Einstein's Vierbein Field Theory of Curved Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Some Aspects in Cosmological Perturbation Theory and F (R) Gravity
Some Aspects in Cosmological Perturbation Theory and f (R) Gravity Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Leonardo Castañeda C aus Tabio,Cundinamarca,Kolumbien Bonn, 2016 Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. 1. Gutachter: Prof. Dr. Peter Schneider 2. Gutachter: Prof. Dr. Cristiano Porciani Tag der Promotion: 31.08.2016 Erscheinungsjahr: 2016 In memoriam: My father Ruperto and my sister Cecilia Abstract General Relativity, the currently accepted theory of gravity, has not been thoroughly tested on very large scales. Therefore, alternative or extended models provide a viable alternative to Einstein’s theory. In this thesis I present the results of my research projects together with the Grupo de Gravitación y Cosmología at Universidad Nacional de Colombia; such projects were motivated by my time at Bonn University. In the first part, we address the topics related with the metric f (R) gravity, including the study of the boundary term for the action in this theory. The Geodesic Deviation Equation (GDE) in metric f (R) gravity is also studied. Finally, the results are applied to the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime metric and some perspectives on use the of GDE as a cosmological tool are com- mented. The second part discusses a proposal of using second order cosmological perturbation theory to explore the evolution of cosmic magnetic fields. The main result is a dynamo-like cosmological equation for the evolution of the magnetic fields. -
1 HESTENES' TETRAD and SPIN CONNECTIONS Frank
HESTENES’ TETRAD AND SPIN CONNECTIONS Frank Reifler and Randall Morris Lockheed Martin Corporation MS2 (137-205) 199 Borton Landing Road Moorestown, New Jersey 08057 ABSTRACT Defining a spin connection is necessary for formulating Dirac’s bispinor equation in a curved space-time. Hestenes has shown that a bispinor field is equivalent to an orthonormal tetrad of vector fields together with a complex scalar field. In this paper, we show that using Hestenes’ tetrad for the spin connection in a Riemannian space-time leads to a Yang-Mills formulation of the Dirac Lagrangian in which the bispinor field Ψ is mapped to a set of × K ρ SL(2,R) U(1) gauge potentials Fα and a complex scalar field . This result was previously proved for a Minkowski space-time using Fierz identities. As an application we derive several different non-Riemannian spin connections found in the literature directly from an arbitrary K linear connection acting on the tensor fields (Fα ,ρ) . We also derive spin connections for which Dirac’s bispinor equation is form invariant. Previous work has not considered form invariance of the Dirac equation as a criterion for defining a general spin connection. 1 I. INTRODUCTION Defining a spin connection to replace the partial derivatives in Dirac’s bispinor equation in a Minkowski space-time, is necessary for the formulation of Dirac’s bispinor equation in a curved space-time. All the spin connections acting on bispinors found in the literature first introduce a local orthonormal tetrad field on the space-time manifold and then require that the Dirac Lagrangian be invariant under local change of tetrad [1] – [8]. -
Modified Theories of Relativistic Gravity
Modified Theories of Relativistic Gravity: Theoretical Foundations, Phenomenology, and Applications in Physical Cosmology by c David Wenjie Tian A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Theoretical Physics (Interdisciplinary Program) Faculty of Science Date of graduation: October 2016 Memorial University of Newfoundland March 2016 St. John’s Newfoundland and Labrador Abstract This thesis studies the theories and phenomenology of modified gravity, along with their applications in cosmology, astrophysics, and effective dark energy. This thesis is organized as follows. Chapter 1 reviews the fundamentals of relativistic gravity and cosmology, and Chapter 2 provides the required Co-authorship 2 2 Statement for Chapters 3 ∼ 6. Chapter 3 develops the L = f (R; Rc; Rm; Lm) class of modified gravity 2 µν 2 µανβ that allows for nonminimal matter-curvature couplings (Rc B RµνR , Rm B RµανβR ), derives the “co- herence condition” f 2 = f 2 = − f 2 =4 for the smooth limit to f (R; G; ) generalized Gauss-Bonnet R Rm Rc Lm gravity, and examines stress-energy-momentum conservation in more generic f (R; R1;:::; Rn; Lm) grav- ity. Chapter 4 proposes a unified formulation to derive the Friedmann equations from (non)equilibrium (eff) thermodynamics for modified gravities Rµν − Rgµν=2 = 8πGeffTµν , and applies this formulation to the Friedman-Robertson-Walker Universe governed by f (R), generalized Brans-Dicke, scalar-tensor-chameleon, quadratic, f (R; G) generalized Gauss-Bonnet and dynamical Chern-Simons gravities. Chapter 5 systemati- cally restudies the thermodynamics of the Universe in ΛCDM and modified gravities by requiring its com- patibility with the holographic-style gravitational equations, where possible solutions to the long-standing confusions regarding the temperature of the cosmological apparent horizon and the failure of the second law of thermodynamics are proposed. -
Arxiv:1907.02341V1 [Gr-Qc]
Different types of torsion and their effect on the dynamics of fields Subhasish Chakrabarty1, ∗ and Amitabha Lahiri1, † 1S. N. Bose National Centre for Basic Sciences Block - JD, Sector - III, Salt Lake, Kolkata - 700106 One of the formalisms that introduces torsion conveniently in gravity is the vierbein-Einstein- Palatini (VEP) formalism. The independent variables are the vierbein (tetrads) and the components of the spin connection. The latter can be eliminated in favor of the tetrads using the equations of motion in the absence of fermions; otherwise there is an effect of torsion on the dynamics of fields. We find that the conformal transformation of off-shell spin connection is not uniquely determined unless additional assumptions are made. One possibility gives rise to Nieh-Yan theory, another one to conformally invariant torsion; a one-parameter family of conformal transformations interpolates between the two. We also find that for dynamically generated torsion the spin connection does not have well defined conformal properties. In particular, it affects fermions and the non-minimally coupled conformal scalar field. Keywords: Torsion, Conformal transformation, Palatini formulation, Conformal scalar, Fermion arXiv:1907.02341v1 [gr-qc] 4 Jul 2019 ∗ [email protected] † [email protected] 2 I. INTRODUCTION Conventionally, General Relativity (GR) is formulated purely from a metric point of view, in which the connection coefficients are given by the Christoffel symbols and torsion is set to zero a priori. Nevertheless, it is always interesting to consider a more general theory with non-zero torsion. The first attempt to formulate a theory of gravity that included torsion was made by Cartan [1]. -
Extended General Relativity for a Curved Universe
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2021 doi:10.20944/preprints202010.0320.v4 Extended General Relativity for a Curved Universe Mohammed. B. Al-Fadhli1* 1College of Science, University of Lincoln, Lincoln, LN6 7TS, UK. Abstract: The recent Planck Legacy release revealed the presence of an enhanced lensing amplitude in the cosmic microwave background (CMB). Notably, this amplitude is higher than that estimated by the lambda cold dark matter model (ΛCDM), which endorses the positive curvature of the early Universe with a confidence level greater than 99%. Although General Relativity (GR) performs accurately in the local/present Universe where spacetime is almost flat, its lost boundary term, incompatibility with quantum mechanics and the necessity of dark matter and dark energy might indicate its incompleteness. By utilising the Einstein–Hilbert action, this study presents extended field equations considering the pre-existing/background curvature and the boundary contribution. The extended field equations consist of Einstein field equations with a conformal transformation feature in addition to the boundary term, which could remove singularities from the theory and facilitate its quantisation. The extended equations have been utilised to derive the evolution of the Universe with reference to the scale factor of the early Universe and its radius of curvature. Keywords: Astrometry, General Relativity, Boundary Term. 1. INTRODUCTION Considerable efforts have been devoted to Recent evidence by Planck Legacy recent release modifying gravity in form of Conformal Gravity, (PL18) indicated the presence of an enhanced lensing Loop Quantum Gravity, MOND, ADS-CFT, String amplitude in the cosmic microwave background theory, 퐹(푅) Gravity, etc. -
3. Introducing Riemannian Geometry
3. Introducing Riemannian Geometry We have yet to meet the star of the show. There is one object that we can place on a manifold whose importance dwarfs all others, at least when it comes to understanding gravity. This is the metric. The existence of a metric brings a whole host of new concepts to the table which, collectively, are called Riemannian geometry.Infact,strictlyspeakingwewillneeda slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski metric, has some strange minus signs. This is referred to as Lorentzian Geometry and a slightly better name for this section would be “Introducing Riemannian and Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor. The novelties of Lorentzian geometry will become more pronounced later in the course when we explore some of the physical consequences such as horizons. 3.1 The Metric In Section 1, we informally introduced the metric as a way to measure distances between points. It does, indeed, provide this service but it is not its initial purpose. Instead, the metric is an inner product on each vector space Tp(M). Definition:Ametric g is a (0, 2) tensor field that is: Symmetric: g(X, Y )=g(Y,X). • Non-Degenerate: If, for any p M, g(X, Y ) =0forallY T (M)thenX =0. • 2 p 2 p p With a choice of coordinates, we can write the metric as g = g (x) dxµ dx⌫ µ⌫ ⌦ The object g is often written as a line element ds2 and this expression is abbreviated as 2 µ ⌫ ds = gµ⌫(x) dx dx This is the form that we saw previously in (1.4). -
Weyl's Spin Connection
THE SPIN CONNECTION IN WEYL SPACE c William O. Straub, PhD Pasadena, California “The use of general connections means asking for trouble.” —Abraham Pais In addition to his seminal 1929 exposition on quantum mechanical gauge invariance1, Hermann Weyl demonstrated how the concept of a spinor (essentially a flat-space two-component quantity with non-tensor- like transformation properties) could be carried over to the curved space of general relativity. Prior to Weyl’s paper, spinors were recognized primarily as mathematical objects that transformed in the space of SU (2), but in 1928 Dirac showed that spinors were fundamental to the quantum mechanical description of spin—1/2 particles (electrons). However, the spacetime stage that Dirac’s spinors operated in was still Lorentzian. Because spinors are neither scalars nor vectors, at that time it was unclear how spinors behaved in curved spaces. Weyl’s paper provided a means for this description using tetrads (vierbeins) as the necessary link between Lorentzian space and curved Riemannian space. Weyl’selucidation of spinor behavior in curved space and his development of the so-called spin connection a ab ! band the associated spin vector ! = !ab was noteworthy, but his primary purpose was to demonstrate the profound connection between quantum mechanical gauge invariance and the electromagnetic field. Weyl’s 1929 paper served to complete his earlier (1918) theory2 in which Weyl attempted to derive electrodynamics from the geometrical structure of a generalized Riemannian manifold via a scale-invariant transformation of the metric tensor. This attempt failed, but the manifold he discovered (known as Weyl space), is still a subject of interest in theoretical physics. -
Spin Connection Resonance in Gravitational General Relativity∗
Vol. 38 (2007) ACTA PHYSICA POLONICA B No 6 SPIN CONNECTION RESONANCE IN GRAVITATIONAL GENERAL RELATIVITY∗ Myron W. Evans Alpha Institute for Advanced Study (AIAS) (Received August 16, 2006) The equations of gravitational general relativity are developed with Cartan geometry using the second Cartan structure equation and the sec- ond Bianchi identity. These two equations combined result in a second order differential equation with resonant solutions. At resonance the force due to gravity is greatly amplified. When expressed in vector notation, one of the equations obtained from the Cartan geometry reduces to the Newton inverse square law. It is shown that the latter is always valid in the off resonance condition, but at resonance, the force due to gravity is greatly amplified even in the Newtonian limit. This is a direct consequence of Cartan geometry. The latter reduces to Riemann geometry when the Cartan torsion vanishes and when the spin connection becomes equivalent to the Christoffel connection. PACS numbers: 95.30.Sf, 03.50.–z, 04.50.+h 1. Introduction It is well known that the gravitational general relativity is based on Rie- mann geometry with a Christoffel connection. This type of geometry is a special case of Cartan geometry [1] when the torsion form is zero. There- fore gravitation general relativity can be expressed in terms of this limit of Cartan geometry. In this paper this procedure is shown to produce a sec- ond order differential equation with resonant solutions [2–20]. Off resonance the mathematical form of the Newton inverse square law is obtained from a well defined approximation to the complete theory, but the relation between the gravitational potential field and the gravitational force field is shown to contain the spin connection in general. -
Entanglement on Spin Networks Loop Quantum
ENTANGLEMENT ON SPIN NETWORKS IN LOOP QUANTUM GRAVITY Clement Delcamp London - September 2014 Imperial College London Blackett Laboratory Department of Theoretical Physics Submitted in partial fulfillment of the requirements for the degree of Master of Science of Imperial College London I would like to thank Pr. Joao Magueijo for his supervision and advice throughout the writ- ing of this dissertation. Besides, I am grateful to him for allowing me to choose the subject I was interested in. My thanks also go to Etera Livine for the initial idea and for introducing me with Loop Quantum Gravity. I am also thankful to William Donnelly for answering the questions I had about his article on the entanglement entropy on spin networks. Contents Introduction 7 1 Review of Loop Quantum Gravity 11 1.1 Elements of general relativity . 12 1.1.1 Hamiltonian formalism . 12 1.1.2 3+1 decomposition . 12 1.1.3 ADM variables . 13 1.1.4 Connection formalism . 14 1.2 Quantization of the theory . 17 1.2.1 Outlook of the construction of the Hilbert space . 17 1.2.2 Holonomies . 17 1.2.3 Structure of the kinematical Hilbert space . 19 1.2.4 Inner product . 20 1.2.5 Construction of the basis . 21 1.2.6 Aside on the meaning of diffeomorphism invariance . 25 1.2.7 Operators on spin networks . 25 1.2.8 Area operator . 27 1.2.9 Physical interpretation of spin networks . 28 1.2.10 Chunks of space as polyhedra . 30 1.3 Explicit calculations on spin networks . 32 2 Entanglement on spin networks 37 2.1 Outlook . -
Supergravities
Chapter 10 Supergravities. When we constructed the spectrum of the closed spinning string, we found in the 3 1 massless sector states with spin 2 , in addition to states with spin 2 and other states i ~j NS ⊗ NS : b 1 j0; piL ⊗ b 1 j0; piR with i; j = 1; 8 yields gij(x) with spin 2 − 2 − 2 (10.1) i 3 NS ⊗ R : b− 1 j0; piL ⊗ j0; p; αiR with i; α = 1; 8 yields χi,α(x) with spin 2 2 The massless states with spin 2 correspond to a gauge field theory: Einstein's theory 3 of General Relativity, but in 9 + 1 dimensions. The massless states with spin 2 are part of another gauge theory, an extension of Einstein gravity, called supergravity. That theory was first discovered in 1976 in d = 3 + 1 dimensions, but supergravity theories also exist in higher dimensions, through (up to and including) eleven dimensions. In this chapter we discuss supergravity theories. They are important in string theory because they are the low-energy limit of string theories. We do not assume that the reader has any familiarity with supergravity. We begin with the N = 1 theory in 3 + 1 dimensions, m also called simple supergravity, which has one gravitational vielbein field eµ , and one m α fermionic partner of eµ , called the gravitino field µ with spinor index α = 1; ··· ; 4 A ¯ _ (or two 2-component gravitinos µ and µ,A_ with A; A = 1; 2) and µ = 0; 1; 2; 3. This theory has one real local supersymmetry with a real (Majorana) 4-component spinorial α A ∗ _ parameter (or two 2-component parameters and ¯A_ = (A) with A; A = 1; 2). -
Introduction to Supergravity
Introduction to Supergravity Lectures presented by Henning Samtleben at the 13th Saalburg School on Fundamentals and New Methods in Theoretical Physics, September 3 { 14, 2007 typed by Martin Ammon and Cornelius Schmidt-Colinet ||| 1 Contents 1 Introduction 3 2 N = 1 supergravity in D = 4 dimensions 4 2.1 General aspects . 4 2.2 Gauging a global symmetry . 5 2.3 The vielbein formalism . 6 2.4 The Palatini action . 9 2.5 The supersymmetric action . 9 2.6 Results . 14 3 Extended supergravity in D = 4 dimensions 16 3.1 Matter couplings in N = 1 supergravity . 16 3.2 Extended supergravity in D = 4 dimensions . 17 4 Extended supergravity in higher Dimensions 18 4.1 Spinors in higher dimensions . 18 4.2 Eleven-dimensional supergravity . 20 4.3 Kaluza-Klein supergravity . 22 4.4 N = 8 supergravity in D = 4 dimensions . 26 A Variation of the Palatini action 27 2 1 Introduction There are several reasons to consider the combination of supersymmetry and gravitation. The foremost is that if supersymmetry turns out to be realized at all in nature, then it must eventually appear in the context of gravity. As is characteristic for supersymmetry, its presence is likely to improve the quantum behavior of the theory, particularly interesting in the context of gravity, a notoriously non-renormalizable theory. Indeed, in supergravity divergences are typically delayed to higher loop orders, and to date it is still not ruled out that the maximally supersymmetric extension of four-dimensional Einstein gravity might eventually be a finite theory of quantum gravity | only recently very tempting indications in this direction have been unvealed. -
15 Gravity As a Gauge Theory
15 Gravity as a gauge theory Aim of this short chapter is develop the formalism necessary to describe the interaction of fermions with gravity. Moreover, we want to stress the similarity of gravity as gauge theory with the group GL(4) to “usual” Yang-Mills theories. Finally, we want to understand how gravity selects among the many mathematically possible connections on a Riemannian manifold. 15.1 Vielbein formalism and the spin connection For fields transforming as tensor under Lorentz transformation, the effects of gravity are accounted for by the replacements {∂µ, ηµν } →{∇µ, gµν } in the matter Lagrangian Lm and the resulting physical laws. Imposing the two requirements ∇ρgµν = 0 (“metric connection”) α α and Γ βγ = Γ γβ (“torsionless connection”) selects uniquely the Levi-Civita connection. In the following, we want to understand if these conditions are a consequence of Einstein gravity or necessary additional constraints. The substitution rule {∂µ, ηµν }→{∇µ, gµν } cannot be applied to the case of spinor repre- sentations of the Lorentz group. Instead, we apply the equivalence principle as physical guide line to obtain the physical laws including gravity: More precisely, we use that we can find at any point P a local inertial frame for which the physical laws become those known from Minkowski space. We demonstrate this first for the case of a scalar field φ. The usual Lagrange density without gravity, 1 L = ∂ φ∂µφ − V (φ) , (15.1) 2 µ is still valid on a general manifold M({xµ}), if we use in each point P locally free-falling coordinates, ξa(P ).