution of Two Electricity Problems from The
    Simple circuit theory and the solution of two electricity problems from the Victorian Age A C Tort ∗ Departamento de F´ısica Te´orica - Instituto de F´ısica Universidade Federal do Rio de Janeiro Caixa Postal 68.528; CEP 21941-972 Rio de Janeiro, Brazil May 22, 2018 Abstract Two problems from the Victorian Age, the subdivision of light and the determination of the leakage point in an undersea telegraphic cable are discussed and suggested as a concrete illustrations of the relationships between textbook physics and the real world. Ohm’s law and simple algebra are the only tools we need to discuss them in the classroom. arXiv:0811.0954v1 [physics.pop-ph] 6 Nov 2008 ∗e-mail: [email protected]. 1 1 Introduction Some time ago, the present author had the opportunity of reading Paul J. Nahin’s [1] fascinating biog- raphy of the Victorian physicist and electrician Oliver Heaviside (1850-1925). Heaviside’s scientific life unrolls against a background of theoretical and technical challenges that the scientific and technological developments fostered by the Industrial Revolution presented to engineers and physicists of those times. It is a time where electromagnetic theory as formulated by James Clerk Maxwell (1831-1879) was un- derstood by only a small group of men, Lodge, FitzGerald and Heaviside, among others, that had the mathematical sophistication and imagination to grasp the meaning and take part in the great Maxwellian synthesis. Almost all of the electrical engineers, or electricians as they were called at the time, considered themselves as “practical men”, which effectively meant that most of them had a working knowledge of the electromagnetic phenomena spiced up with bits of electrical theory, to wit, Ohm’s law and the Joule effect.
    [Show full text]
  • The Experimental Verdict on Spacetime from Gravity Probe B
    The Experimental Verdict on Spacetime from Gravity Probe B James Overduin Abstract Concepts of space and time have been closely connected with matter since the time of the ancient Greeks. The history of these ideas is briefly reviewed, focusing on the debate between “absolute” and “relational” views of space and time and their influence on Einstein’s theory of general relativity, as formulated in the language of four-dimensional spacetime by Minkowski in 1908. After a brief detour through Minkowski’s modern-day legacy in higher dimensions, an overview is given of the current experimental status of general relativity. Gravity Probe B is the first test of this theory to focus on spin, and the first to produce direct and unambiguous detections of the geodetic effect (warped spacetime tugs on a spin- ning gyroscope) and the frame-dragging effect (the spinning earth pulls spacetime around with it). These effects have important implications for astrophysics, cosmol- ogy and the origin of inertia. Philosophically, they might also be viewed as tests of the propositions that spacetime acts on matter (geodetic effect) and that matter acts back on spacetime (frame-dragging effect). 1 Space and Time Before Minkowski The Stoic philosopher Zeno of Elea, author of Zeno’s paradoxes (c. 490-430 BCE), is said to have held that space and time were unreal since they could neither act nor be acted upon by matter [1]. This is perhaps the earliest version of the relational view of space and time, a view whose philosophical fortunes have waxed and waned with the centuries, but which has exercised enormous influence on physics.
    [Show full text]
  • The Concept of Field in the History of Electromagnetism
    The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”.
    [Show full text]
  • On Frame-Invariance in Electrodynamics
    On Frame-Invariance in Electrodynamics Giovanni Romanoa aDepartment of Structural Engineering, University of Naples Federico II, via Claudio 21, 80125 - Naples, Italy e-mail: [email protected] Abstract The Faraday and Ampere` -Maxwell laws of electrodynamics in space- time manifold are formulated in terms of differential forms and exterior and Lie derivatives. Due to their natural behavior with respect to push-pull operations, these geometric objects are the suitable tools to deal with the space-time observer split of the events manifold and with frame-invariance properties. Frame-invariance is investigated in complete generality, referring to any automorphic transformation in space-time, in accord with the spirit of general relativity. A main result of the new geometric theory is the assess- ment of frame-invariance of space-time electromagnetic differential forms and induction laws and of their spatial counterparts under any change of frame. This target is reached by a suitable extension of the formula governing the correspondence between space-time and spatial differential forms in electro- dynamics to take relative motions in due account. The result modifies the statement made by Einstein in the 1905 paper on the relativity principle, and reproposed in the subsequent literature, and advocates the need for a revision of the theoretical framework of electrodynamics. Key words: Electrodynamics, frame-invariance, differential forms 1. Introduction arXiv:1209.5960v2 [physics.gen-ph] 10 Oct 2012 The history of electromagnetism is a really fascinating one, starting from the brilliant experimental discoveries by Romagnosi-Ørsted in 1800-1820 and by Zantedeschi-Henry-Faraday in 1829-30-31, and from the early beautiful theoretical abstractions that soon led to Faraday’s and Ampere` - Maxwell laws of electromagnetic inductions.
    [Show full text]
  • On the Origin of the Lorentz Transformation
    Human Journals Short Communication June 2018 Vol.:9, Issue:4 © All rights are reserved by W. Engelhardt On the Origin of the Lorentz Transformation Keywords: Special relativity, Voigt, Lorentz, Poincaré, Einstein ABSTRACT The Lorentz Transformation, which is considered as W. Engelhardt constitutive for the Special Relativity Theory, was invented Retired from: Max-Planck-Institut für Plasmaphysik, D- by Voigt in 1887, adopted by Lorentz in 1904, and baptized 85741 Garching, Germany by Poincaré in 1906. Einstein probably picked it up from Voigt directly. Submission: 19 May 2018 Accepted: 25 May 2018 Published: 30 June 2018 www.ijsrm.humanjournals.com www.ijsrm.humanjournals.com 1 INTRODUCTION: Maxwell’s wave equation Maxwell’s ether theory of light was developed from his first order equations and resulted in a homogeneous wave equation for the vector potential: 2 A cA2 t 2 The electromagnetic field could be calculated by differentiating this potential with respect to time and space: E A t, B rot A . For a wave polarized in y-direction, e.g., and travelling in x-direction one may write for the y-component of A : 22AA c2 (1) xt22 Formally this equation is the same as a wave equation for sound, e.g. 22pp c 2 (2) S xt22 Where cS is the sound velocity in air and p is the pressure perturbation. Maxwell took the propagation velocity in (1) as the velocity of light with respect to the ether that was perceived by him as a hypothetical medium in which light propagates like sound in air. From the formal similarity of (1) and (2) follow similar solutions, e.g.
    [Show full text]
  • Classical Spacetime Structure
    Classical Spacetime Structure James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract I discuss several issues related to \classical" spacetime structure. I review Galilean, Newto- nian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible. 1. Introduction One often associates spacetime|a four-dimensional geometrical structure representing both space and time|with relativity theory, developed by Einstein and others in the early part of the twentieth century.1 But soon after relativity theory appeared, several authors, such as Hermann Weyl (1952 [1918]), Elie´ Cartan (1923, 1924), and Kurt Friedrichs (1927), began to study how the spatio-temporal structure presupposed by classical, i.e., Newtonian, physics could be re-cast using the methods of four-dimensional geometry developed in the context of relativity. These reformulations of classical physics were initially of interest for the insight they offered into the structure of relativity theory.2 But this changed in 1967, when Howard Stein proposed that the notion of a \classical" spacetime could provide important insight arXiv:1707.05887v1 [physics.hist-ph] 18 Jul 2017 Email address: [email protected] (James Owen Weatherall) 1The idea of \spacetime" was actually introduced by Minkowski (2013 [1911]), several years after Einstein first introduced relativity theory. 2And indeed, they remain of interest for this reason: see, for instance, Friedman (1983), Malament (1986a,b, 2012), Earman (1989b), Fletcher (2014), Barrett (2015), Weatherall (2011a,b, 2014, 2017d,c), and Dewar and Weatherall (2017) for philosophical discussions of the relationship between relativity theory and Newtonian physics that make heavy use of this formalism.
    [Show full text]
  • Why Spacetime Is Probably a Substance Author(S): Tim Maudlin Reviewed Work(S): Source: Philosophy of Science, Vol
    Buckets of Water and Waves of Space: Why Spacetime Is Probably a Substance Author(s): Tim Maudlin Reviewed work(s): Source: Philosophy of Science, Vol. 60, No. 2 (Jun., 1993), pp. 183-203 Published by: The University of Chicago Press on behalf of the Philosophy of Science Association Stable URL: http://www.jstor.org/stable/188350 . Accessed: 28/12/2012 20:13 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and Philosophy of Science Association are collaborating with JSTOR to digitize, preserve and extend access to Philosophy of Science. http://www.jstor.org This content downloaded on Fri, 28 Dec 2012 20:13:44 PM All use subject to JSTOR Terms and Conditions Philosophy of Science June, 1993 BUCKETS OF WATER AND WAVES OF SPACE: WHY SPACETIME IS PROBABLY A SUBSTANCE* TIM MAUDLINtt Department of Philosophy Rutgers University This paper sketches a taxonomy of forms of substantivalism and relationism concerning space and time, and of the traditional arguments for these positions. Several natural sorts of relationism are able to account for Newton's bucket experiment. Conversely, appropriately constructed substantivalism can survive Leibniz's critique, a fact which has been obscured by the conflation of two of Leibniz's arguments.
    [Show full text]
  • December 4, 1954 NATURE 1037
    No. 4440 December 4, 1954 NATURE 1037 COPLEY MEDALLISTS, 1915-54 is that he never ventured far into interpretation or 1915 I. P. Pavlov 1934 Prof. J. S. Haldane prediction after his early studies in fungi. Here his 1916 Sir James Dewar 1935 Prof. C. T. R. Wilson interpretation was unfortunate in that he tied' the 1917 Emile Roux 1936 Sir Arthur Evans word sex to the property of incompatibility and 1918 H. A. Lorentz 1937 Sir Henry Dale thereby led his successors astray right down to the 1919 M. Bayliss W. 1938 Prof. Niels Bohr present day. In a sense the style of his work is best 1920 H. T. Brown 1939 Prof. T. H. Morgan 1921 Sir Joseph Larmor 1940 Prof. P. Langevin represented by his diagrams of Datura chromosomes 1922 Lord Rutherford 1941 Sir Thomas Lewis as packets. These diagrams were useful in a popular 1923 Sir Horace Lamb 1942 Sir Robert Robinson sense so long as one did not take them too seriously. 1924 Sir Edward Sharpey- 1943 Sir Joseph Bancroft Unfortunately, it seems that Blakeslee did take them Schafer 1944 Sir Geoffrey Taylor seriously. To him they were the real and final thing. 1925 A. Einstein 1945 Dr. 0. T. Avery By his alertness and ingenuity and his practical 1926 Sir Frederick Gow­ 1946 Dr. E. D. Adrian sense in organizing the Station for Experimental land Hopkins 1947 Prof. G. H. Hardy Evolution at Cold Spring Harbor (where he worked 1927 Sir Charles Sherring- 1948 . A. V. Hill Prof in 1942), ton 1949 Prof. G.
    [Show full text]