Gene Expression in Moraxella Osloensis, Photorhabdus Temperata and Xenorhabdus Koppenhoeferi During Host Infection

Total Page:16

File Type:pdf, Size:1020Kb

Gene Expression in Moraxella Osloensis, Photorhabdus Temperata and Xenorhabdus Koppenhoeferi During Host Infection GENE EXPRESSION IN MORAXELLA OSLOENSIS, PHOTORHABDUS TEMPERATA AND XENORHABDUS KOPPENHOEFERI DURING HOST INFECTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ruisheng An, M.S. * * * * The Ohio State University 2007 Dissertation Committee: Approved by Dr. Parwinder S. Grewal, Adviser Dr. David L. Denlinger _______________________________ Dr. Saskia A. Hogenhout Adviser Dr. Srinand Sreevatsan Graduate Program in Entomology ABSTRACT Bacterium Moraxella osloensis is associated with slug-parasitic nematode Phasmarhabditis hermaphrodita, and bacteria from genus Photorhabdus and Xenorhabdus are with entomopathogenic nematode Heterorhabditis and Steinernema, respectively. We first determined gene expression of M. osloensis in the mollusk host Deroceras reticulatum by selective capture of transcribed sequences (SCOTS) technique. Two genes, ubiquinone synthetase (ubiS) and acyl-coA synthetase (acs) were up-regulated in both D. reticulatum and stationary phase in vitro cultures. Eleven genes were exclusively expressed in D. reticulatum and were thus infection specific. Mutational analysis on genes of protein-disulfide isomerase (dsbC) and ubiS confirmed that UbiS is important to M. osloensis growth and DsbC serves as a virulence factor. Bacteria Photorhabdus temperata and Xenorhabdus koppenhoeferi, the symbionts of nematodes Heterorhabditis bacteriophora and Steinernema scarabaei, respectively, were virulent to three white grub species Popillia japonica, Rhizotrogus majalis, and Cyclocephala borealis. The median lethal dose at 48h post injection ii and median lethal time at injection dose of 20 cells per grub showed that P. temperata was more virulent than X. koppenhoferi to C. borealis. However, although P. t em p er a t a grew faster than X. koppenhoeferi both in vitro and in vivo, there were no differences in virulence of two bacteria against R. majalis and P. japonica. Using SCOTS technique, 30 genes by P. t e m p er a ta and 25 by X. koppenhoeferi were identified to be differentially expressed during infection to R. majalis. Most genes were unique to either P. t em p er a t a or X. koppenhoeferi, e.g. ttsL encoding a type III secretion system was only identified from P. t empera ta, and lpsE corresponding to lipopolysaccharide synthesis was unique to X. koppenhoeferi. Five nexus genes directly connecting to several other genes were identified as attractive candidates for future studies using the metabolic computational pathway analysis. Compared to the gene expression of M. osloensis, several common genes were found to be up-regulated during infection in all three bacteria, including dsb gene family and genes encoding outer membrane proteins, fatty acid synthesis proteins, and ubiquinone synthesis proteins. iii Dedicated to my parents, wife, and son iv ACKNOWLEDGMENTS I sincerely thank my advisor, Dr. Parwinder S. Grewal, for his great support and guidance throughout my graduate program. His encouragement, enthusiasm, and patience made this dissertation possible. What I have learned from him has prepared me profoundly for future opportunities. I thank Dr. Srinand Sreevatsan for his invaluable guidance and encouragement during my Ph.D. studies. I particularly enjoyed learning the selective capture of transcribed sequences (SCOTS) technique in his lab. I greatly appreciate other members of my advisory committee, Dr. David L. Denlinger and Dr. Saskia A. Hogenhout for their suggestions and encouragement during my Ph.D. studies, and precious comments on my dissertation. I appreciate the valuable help when I walked into their labs to use the equipment. Also I appreciate the helpful comments on the third chapter by Dr. Denlinger, Dr. Michael Sadowsky and Dr. Man-Wah Tan, and the helpful reviews of the fourth chapter by Dr. Erko Stackebrandt. I am grateful to Dr. Ronald B. Hammond for providing useful books on slugs, I am grateful to Ms. Judy A. Smith for help in collecting slugs and to all of my lab colleagues for helping to collect white grubs for my experiments. I am also pleased v by the pleasant working environment in the Entomology Department. I would like to specially express my deepest appreciation to my wife. Without her love and support, I could not go so far. This research was supported by an interdisciplinary grant and a graduate research competitive grant from the Ohio Agricultural Research and Development Center, Wooster, Ohio. vi VITA August 26, 1976..............................Born – Wuzhai, Shanxi Province, P.R. China 1999 ................................................B.S. Plant molecular and developmental biology, Peking University, Beijing, China 2002 ................................................M.S. Molecular biology, Institute of Zoology, Chinese Academy of Scienses, Beijing, China 2002-present ...................................Graduate Research and Teaching Associate, The Ohio State University, Ohio, USA PUBLICATIONS Presentations "Identification of genes transcribed by Moraxella osloensis in slug Deroceras reticulatum using selective capture of transcribed sequences (SCOTS)", 38th SIP, August 7-11, 2005. Anchorage Alaska. "In vivo gene expression of the slug pathogenic bacterium Moraxella osloensis", Wooster Area Molecular Biology Association, October 20, 2006. Wooster, Ohio. "Is it the nematode or the bacteria?" National turfgrass entomologists workshop, Wooster, Ohio, 3/12/2007. HONORS AND AWARDS OARDC Ph.D. graduate research competition grant, 2006 vii Travel award at 2005 International Society of Invertebrate Pathology, 2005 OARDC Annual Conference Graduate Student Research Poster Competition: first place Ph.D. competition, 2005. FIELDS OF STUDY Major Field: Entomology Study in Molecular Microbiology viii TABLE OF CONTENTS Page Abstract........................................................................................................................ii Dedication...................................................................................................................iv Acknowledgments........................................................................................................v Vita.............................................................................................................................vii List of Tables..............................................................................................................xii List of Figures...........................................................................................................xiii Chapters: 1. Introduction............................................................................................................1 References...................................................................................................15 2. A review of the use of selective capture of transcribed sequences technique for studying bacterial infections.................................................................................22 2.1 Summary.....................................................................................................22 2.2 Introduction.................................................................................................23 2.3 Protein based methods................................................................................25 2.4 Mutagenesis based methods........................................................................27 2.5 PCR-hybridization based methods..............................................................29 2.6 SCOTS technique.......................................................................................33 2.7 SCOTS versus other methods.....................................................................39 2.8 Conclusions.................................................................................................40 2.9 References..................................................................................................41 3 Moraxella osloensis gene expression in the primitive mollusk host Deroceras reticulatum............................................................................................................46 3.1 Abstract.......................................................................................................46 3.2 Background.................................................................................................47 ix 3.3 Results.........................................................................................................51 3.4 Discussion...................................................................................................56 3.5 Conclusion..................................................................................................61 3.6 Methods......................................................................................................61 3.7 References...................................................................................................69 4 Three new subspecies of the symbiotic bacterium Photorhabdus temperata: P. temperata subsp. boemarei subsp. nov., P. t em p er a t a subsp. fischerlesauxii, and P. temperata subsp. stackebrandtii subsp. nov.........................................................79 4.1 Abstract.......................................................................................................79 4.2 Introduction.................................................................................................80 4.3 Materials and
Recommended publications
  • Integrating Complementary Medicine Into Cardiovascular Medicine
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 46, No. 1, 2005 © 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.05.031 ACCF COMPLEMENTARY MEDICINE EXPERT CONSENSUS DOCUMENT Integrating Complementary Medicine Into Cardiovascular Medicine A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents (Writing Committee to Develop an Expert Consensus Document on Complementary and Integrative Medicine) WRITING COMMITTEE MEMBERS JOHN H. K. VOGEL, MD, MACC, Chair STEVEN F. BOLLING, MD, FACC BRIAN OLSHANSKY, MD, FACC REBECCA B. COSTELLO, PHD KENNETH R. PELLETIER, MD(HC), PHD ERMINIA M. GUARNERI, MD, FACC CYNTHIA M. TRACY, MD, FACC MITCHELL W. KRUCOFF, MD, FACC, FCCP ROBERT A. VOGEL, MD, FACC JOHN C. LONGHURST, MD, PHD, FACC TASK FORCE MEMBERS ROBERT A. VOGEL, MD, FACC, Chair JONATHAN ABRAMS, MD, FACC SANJIV KAUL, MBBS, FACC JEFFREY L. ANDERSON, MD, FACC ROBERT C. LICHTENBERG, MD, FACC ERIC R. BATES, MD, FACC JONATHAN R. LINDNER, MD, FACC BRUCE R. BRODIE, MD, FACC* ROBERT A. O’ROURKE, MD, FACC† CINDY L. GRINES, MD, FACC GERALD M. POHOST, MD, FACC PETER G. DANIAS, MD, PHD, FACC* RICHARD S. SCHOFIELD, MD, FACC GABRIEL GREGORATOS, MD, FACC* SAMUEL J. SHUBROOKS, MD, FACC MARK A. HLATKY, MD, FACC CYNTHIA M. TRACY, MD, FACC* JUDITH S. HOCHMAN, MD, FACC* WILLIAM L. WINTERS, JR, MD, MACC* *Former members of Task Force; †Former chair of Task Force The recommendations set forth in this report are those of the Writing Committee and do not necessarily reflect the official position of the American College of Cardiology Foundation.
    [Show full text]
  • Biofilm Formation by Moraxella Catarrhalis
    BIOFILM FORMATION BY MORAXELLA CATARRHALIS APPROVED BY SUPERVISORY COMMITTEE Eric J. Hansen, Ph.D. ___________________________ Kevin S. McIver, Ph.D. ___________________________ Michael V. Norgard, Ph.D. ___________________________ Philip J. Thomas, Ph.D. ___________________________ Nicolai S.C. van Oers, Ph.D. ___________________________ BIOFILM FORMATION BY MORAXELLA CATARRHALIS by MELANIE MICHELLE PEARSON DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas March, 2004 Copyright by Melanie Michelle Pearson 2004 All Rights Reserved Acknowledgements As with any grand endeavor, there was a large supporting cast who guided me through the completion of my Ph.D. First and foremost, I would like to thank my mentor, Dr. Eric Hansen, for granting me the independence to pursue my ideas while helping me shape my work into a coherent story. I have seen that the time involved in supervising a graduate student is tremendous, and I am grateful for his advice and support. The members of my graduate committee (Drs. Michael Norgard, Kevin McIver, Phil Thomas, and Nicolai van Oers) have likewise given me a considerable investment of time and intellect. Many of the faculty, postdocs, students and staff of the Microbiology department have added to my education and made my experience here positive. Many members of the Hansen laboratory contributed to my work. Dr. Eric Lafontaine gave me my first introduction to M. catarrhalis. I hope I have learned from his example of patience, good nature, and hard work.
    [Show full text]
  • Synergistic Mixtures for Controlling Invertebrate Pests Containing An
    (19) TZZ ¥__T (11) EP 2 263 461 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 43/56 (2006.01) A01N 61/00 (2006.01) 12.12.2012 Bulletin 2012/50 (21) Application number: 10009776.5 (22) Date of filing: 30.06.2005 (54) Synergistic mixtures for controlling invertebrate pests containing an anthanilamide compound and a lip biosynthesis inhibitor Synergistische Mischungen zur Bekämpfung von wirbelosen Lästlingen enthaltend ein Anthranilamid und einen Lipidbiosynthese-Hemmer Mélanges synergiques pour la lutte contre les invertébrés comprenant une anthranilamide et un inhibiteur de la biosynthèse lipidique (84) Designated Contracting States: • Lahm, Philip George AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Wilmington, DE 19808 (US) HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR • Stevenson, Thomas Martin Newark, DE 19702 (US) (30) Priority: 01.07.2004 US 584601 P • Portillo, Hector Eduardo 29.03.2005 US 666073 P Newark, Delaware 19702 (US) • Flexner, John Lindsay (43) Date of publication of application: Landenberg, Pennsylvania 19350 (US) 22.12.2010 Bulletin 2010/51 (74) Representative: Beacham, Annabel Rose (62) Document number(s) of the earlier application(s) in Dehns accordance with Art. 76 EPC: St Bride’s House 09002571.9 / 2 060 179 10 Salisbury Square 05770891.9 / 1 778 012 London EC4Y 8JD (GB) (73) Proprietor: E. I. du Pont de Nemours and Company Wilmington, DE 19898 (US) (56) References cited: WO-A-03/015518 WO-A-03/015519 (72) Inventors: WO-A1-03/024222 • Annan, Isaac Billy Newark, Delaware 19711 (US) Remarks: • Selby, Thomas Paul Thefile contains technical information submitted after Hockessin, DE 19707 (US) the application was filed and not included in this specification Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
    Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L].
    [Show full text]
  • Genetics and Physiology of Motility by Photorhabdus Spp Brandye A
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2006 Genetics and physiology of motility by Photorhabdus spp Brandye A. Michaels University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Michaels, Brandye A., "Genetics and physiology of motility by Photorhabdus spp" (2006). Doctoral Dissertations. 324. https://scholars.unh.edu/dissertation/324 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. GENETICS AND PHYSIOLOGY OF MOTILITY BYPHOTORHABDUS SPP. BY BRANDYE A. MICHAELS BS, Armstrong Atlantic State University, 1999 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Microbiology May, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3217433 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3217433 Copyright 2006 by ProQuest Information and Learning Company.
    [Show full text]
  • Evolutionary Patchwork of an Insecticidal Toxin
    Ruffner et al. BMC Genomics (2015) 16:609 DOI 10.1186/s12864-015-1763-2 RESEARCH ARTICLE Open Access Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus Beat Ruffner1, Maria Péchy-Tarr2, Monica Höfte3, Guido Bloemberg4, Jürg Grunder5, Christoph Keel2* and Monika Maurhofer1* Abstract Background: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Results: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Conclusions: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Investigating the Antimicrobial, Anti-Biofilm and Anti-Quorum Sensing Potential of South African Seaweed-Associated Bacteria
    INVESTIGATING THE ANTIMICROBIAL, ANTI-BIOFILM AND ANTI-QUORUM SENSING POTENTIAL OF SOUTH AFRICAN SEAWEED-ASSOCIATED BACTERIA Prinsloo Xolisa Phiri Thesis presented in partial fulfillment of the degree of Master of Science at University of KwaZulu-Natal (Westville Campus) Supervisor: Dr. Hafizah Y. Chenia Co-supervisor: Dr Mary-Jane Chimuka January 2017 College of Agriculture, Engineering and Science DECLARATION - PLAGIARISM I, Prinsloo Xolisa Phiri, declare that: 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other university. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons' writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the References sections. Signed ……………… i DECLARATION I, the undersigned, hereby declare that the work contained in this thesis is my own, unaided work. It has been submitted for the degree Master of Science to the College of Agriculture, Engineering and Science, School of Life Sciences, Discipline of Microbiology at the University of KwaZulu-Natal, Durban, South Africa.
    [Show full text]
  • Genetically Modified Baculoviruses for Pest
    INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7.
    [Show full text]
  • Neisseria Acinetobacter, Moraxella ? and Kingella Based on Partial 16S Ribosomal DNA Sequence Analysis4
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1994, p. 387-391 Vol. 44, No. 3 0020-7713/94/$04.00 + 0 Copyright 0 1994, International Union of Microbiological Societies Phylogenetic Relationships between Some Members of the Genera Neisseria Acinetobacter, Moraxella ? and Kingella Based on Partial 16s Ribosomal DNA Sequence Analysis4. M. C. ENRIGHT,” P. E. CARTER, I. A. MACLEAN,AND H. McKENZIE Department of Medical Microbiology, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB9 220 We obtained 16s ribosomal DNA (rDNA) sequence data for strains belonging to 11 species of Proteobacteria, including the type strains of Kingella kingae, Neisseria lactamica, Neisseria meningitidis, Moraxella lacunata subsp. lacunata, [Neisseria] ovis, Moraxella catarrhalis, Moraxella osloensis, [Moraxella] phenylpyruvica, and Acineto- bacter lwo$i, as well as strains of Neisseria subflava and Acinetobacter calcoaceticus. The data in a distance matrix constructed by comparing the sequences supported the proposal that the genera Acinetobacter and Moraxella and [N.] ovis should be excluded from the family Neisseriaceae. Our results are consistent with hybridization data which suggest that these excluded taxa should be part of a new family, the Moraxellaceae. The strains that we studied can be divided into the following five groups: (i) M. lacunata subsp. lacunata, [N.] ovis, and M. catarrhalis; (ii) M. osloensis; (iii) [M.]phenylpyruvica; (iv) A. calcoaceticus and A. lwofii; and (v) N. meningitidis, N. subflava, N. lactamica, and K. kingae. We agree with the previous proposal that [N.] ovis should be renamed Moraxella ovis, as this organism is closely related to Moraxella species and not to Neisseria species. The generically misnamed taxon [M.] phenylpyruvica belongs to the proposed family Moraxellaceae, but it is sufficiently different to warrant exclusion from the genus Moraxella.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]