Revision and Phylogeny of the Limacodid-Group Families, with Evolutionary Studies on Slug Caterpillars (Lepidoptera: Zygaenoidea)

Total Page:16

File Type:pdf, Size:1020Kb

Revision and Phylogeny of the Limacodid-Group Families, with Evolutionary Studies on Slug Caterpillars (Lepidoptera: Zygaenoidea) Revision and Phylogeny of the Limacodid-Group Families, with Evolutionary Studies on Slug Caterpillars (Lepidoptera: Zygaenoidea) MARC E. EPSTEIN W9\ I SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 582 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Folklife Studies Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. Press requirements for manuscript and art preparation are outlined on the inside back cover. I. Michael Heyman Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 582 Revision and Phylogeny of the Limacodid-Group Families, with Evolutionary Studies on Slug Caterpillars (Lepidoptera: Zygaenoidea) Marc E. Epstein SMITHSONIAN INSTITUTION PRESS Washington, D.C. 19% ABSTRACT Epstein, Marc E. Revision and Phylogeny of the Limacodid-Group Families, with Evolutionary Studies on Slug Caterpillars (Lepidoptera: Zygaenoidea). Smithsonian Contribu- tions to Zoology, number 582, 102 pages, 409 figures, 7 tables, 1996.—The limacodid group, composed of Limacodidae (+ Chrysopolomidae), Dalceridae, Megalopygidae, Aididae, and Somabrachyidae, is revised, and diagnoses, redescriptions, and keys to larval and adult stages are provided for each family. Comparative morphology and ontogeny of the larval stage are emphasized. Immature stages, including first instars, of a number of taxa are figured for the first time. New character data for adults and immatures are presented, including the presence of larval crochets on abdominal segments A2-A7 and A10 in species of Megalopygidae and Limacodidae. Computer-assisted phylogenetic analyses of limacodid-group families using separate character-data sets from adult and immature stages produces congruent cladograms of equal parsimony, with Zygaenidae selected as the outgroup. Megalopygidae (Megalopygi- nae + Trosiinae) is found to be the most basal family among the limacodid group, and Aididae, previously a subfamily of Megalopygidae, is the sister group to the Limacodidae + Dalceridae clade. Chrysopolomidae is placed as a subfamily of Limacodidae based on new character evidence from adult and immature stages. Relationships of Somabrachyidae, Epipyropidae, and Cyclotornidae also are discussed. Previous interpretations of character homologies for abdominal proiegs in the larvae are revised based on the phylogenetic analysis, resulting in a novel hypothesis concerning the evolutionary transformation from proiegs to a slug-like ventral surface. New representations of homology for larval body setae and for juxta and valva of male genitalia also are given. Behavioral observations of immatures and adults of species in the limacodid group are presented, along with a review of their biology. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Year. SERIES COVER DESIGN: The coral Montastrea cavernosa (Linnaeus). Library of Congress Cataloging-in-Publication Data Epstein, Marc E. Revision and phylogeny of the Limacodid-group families, with evolutionary studies on slug caterpillars (Lepidop- tera : Zygaenoidea) / Marc E. Epstein. P. cm. — (Smithsonian contributions to zoology ; no. 582) Includes bibliographical references (p. 99). 1. Lepidoptera—Classification. I. Title. II. Series. QL1.S54 no. 582 [QL545] 591 s—dc20 [595.78M] 96-16840 ® The paper used in this publication meets the minimum requirements of the American National Standard for Permanence of Paper for Printed Library Materials Z39.48 1984. Contents Page Introduction 1 Acknowledgments 3 Material and Methods 3 Abbreviations 4 History of Classification of the Limacodid Group 5 Biology 6 Larvae 6 Cocoons 8 Adults 10 Eggs 10 Morphology 10 Adults 13 Larvae 25 Pupae 56 Phylogenetic Analysis 61 Data Analysis 61 Results and Discussion 66 Keys to Limacodid-Group Families and Allies 70 Key to Adults 70 Key to Larvae 71 Limacodid-Group Families and Allies 72 MEGALOPYGIDAE Herrich-Schaffer, 1855 72 AlDlDAE Hopp, 1927, new status 75 DALCERIDAE Dyar, 1898 79 LIMACODIDAE Duponchel, 1844 81 CHRYSOPOLOMINAE Aurivillius, 1895, new status 84 SOMABRACHYIDAE Hampson, 1920 85 EPIPYROPIDAE Dyar, 1903, and CYCLOTORNIDAE Meyrick, 1912 86 Ontogeny and Function of Limacodid Spinnerets 87 Homology and Evolution of Larval Body Setae 91 DALCERIDAE 91 LIMACODIDAE 91 Evolution and Origin 93 Evolution of the Ventral Abdominal Surface 94 Prolegs and Crochets 94 Homology of Suckers 95 Function and Adaptation 96 Summary 97 Literature Cited 99 111 Dedication This contribution is dedicated to the memories of my father, Joseph Samuel Epstein, and fellow lepidopterists F. Martin Brown and B. Adrienne Venables. Revision and Phylogeny of the Limacodid-Group Families, with Evolutionary Studies on Slug Caterpillars (Lepidoptera: Zygaenoidea) Marc E. Epstein Introduction surface. There is a wide diversity of larval forms in the limacodid group (Figures 1-6), although it is best known for Limacodidae (=Eucleidae, Cochlidiidae) is the richest spiny larvae that cause dermatitis. The Limacodidae, Mega- (- 1000 species) and most widespread moth family among a lopygidae, and Dalceridae are economic pests of palms and monophyletic group of five families in the Zygaenoidea, which I term the "limacodid group." Distributed worldwide, although other plantation crops in the tropics (Genty et al., 1978; Cock et primarily in the tropics, the family Limacodidae is related to the al., 1987). New World limacodid-group families Dalceridae (84 spp.) Relationships among families in the limacodid group and (Miller, 1994), Aididae (=Aidinae, Megalopygidae, 6 spp.), their allies are poorly understood. In large part this is due to an and Megalopygidae (~ 230 spp.) (Hopp, 1934; Becker, 1995). incomplete knowledge of immature stages. Furthermore, there Two Old World relatives are Chrysopolomidae (35 spp.) and has been little detailed morphological study of immature stages Somabrachyidae (~ 10 spp.). Restricted to Africa and Madagas- or of adults. car (Hering, 1937), Chrysopolomidae is placed herein as a Fortunately the fog is lifting. During the past decade there subfamily of Limacodidae. The Somabrachyidae, often re- have been studies on the limacodid-group families Limacodi- garded as constituting a subfamily of Megalopygidae, are dae (Holloway, 1986; Holloway et al., 1987; Epstein, 1988) found in Africa and in Mediterranean Europe (Geertsema, pers. and Dalceridae (Stehr and McFarland, 1987; Miller, 1994) as comm.; Freina and Witt, 1990). well as on others associated with them, such as parasitic The limacodid group is characterized by external-feeding families Epipyropidae and Cyclotomidae (Davis, 1987; Com- larvae that have retractile heads and either prolegs on mon, 1990); however, comparative morphology from these abdominal segments A2-A7 or a flexible, slug-like ventral studies has been needed in order to gain a better understanding of the interfamilial relationships. I base my phylogenetic (= cladistic) analysis of the limacodid group on the compara- tive morphological data given herein and in other recent studies Marc E. Epstein, Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560. cited above. Although I do not treat characters of the Zygaenidae extensively, I examine them in phylogenetic Review Chairman: John M. Burns, National Museum of Natural context of the limacodid group. History, Smithsonian Institution, Washington, D.C. 20560. Dyar (1895a, 1899b) believed ventral suckers in limacodid Reviewers: Jeremy D. Holloway, CA.B. International Institute of Entomology, 56 Queen's Gate, London, SW7 5JR, England; James S. larvae to be derived from fusion of the membranous pads found Miller, Department of Entomology, American Museum of Natural in megalopygids. Hinton (1955:516), however, indicated that History, New York, New York 10024-5192; John E. Rawlins, Section of there was no convincing explanation for the "loss of abdominal Invertebrate Zoology, Carnegie
Recommended publications
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • (Hymenoptera: Chalcidoidea) De La Región Neotropical Biota Colombiana, Vol
    Biota Colombiana ISSN: 0124-5376 [email protected] Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Colombia Arias, Diana C.; Delvare, Gerard Lista de los géneros y especies de la familia Chalcididae (Hymenoptera: Chalcidoidea) de la región Neotropical Biota Colombiana, vol. 4, núm. 2, diciembre, 2003, pp. 123- 145 Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Bogotá, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=49140201 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Biota Colombiana 4 (2) 123 - 145, 2003 Lista de los géneros y especies de la familia Chalcididae (Hymenoptera: Chalcidoidea) de la región Neotropical Diana C. Arias1 y Gerard Delvare2 1 Instituto de Investigación de Recursos Biológicos “Alexander von Humboldt”, AA 8693, Bogotá, D.C., Colombia. [email protected], [email protected] 2 Departamento de Faunística y Taxonomía del CIRAD, Montpellier, Francia. [email protected] Palabras Clave: Insecta, Hymenoptera, Chalcidoidea, Chalcididae, Parasitoide, Avispas Patonas, Neotrópico El orden Hymenoptera se ha dividido tradicional- La superfamilia Chalcidoidea se caracteriza por presentar mente en dos subórdenes “Symphyta” y Apocrita, este úl- en el ala anterior una venación reducida, tan solo están timo a su vez dividido en dos grupos con categoría de sec- presentes la vena submarginal, la vena marginal, la vena ción o infraorden dependiendo de los autores, denomina- estigmal y la vena postmarginal.
    [Show full text]
  • Elongation Factor-2: a Useful Gene for Arthropod Phylogenetics Jerome C
    Molecular Phylogenetics and Evolution Vol. 20, No. 1, July, pp. 136 –148, 2001 doi:10.1006/mpev.2001.0956, available online at http://www.idealibrary.com on Elongation Factor-2: A Useful Gene for Arthropod Phylogenetics Jerome C. Regier* ,1 and Jeffrey W. Shultz† *Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, Plant Sciences Building, College Park, Maryland 20742; and †Department of Entomology, University of Maryland, Plant Sciences Building, College Park, Maryland 20742 Received September 26, 2000; revised January 24, 2001; published online June 6, 2001 Key Words: Arthropoda; elongation factor-1␣; elon- Robust resolution of controversial higher-level gation factor-2; molecular systematics; Pancrustacea; groupings within Arthropoda requires additional RNA polymerase II. sources of characters. Toward this end, elongation fac- tor-2 sequences (1899 nucleotides) were generated from 17 arthropod taxa (5 chelicerates, 6 crustaceans, INTRODUCTION 3 hexapods, 3 myriapods) plus an onychophoran and a tardigrade as outgroups. Likelihood and parsimony The conceptual framework for understanding organis- analyses of nucleotide and amino acid data sets con- mal diversity of arthropods will remain incomplete and sistently recovered Myriapoda and major chelicerate controversial as long as robustly supported phylogenetic -groups with high bootstrap support. Crustacea ؉ relationships are lacking. This is illustrated by the cur .Pancrustacea) was recovered with mod- rent debate on the phylogenetic placement of hexapods ؍) Hexapoda erate support, whereas the conflicting group Myri- The morphology-based Atelocerata hypothesis maintains Atelocerata) was never recov- that hexapods share a common terrestrial ancestor with ؍) apoda ؉ Hexapoda ered and bootstrap values were always <5%. With myriapods, but the molecule-based Pancrustaea hypoth- additional nonarthropod sequences included, one in- esis maintains that hexapods share a common aquatic del supports monophyly of Tardigrada, Onychophora, ancestor with crustaceans.
    [Show full text]
  • Insects and Molluscs, According to the Procedures Outlined Below
    Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying
    [Show full text]
  • Schutz Des Naturhaushaltes Vor Den Auswirkungen Der Anwendung Von Pflanzenschutzmitteln Aus Der Luft in Wäldern Und Im Weinbau
    TEXTE 21/2017 Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit Forschungskennzahl 3714 67 406 0 UBA-FB 002461 Schutz des Naturhaushaltes vor den Auswirkungen der Anwendung von Pflanzenschutzmitteln aus der Luft in Wäldern und im Weinbau von Dr. Ingo Brunk, Thomas Sobczyk, Dr. Jörg Lorenz Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Tharandt Im Auftrag des Umweltbundesamtes Impressum Herausgeber: Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Durchführung der Studie: Technische Universität Dresden, Fakultät für Umweltwissenschaften, Institut für Forstbotanik und Forstzoologie, Professur für Forstzoologie, Prof. Dr. Mechthild Roth Pienner Straße 7 (Cotta-Bau), 01737 Tharandt Abschlussdatum: Januar 2017 Redaktion: Fachgebiet IV 1.3 Pflanzenschutz Dr. Mareike Güth, Dr. Daniela Felsmann Publikationen als pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4359 Dessau-Roßlau, März 2017 Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter der Forschungskennzahl 3714 67 406 0 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren. UBA Texte Entwicklung geeigneter Risikominimierungsansätze für die Luftausbringung von PSM Kurzbeschreibung Die Bekämpfung
    [Show full text]
  • DNA Barcoding Confirms Polyphagy in a Generalist Moth, Homona Mermerodes (Lepidoptera: Tortricidae)
    Molecular Ecology Notes (2007) 7, 549–557 doi: 10.1111/j.1471-8286.2007.01786.x BARCODINGBlackwell Publishing Ltd DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera: Tortricidae) JIRI HULCR,* SCOTT E. MILLER,† GREGORY P. SETLIFF,‡ KAROLYN DARROW,† NATHANIEL D. MUELLER,§ PAUL D. N. HEBERT¶ and GEORGE D. WEIBLEN** *Department of Entomology, Michigan State University, 243 Natural Sciences Building, East Lansing, Michigan 48824, USA, †National Museum of Natural History, Smithsonian Institution, Box 37012, Washington, DC 20013-7012, USA, ‡Department of Entomology, University of Minnesota, 1980 Folwell Avenue, Saint Paul, Minnesota 55108–1095 USA, §Saint Olaf College, 1500 Saint Olaf Avenue, Northfield, MN 55057, USA,¶Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G2W1, **Bell Museum of Natural History and Department of Plant Biology, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, Saint Paul, Minnesota 55108–1095, USA Abstract Recent DNA barcoding of generalist insect herbivores has revealed complexes of cryptic species within named species. We evaluated the species concept for a common generalist moth occurring in New Guinea and Australia, Homona mermerodes, in light of host plant records and mitochondrial cytochrome c oxidase I haplotype diversity. Genetic divergence among H. mermerodes moths feeding on different host tree species was much lower than among several Homona species. Genetic divergence between haplotypes from New Guinea and Australia was also less than interspecific divergence. Whereas molecular species identification methods may reveal cryptic species in some generalist herbivores, these same methods may confirm polyphagy when identical haplotypes are reared from multiple host plant families. A lectotype for the species is designated, and a summarized bibliography and illustrations including male genitalia are provided for the first time.
    [Show full text]
  • Keys for Nocturnal Workshop April 2018
    Keys for the identification of British and Irish nocturnal Ichneumonidae Gavin R. Broad Dept. of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD; email: [email protected] Introduction These notes and draft keys support the Nocturnal Ichneumonoidea Recording Scheme (http://nocturnalichs.myspecies.info/), concentrating on Ichneumonidae. The main emphasis here is on the species of Ophioninae, a subfamily of predominantly nocturnal species, and on the species of Netelia. The keys and notes presented here are mostly rather rough and ready, although keys to Cidaphus and Enicospilus are taken from published papers. Some illlustrations have been copied from published sources: Ophion from Brock (1982), Cidaphus from Fitton (1985), Enicospilus from Broad & Shaw (2016) and Netelia (Netelia) from Konishi (2005). Kazuhiko Konishi has also kindly sent me a draft plate with his drawings of Netelia (Bessobates) male genitalia, based on British specimens. A few of my own images are included. Figures are numbered independently for each key. Dichotomous characters are listed first, confirmatory characters that are not reflected in the other half of the couplet are placed in square brackets. It is important to bear in mind that many species of Ophion and Netelia are not identifiable by single characters, instead several characters need to be evaluated in combination. The more specimens that you’ve amassed, the better, as it will then be easier to compare character states across species. These keys are not intended for formal publication in their current state but please do send this to anybody who may be interested in learning more about nocturnal ichneumonoids.
    [Show full text]
  • Chapter-17-Integrated-Pest.Pdf
    Conilon Coffee © 2019 - Incaper Capixaba Institute for Research, Technical Assistance and Rural Extension Rua Afonso Sarlo, 160 - Bento Ferreira - CEP: 29052-010 - Vitória-ES - Brasil - Caixa Postal: 391 Telephone: 55 27 3636 9888; 55 27 3636 9846 - [email protected] | www.incaper.es.gov.br All rights reserved under the Law No 9610, which protects the copyright. Any reproduction, in whole or in part, of this book or of one or several of its components, by whatsoever process, is forbidden without the express authorization of Incaper or publishers. ISBN: 978-85-89274-32-6 Editor: Incaper Format: digital/printed May 2019 INCAPER EDITORIAL BOARD - CEO GOVERNMENT OF THE STATE OF President: Nilson Araujo Barbosa ESPÍRITO SANTO Technology and Knowledge Transfer Management: Sheila Cristina P. Posse Governor of the State of Espírito Santo Research, Development and Innovation Management: Luiz Carlos Prezotti Renato Casagrande Technical Assistance and Rural Extension Management: Celia J. Sanz Rodriguez Editorial Coordination: Aparecida de Lourdes do Nascimento DEPARTMENT OF AGRICULTURE, SUPPLY, REPRESENTATIVE MEMBERS: AQUACULTURE AND FISHERIES - SEAG Anderson Martins Pilon State Secretary for Agriculture, Fisheries, André Guarçoni M. Aquaculture and Fisheries Cíntia Aparecida Bremenkamp Paulo Roberto Foletto Fabiana Gomes Ruas Gustavo Soares de Souza CAPIXABA INSTITUTE FOR RESEARCH, TECHNICAL José Aires Ventura ASSISTANCE AND RURAL EXTENSION - INCAPER Marianna Abdalla Prata Guimarães President director Renan Batista Queiroz Antonio
    [Show full text]
  • Biology of Dalcerides Ingenita (Lepidoptera: Dalceridae)
    Vol. 8 No. 2 1997 EPSTEIN: Dalcerides ingenita Biology 49 TROPICAL LEPIDOPTERA, 8(2): 49-59 BIOLOGY OF DALCERIDES INGENITA (LEPIDOPTERA: DALCERIDAE) MARC E. EPSTEIN Dept. of Entomology, MRC 105, Smithsonian Institution, Washington, D.C. 20560, USA ABSTRACT.- Observations on the biology of Dalcerides ingenita (H. Edwards) are documented, many for the first time, with photographs and images captured from video. Dalcerid larvae have a dorsum covered with gelatinous warts. It is reported here that the head, prothorax, ventrum and anal segment of larval dalcerids are molted apart from the dorsum of the remaining thorax and abdomen. The gelatinous warts are irregularly molted and are believed to form as a result of secretions beneath old layers of integument. Time-lapse photography of cocoon construction indicates that the warts are sloughed off and fed on by the prepupa. Images of other behaviors include larval locomotion and use of the spinneret, cannibalism of unhatched larvae by newly hatched siblings, and adult emergence and copulation. KEY WORDS: Acraga, Aididae, Arizona, Brazil, Colombia, Diptera, eggs, Epipyropidae, Ericaceae, Fagaceae, Fulgoroidea, Homoptera, hostplants, Hymenoptera, immatures, larvae, larval behavior, life history, Limacodidae, Megalopygidae, Mexico, Nearctic, Neotropical, parasites, Prolimacodes, pupae, South America, Tachinidae, Texas, USA, Zygaenidae. Dalceridae (84 spp.) are a small, mostly Neotropical group scribed in other dalcerid species (Louren9§o and Sabino, 1994), closely related to Limacodidae (Miller, 1994; Epstein, 1996). but without a detailed temporal account of the various stages until Lepidopterists have been intrigued by unusual aspects of dalcerid adult emergence. larvae. Their dorsum, coated with sticky gelatinous warts, is Dalcerid larvae are hosts to a restricted number of parasitic exceptional in Lepidoptera caterpillars (Epstein et al, 1994).
    [Show full text]
  • Keystone Ancient Forest Preserve Resource Management Plan 2011
    Keystone Ancient Forest Preserve Resource Management Plan 2011 Osage County & Tulsa County, Oklahoma Lowell Caneday, Ph.D. With Kaowen (Grace) Chang, Ph.D., Debra Jordan, Re.D., Michael J. Bradley, and Diane S. Hassell This page intentionally left blank. 2 Acknowledgements The authors acknowledge the assistance of numerous individuals in the preparation of this Resource Management Plan. On behalf of the Oklahoma Tourism and Recreation Department’s Division of State Parks, staff members were extremely helpful in providing access to information and in sharing of their time. In particular, this assistance was provided by Deby Snodgrass, Kris Marek, and Doug Hawthorne – all from the Oklahoma City office of the Oklahoma Tourism and Recreation Department. However, it was particularly the assistance provided by Grant Gerondale, Director of Parks and Recreation for the City of Sand Springs, Oklahoma, that initiated the work associated with this RMP. Grant provided a number of documents, hosted an on-site tour of the Ancient Forest, and shared his passion for this property. It is the purpose of the Resource Management Plan to be a living document to assist with decisions related to the resources within the park and the management of those resources. The authors’ desire is to assist decision-makers in providing high quality outdoor recreation experiences and resources for current visitors, while protecting the experiences and the resources for future generations. Lowell Caneday, Ph.D., Professor Leisure Studies Oklahoma State University Stillwater,
    [Show full text]
  • Saddleback Caterpillar
    Pest Profile Photo credit: Gerald J. Lenhard, Louisiana State University, Bugwood.org (Larva) Lacy L. Hyche, Auburn University, Bugwood.org (Adult) Licensed under a Creative Commons Attribution 3.0 License Common Name: Saddleback Caterpillar Scientific Name: Acharia stimulea Order and Family: Lepidoptera; Limacodidae Size and Appearance: Length (mm) Appearance Egg Length: 1.5-2 mm - Laid on the upper side of host leaves in irregular Width: 1 mm clusters of 30-50 eggs - Transparent and yellow in color with thin edges Larva/Nymph - Have a slug-like body with a granulated texture - Prolegs are concealed under the ventral surface - Brightly colored, denoting toxicity - Dark brown on both ends with a contrasting bright green pattern on the dorsal midsection that is 1.2-20 mm outlined in white, giving it the appearance of a saddle - Have large fleshy tubercles covered in long setae and spines that extend from both ends - Have three cream colored spots on the posterior end that imitate a large face Adult - Glossy dark brown with black shading - Have dense scales on body and wings, giving it a “furry” appearance Wingspan: 26-43 mm - Have a single white dot near the base of the forewing with 1-3 additional white dots near the apex - Hindwings are a light brown Pupa (if applicable) ~10 mm - A hard, silken cocoon Type of feeder (Chewing, sucking, etc.): Larvae have chewing mouthparts while adults have siphoning mouthparts. Host plant/s: Maple tree, Hackberry, pecan, spicebush, crape myrtle, chestnut tree Description of Damage: Caterpillars feed on plant leaves but most of their damage comes from unintentional contact with humans.
    [Show full text]