“RELATIVISTIC FERMION SYSTEMS” Contents Preface 2 1. Introduction 3

Total Page:16

File Type:pdf, Size:1020Kb

“RELATIVISTIC FERMION SYSTEMS” Contents Preface 2 1. Introduction 3 LECTURE NOTES ON \RELATIVISTIC FERMION SYSTEMS" FELIX FINSTER AND JAN-HENDRIK TREUDE Contents Preface 2 1. Introduction 3 1.1. The Schr¨odingerEquation 3 1.2. The Dirac Equation 4 1.3. A First Glance at Causal Fermion Systems 9 2. Fourier Methods 12 2.1. The Green's Functions 12 2.2. The Causal Fundamental Solution and Time Evolution 14 2.3. The Lippmann-Schwinger Equation 16 3. The Cauchy Problem, Linear Symmetric Hyperbolic Systems 17 3.1. Finite Propagation Speed and Uniqueness of Solutions 18 3.2. Global Existence of Smooth Solutions 22 3.3. Existence of Causal Green's Functions 26 4. The Fermionic Projector 28 4.1. The External Field Problem 28 4.2. The Dirac Sea and the Fermionic Projector of the Vacuum 29 4.3. Perturbative Description 32 5. A Non-Perturbative Construction of the Fermionic Projector 33 5.1. The Mass Oscillation Property 34 5.2. A Self-Adjoint Extension of S2 35 5.3. The Operator k and its Extended Domain 37 5.4. The Fermionic Projector as an Operator-Valued Measure 38 5.5. Proof of the Mass Oscillation Property 39 6. Spinors in Curved Space-Time 42 6.1. Curved Space-Time and Lorentzian Manifolds 42 6.2. The Dirac Equation in Curved Space-Time 43 7. Causal Fermion Systems and a Lorentzian Quantum Geometry 50 7.1. Constructing a Causal Fermion System from the Fermionic Projector 50 7.2. Geometric Structures on a Causal Fermion System 51 7.3. The Correspondence to Lorentzian Spin Geometry 57 8. Outlook 59 8.1. Analysis of the Causal Action Principle 59 8.2. The Continuum Limit of Causal Fermion Systems 59 Appendix A. The Free Time Evolution Operator in Momentum Space 60 Appendix B. Uniform L2-Estimates of Derivatives of Dirac Solutions 62 References 63 1 2 F. FINSTER AND J.-H. TREUDE Preface These notes are based on lectures given at the spring school \Relativistic Fermion Systems" held in Regensburg in April 2013. YOUR NAME CAN We are grateful to . for valuable feedback and helpful comments on the manu- APPEAR HERE!!! script. F.F. and J.-H. T., Regensburg, April 3, 2013 LECTURE NOTES ON \RELATIVISTIC FERMION SYSTEMS" 3 1. Introduction 1.1. The Schr¨odingerEquation. In non-relativistic one-particle quantum mechan- ics, the quantum mechanical particle is described by a complex-valued wave func- tion (t; ~x). The absolute square j (t; ~x)j2 has the interpretation as the probability density of the particle to be at the position ~x. Since the total probability must be one, we need to impose the normalization condition Z j (t; ~x)j2 d3x = 1 : (1.1) R3 In particular, the probability integral must be time independent. Next, the super- position principle tells us that the set of all wave functions form a complex vector space H. For the probabilistic interpretation, one takes a non-zero vector φ 2 H and multiplies it by a constant, := νφ with ν 2 C such as to satisfy the normalization condition (1.1). Then j (t; ~x)j2 has the interpretation as the probability density (this procedure can be described by saying that only the ray C has a physical interpreta- tion, but we will not go into this here). For this procedure to work, it is important that the normalization constant ν can be chosen independent of time, meaning that the probability integral must be time independent. By polarizing, we conclude that the L2 scalar product Z hφj iH := φ(t; ~x) (t; ~x) ; φ, 2 H (1.2) R3 should be time independent. The dynamics is described by a linear evolution equation on H, which we write as i@t = H ; where the operator H is the Hamiltonian. As explained above, the scalar product (1.2) should be time independent. This implies that for any solution φ, of the Schr¨odinger equation, 0 = @thφj iH = −i hHφj iH − hφjH iH : (1.3) In other words, the operator H should be self-adjoint on H. In the simplest setting without spin, the Hamiltonian is chosen as 1 H = − ∆ + V: 2m 3 Here ∆ is the Laplacian on R , and V (t; ~x) is a real-valued potential. The parame- ter m > 0 is the rest mass. We always work in units where ~ = c = 1. Since this Hamil- tonian is unbounded, we need to specify a suitable dense domain of definition D(H). 2 3 1 3 For simplicity, we here take the smooth functions, D(H) = L (R ) \ C (R ). This operator satisfies the requirement (1.3) because it is formally self-adjoint in the sense that hHφj iH = hφjH iH for all φ, 2 D(H) : The Schr¨odinger equation can be solved and analyzed with several methods. If the Hamiltonian is time independent, it is useful to extend the domain of H such as to obtain a self-adjoint operator. Then the Schr¨odingerequation can be solved by exponentiating with the spectral theorem, (t) = e−iHt (0) : 4 F. FINSTER AND J.-H. TREUDE The dynamics of can then be related to spectral properties of the Hamiltonian. An- other method is to consider the Schr¨odingerequation as a parabolic partial differential equation, and to use the existence theory and a-priori estimates. One advantage is that this also works in the case that the Hamiltonian depends on time. We do not enter the details here, because we will get more familiar with all these methods in the context of the relativistic theory. 1.2. The Dirac Equation. We now give a brief introduction to the Dirac equation, closely following the presentation in [19, x1.1 andx1.2]. In special relativity, space-time is described by Minkowski space (M; h:; :i), a real 4-dimensional vector space endowed with an inner product of signature (+ − − −). Thus, choosing a pseudo-orthonormal P3 i basis (ei)i=0;:::;3 and representing the vectors of M in this basis, ξ = i=0 ξ ei, the inner product takes the form 3 X j k hξ; ηi = gjk ξ η ; (1.4) j;k=0 where gij, the Minkowski metric, is the diagonal matrix g = diag (1; −1; −1; −1). In what follows we usually omit the sums using Einstein's summation convention (i.e. we sum over all indices which appear twice, once as an upper and once as a lower index). Also, we sometimes abbreviate the Minkowski scalar product by writing ξη := hξ; ηi 2 and ξ := hξ; ξi. A pseudo-orthonormal basis (ei)i=0;:::;3 is in physics called a reference frame, because the corresponding coordinate system (xi) of Minkowski space gives the time and space coordinates for an observer in a system of inertia. We also refer to t := x0 as time and denote the spatial coordinates by ~x = (x1; x2; x3). The sign of the Minkowski metric encodes the causal structure of space-time. Namely, a vector ξ 2 M is said to be 9 timelike if hξ; ξi > 0 = spacelike if hξ; ξi < 0 null if hξ; ξi = 0 : ; Likewise, a vector is called non-spacelike if it is timelike or null. The null vectors form the double cone L = fξ 2 M j hξ; ξi = 0g, referred to as the light cone. Physically, the light cone is formed of all rays through the origin of M which propagate with the speed of light. Similarly, the timelike vectors correspond to velocities slower than light speed; they form the interior light cone I = fξ 2 M j hξ; ξi > 0g. Finally, we introduce the closed light cone J = fξ 2 M j hξ; ξi ≥ 0g. The space-time trajectory of a moving object describes a curve q(τ) in Minkowski space (with τ an arbitrary parameter). We say that the space-time curve q is timelike if the tangent vector to q is everywhere timelike. Spacelike, null, and non-spacelike curves are defined analogously. The usual statement of causality that no information can travel faster than with the speed of light can then be expressed as follows, causality: information can be transmitted only along non-spacelike curves. The set of all points which can be joined with a given space-time point x by a non- spacelike curve is precisely the closed light cone centered at x, denoted by Jx := J − x. It is the union of the two single cones _ 2 0 0 Jx = fy 2 M j (y − x) ≥ 0; (y − x ) ≥ 0g ^ 2 0 0 Jx = fy 2 M j (y − x) ≥ 0; (y − x ) ≤ 0g ; LECTURE NOTES ON \RELATIVISTIC FERMION SYSTEMS" 5 which have the interpretation as the points in the causal future and past of x, respec- _ ^ tively. Thus we refer to Jx and Jx as the closed future and past light cones centered _ ^ _ ^ at x, respectively. Similarly, we also introduce the sets Ix , Ix and Lx , Lx . The physical equations should be Lorentz invariant, meaning that they must be formulated in Minkowski space, independent of the reference frame. The simplest relativistic wave equation is the Klein-Gordon equation 2 (− − m ) = 0 ; (1.5) j where ≡ @j@ is the wave operator. This equation describes a scalar particle (=par- ticle without spin) of mass m. If the particle has electric charge, one needs to suitably insert the electromagnetic potential A into the Klein-Gordon equation. More precisely, one finds empirically that the equation k k 2 − (@k − iAk)(@ − iA ) = m (1.6) describes a scalar particle of mass m and charge e in the presence of an electromagnetic field. In order to describe a particle with spin, it was Dirac's idea to work with a first order differential operator whose square is the wave operator.
Recommended publications
  • What Is the Dirac Equation?
    What is the Dirac equation? M. Burak Erdo˘gan ∗ William R. Green y Ebru Toprak z July 15, 2021 at all times, and hence the model needs to be first or- der in time, [Tha92]. In addition, it should conserve In the early part of the 20th century huge advances the L2 norm of solutions. Dirac combined the quan- were made in theoretical physics that have led to tum mechanical notions of energy and momentum vast mathematical developments and exciting open operators E = i~@t, p = −i~rx with the relativis- 2 2 2 problems. Einstein's development of relativistic the- tic Pythagorean energy relation E = (cp) + (E0) 2 ory in the first decade was followed by Schr¨odinger's where E0 = mc is the rest energy. quantum mechanical theory in 1925. Einstein's the- Inserting the energy and momentum operators into ory could be used to describe bodies moving at great the energy relation leads to a Klein{Gordon equation speeds, while Schr¨odinger'stheory described the evo- 2 2 2 4 lution of very small particles. Both models break −~ tt = (−~ ∆x + m c ) : down when attempting to describe the evolution of The Klein{Gordon equation is second order, and does small particles moving at great speeds. In 1927, Paul not have an L2-conservation law. To remedy these Dirac sought to reconcile these theories and intro- shortcomings, Dirac sought to develop an operator1 duced the Dirac equation to describe relativitistic quantum mechanics. 2 Dm = −ic~α1@x1 − ic~α2@x2 − ic~α3@x3 + mc β Dirac's formulation of a hyperbolic system of par- tial differential equations has provided fundamental which could formally act as a square root of the Klein- 2 2 2 models and insights in a variety of fields from parti- Gordon operator, that is, satisfy Dm = −c ~ ∆ + 2 4 cle physics and quantum field theory to more recent m c .
    [Show full text]
  • Dirac Equation - Wikipedia
    Dirac equation - Wikipedia https://en.wikipedia.org/wiki/Dirac_equation Dirac equation From Wikipedia, the free encyclopedia In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it 1 describes all spin-2 massive particles such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity,[1] and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine details of the hydrogen spectrum in a completely rigorous way. The equation also implied the existence of a new form of matter, antimatter, previously unsuspected and unobserved and which was experimentally confirmed several years later. It also provided a theoretical justification for the introduction of several component wave functions in Pauli's phenomenological theory of spin; the wave functions in the Dirac theory are vectors of four complex numbers (known as bispinors), two of which resemble the Pauli wavefunction in the non-relativistic limit, in contrast to the Schrödinger equation which described wave functions of only one complex value. Moreover, in the limit of zero mass, the Dirac equation reduces to the Weyl equation. Although Dirac did not at first fully appreciate the importance of his results, the entailed explanation of spin as a consequence of the union of quantum mechanics and relativity—and the eventual discovery of the positron—represents one of the great triumphs of theoretical physics.
    [Show full text]
  • 1 HESTENES' TETRAD and SPIN CONNECTIONS Frank
    HESTENES’ TETRAD AND SPIN CONNECTIONS Frank Reifler and Randall Morris Lockheed Martin Corporation MS2 (137-205) 199 Borton Landing Road Moorestown, New Jersey 08057 ABSTRACT Defining a spin connection is necessary for formulating Dirac’s bispinor equation in a curved space-time. Hestenes has shown that a bispinor field is equivalent to an orthonormal tetrad of vector fields together with a complex scalar field. In this paper, we show that using Hestenes’ tetrad for the spin connection in a Riemannian space-time leads to a Yang-Mills formulation of the Dirac Lagrangian in which the bispinor field Ψ is mapped to a set of × K ρ SL(2,R) U(1) gauge potentials Fα and a complex scalar field . This result was previously proved for a Minkowski space-time using Fierz identities. As an application we derive several different non-Riemannian spin connections found in the literature directly from an arbitrary K linear connection acting on the tensor fields (Fα ,ρ) . We also derive spin connections for which Dirac’s bispinor equation is form invariant. Previous work has not considered form invariance of the Dirac equation as a criterion for defining a general spin connection. 1 I. INTRODUCTION Defining a spin connection to replace the partial derivatives in Dirac’s bispinor equation in a Minkowski space-time, is necessary for the formulation of Dirac’s bispinor equation in a curved space-time. All the spin connections acting on bispinors found in the literature first introduce a local orthonormal tetrad field on the space-time manifold and then require that the Dirac Lagrangian be invariant under local change of tetrad [1] – [8].
    [Show full text]
  • THE DIRAC OPERATOR 1. First Properties 1.1. Definition. Let X Be A
    THE DIRAC OPERATOR AKHIL MATHEW 1. First properties 1.1. Definition. Let X be a Riemannian manifold. Then the tangent bundle TX is a bundle of real inner product spaces, and we can form the corresponding Clifford bundle Cliff(TX). By definition, the bundle Cliff(TX) is a vector bundle of Z=2-graded R-algebras such that the fiber Cliff(TX)x is just the Clifford algebra Cliff(TxX) (for the inner product structure on TxX). Definition 1. A Clifford module on X is a vector bundle V over X together with an action Cliff(TX) ⊗ V ! V which makes each fiber Vx into a module over the Clifford algebra Cliff(TxX). Suppose now that V is given a connection r. Definition 2. The Dirac operator D on V is defined in local coordinates by sending a section s of V to X Ds = ei:rei s; for feig a local orthonormal frame for TX and the multiplication being Clifford multiplication. It is easy to check that this definition is independent of the coordinate system. A more invariant way of defining it is to consider the composite of differential operators (1) V !r T ∗X ⊗ V ' TX ⊗ V,! Cliff(TX) ⊗ V ! V; where the first map is the connection, the second map is the isomorphism T ∗X ' TX determined by the Riemannian structure, the third map is the natural inclusion, and the fourth map is Clifford multiplication. The Dirac operator is clearly a first-order differential operator. We can work out its symbol fairly easily. The symbol1 of the connection r is ∗ Sym(r)(v; t) = iv ⊗ t; v 2 Vx; t 2 Tx X: All the other differential operators in (1) are just morphisms of vector bundles.
    [Show full text]
  • Arxiv:1907.02341V1 [Gr-Qc]
    Different types of torsion and their effect on the dynamics of fields Subhasish Chakrabarty1, ∗ and Amitabha Lahiri1, † 1S. N. Bose National Centre for Basic Sciences Block - JD, Sector - III, Salt Lake, Kolkata - 700106 One of the formalisms that introduces torsion conveniently in gravity is the vierbein-Einstein- Palatini (VEP) formalism. The independent variables are the vierbein (tetrads) and the components of the spin connection. The latter can be eliminated in favor of the tetrads using the equations of motion in the absence of fermions; otherwise there is an effect of torsion on the dynamics of fields. We find that the conformal transformation of off-shell spin connection is not uniquely determined unless additional assumptions are made. One possibility gives rise to Nieh-Yan theory, another one to conformally invariant torsion; a one-parameter family of conformal transformations interpolates between the two. We also find that for dynamically generated torsion the spin connection does not have well defined conformal properties. In particular, it affects fermions and the non-minimally coupled conformal scalar field. Keywords: Torsion, Conformal transformation, Palatini formulation, Conformal scalar, Fermion arXiv:1907.02341v1 [gr-qc] 4 Jul 2019 ∗ [email protected][email protected] 2 I. INTRODUCTION Conventionally, General Relativity (GR) is formulated purely from a metric point of view, in which the connection coefficients are given by the Christoffel symbols and torsion is set to zero a priori. Nevertheless, it is always interesting to consider a more general theory with non-zero torsion. The first attempt to formulate a theory of gravity that included torsion was made by Cartan [1].
    [Show full text]
  • P-Dirac Operators Craig A. Nolder Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA
    p-Dirac Operators Craig A. Nolder Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA and John Ryan Department of Mathematics, University of Arkansas, Fayetteville, AR 72701, USA Abstract We introduce non-linear Dirac operators in Rn associated to the p-harmonic equation and we extend to other contexts including spin manifolds and the sphere. 1 Introduction Associated to each type of Laplacian one usually sees a first order lineariza- tion, to a Dirac operator. For instance associated to the Laplacian in Rn is the euclidean Dirac operator arising in Clifford analysis. For the Laplace- Beltrami operator associated to a Riemannian manifold there is the Hodge- Dirac operator d + d!, where d is the exterior derivative and d! is the Hodge codifferential which is the formal adjoint to d. Further, in reverse order, to the Atiyah-Singer-Dirac operator on a spin manifold there is the spinorial Laplacian. Also on Sn one has a conformal Dirac operator and the conformal Laplacian. See for instance [3, 5, 9, 11] for details. Besides the Laplacian in Rn there are also the non-linear operators re- ferred to as p-Laplacians. See for instance [7, 8, 10]. Despite being non-linear these second order operators posses properties very similar to the usual Lapla- cian in euclidean space. Further when p = 2 this operator corresponds to the usual Laplacian in euclidean space. Here we shall introduce a first order nonlinear differential operator which in the case p = 2 coincides with the euclidean Dirac operator. The confor- mal covariance of these operators are established.
    [Show full text]
  • Solvable Two-Body Dirac Equation As a Potential Model of Light Mesons?
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 4 (2008), 048, 19 pages Solvable Two-Body Dirac Equation as a Potential Model of Light Mesons? Askold DUVIRYAK Institute for Condensed Matter Physics of National Academy of Sciences of Ukraine, 1 Svientsitskii Str., UA–79011 Lviv, Ukraine E-mail: [email protected] Received October 29, 2007, in final form May 07, 2008; Published online May 30, 2008 Original article is available at http://www.emis.de/journals/SIGMA/2008/048/ Abstract. The two-body Dirac equation with general local potential is reduced to the pair of ordinary second-order differential equations for radial components of a wave function. The class of linear + Coulomb potentials with complicated spin-angular structure is found, for which the equation is exactly solvable. On this ground a relativistic potential model of light mesons is constructed and the mass spectrum is calculated. It is compared with experimental data. Key words: two body Dirac equation; Dirac oscillator; solvable model; Regge trajectories 2000 Mathematics Subject Classification: 81Q05; 34A05 1 Introduction It is well known that light meson spectra are structured into Regge trajectories which are approximately linear and degenerated due to a weak dependence of masses of resonances on their spin state. These features are reproduced well within the exactly solvable simple relativistic oscillator model (SROM) [1, 2, 3] describing two Klein–Gordon particles harmonically bound. Actually, mesons consist of quarks, i.e., spin-1/2 constituents. Thus potential models based on the Dirac equation are expected to be more appropriate for mesons spectroscopy. In recent years the two body Dirac equations (2BDE) in different formulations1 with various confining potentials are used as a relativistic constituent quark models [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
    [Show full text]
  • Dirac Operator in Matrix Geometry
    New Mexico Tech (January 2005) Dirac Operator in Matrix Geometry Ivan G. Avramidi Department of Mathematics New Mexico Institute of Mining and Technology Socorro, NM 87801, USA E-mail: [email protected] Dedicated to the Memory of Vladimir Fock and Dmitri Ivanenko We review the construction of the Dirac operator and its proper- ties in Riemannian geometry and show how the asymptotic expansion of the trace of the heat kernel determines the spectral invariants of the Dirac operator and its index. We also point out that the Einstein- Hilbert functional can be obtained as a linear combination of the first two spectral invariants of the Dirac operator. Next, we report on arXiv:math-ph/0502001v1 31 Jan 2005 our previous attempts to generalize the notion of the Dirac opera- tor to the case of Matrix Geometry, when instead of a Riemannian metric there is a matrix valued self-adjoint symmetric two-tensor that plays a role of a “non-commutative” metric. We construct invariant first-order and second-order self-adjoint elliptic partial differential op- erators, that can be called “non-commutative” Dirac operator and non-commutative Laplace operator. We construct the corresponding heat kernel for the non-commutative Laplace type operator and com- pute its first two spectral invariants. A linear combination of these two spectral invariants gives a functional that can be considered as a non-commutative generalization of the Einstein-Hilbert action. 1 1 Introduction Dirac operator was discovered by Dirac in 1928 as a “square root” of the D’Alambert operator in a flat Minkowskian space in an attempt to develop a relativistic theory of the electron.
    [Show full text]
  • A Spinorial Proof of the Rigidity of the Riemannian Schwarzschild Manifold
    A SPINORIAL PROOF OF THE RIGIDITY OF THE RIEMANNIAN SCHWARZSCHILD MANIFOLD SIMON RAULOT Abstract. We revisit and generalize a recent result of Cederbaum [C2, C3] concerning the rigidity of the Schwarzschild manifold for spin manifolds. This includes the classical black hole uniqueness theorems [BM, GIS, Hw] as well as the more recent uniqueness theorems for pho- ton spheres [C1, CG1, CG2]. 1. Introduction An (n+1)-dimensional vacuum spacetime is a Lorentzian manifold ( n+1, g) satisfying the Einstein field equations Ric = 0, where Ric is the RicciL tensor of the metric g. The vacuum is said to be static when n+1 = R M n, g = N 2 dt2 + g, L × − where (M n, g) is an n-dimensional connected smooth Riemannian manifold, that we will take to be orientable, standing for the unchanging slices of constant time and N C∞(M n) is a non-trivial smooth function on M n. To model the exterior∈ of an isolated system, it seems physically natural to require asymptotic flatness, that is, the Cauchy hypersurface M n is usually taken to be asymptotically flat. The vacuum Einstein field equations can be translated into the following two conditions on (M n, g) and the lapse function N: 2N = N Ric, ∆N = 0, (1.1) ∇ where Ric, and ∆ are respectively the Ricci tensor, the covariant deriva- ∇ n arXiv:2009.09652v1 [math.DG] 21 Sep 2020 tive and the Laplace operator of the Riemannian manifold (M , g). Taking traces in the first of these two equations and taking into account the second one, we conclude immediately that the scalar curvature of (M n, g) is zero.
    [Show full text]
  • 3. Introducing Riemannian Geometry
    3. Introducing Riemannian Geometry We have yet to meet the star of the show. There is one object that we can place on a manifold whose importance dwarfs all others, at least when it comes to understanding gravity. This is the metric. The existence of a metric brings a whole host of new concepts to the table which, collectively, are called Riemannian geometry.Infact,strictlyspeakingwewillneeda slightly di↵erent kind of metric for our study of gravity, one which, like the Minkowski metric, has some strange minus signs. This is referred to as Lorentzian Geometry and a slightly better name for this section would be “Introducing Riemannian and Lorentzian Geometry”. However, for our immediate purposes the di↵erences are minor. The novelties of Lorentzian geometry will become more pronounced later in the course when we explore some of the physical consequences such as horizons. 3.1 The Metric In Section 1, we informally introduced the metric as a way to measure distances between points. It does, indeed, provide this service but it is not its initial purpose. Instead, the metric is an inner product on each vector space Tp(M). Definition:Ametric g is a (0, 2) tensor field that is: Symmetric: g(X, Y )=g(Y,X). • Non-Degenerate: If, for any p M, g(X, Y ) =0forallY T (M)thenX =0. • 2 p 2 p p With a choice of coordinates, we can write the metric as g = g (x) dxµ dx⌫ µ⌫ ⌦ The object g is often written as a line element ds2 and this expression is abbreviated as 2 µ ⌫ ds = gµ⌫(x) dx dx This is the form that we saw previously in (1.4).
    [Show full text]
  • 7 Quantized Free Dirac Fields
    7 Quantized Free Dirac Fields 7.1 The Dirac Equation and Quantum Field Theory The Dirac equation is a relativistic wave equation which describes the quantum dynamics of spinors. We will see in this section that a consistent description of this theory cannot be done outside the framework of (local) relativistic Quantum Field Theory. The Dirac Equation (i∂/ m)ψ =0 ψ¯(i∂/ + m) = 0 (1) − can be regarded as the equations of motion of a complex field ψ. Much as in the case of the scalar field, and also in close analogy to the theory of non-relativistic many particle systems discussed in the last chapter, the Dirac field is an operator which acts on a Fock space. We have already discussed that the Dirac equation also follows from a least-action-principle. Indeed the Lagrangian i µ = [ψ¯∂ψ/ (∂µψ¯)γ ψ] mψψ¯ ψ¯(i∂/ m)ψ (2) L 2 − − ≡ − has the Dirac equation for its equation of motion. Also, the momentum Πα(x) canonically conjugate to ψα(x) is ψ δ † Πα(x)= L = iψα (3) δ∂0ψα(x) Thus, they obey the equal-time Poisson Brackets ψ 3 ψα(~x), Π (~y) P B = iδαβδ (~x ~y) (4) { β } − Thus † 3 ψα(~x), ψ (~y) P B = δαβδ (~x ~y) (5) { β } − † In other words the field ψα and its adjoint ψα are a canonical pair. This result follows from the fact that the Dirac Lagrangian is first order in time derivatives. Notice that the field theory of non-relativistic many-particle systems (for both fermions on bosons) also has a Lagrangian which is first order in time derivatives.
    [Show full text]
  • Particle Theory: a View from a Neighboring Field
    Particle theory: a view from a neighboring field Peter Woit Mathematics Department Columbia University Rochester Physics and Astronomy Colloquium March 7, 2018 Peter Woit (Mathematics Department ColumbiaParticle University) theory: a view from a neighboring field March 7, 2018 1 / 31 Two cultures Physics 1979: B.A./M.A. in physics, Harvard 1984: Ph.D. in particle theory, Princeton 1984-87: Postdoc ITP Stony Brook Mathematics 1988: adjunct Calculus instructor, Tufts math department 1988-9: Postdoc, Mathematical Sciences Research Institute, Berkeley 1989-93: Asst. professor, Columbia math department (non-tenure track) 1993-current: Permanent non-tenured position at Columbia, now Senior Lecturer Neighboring fields, but very different language and culture. Remniscent of moving between US and France as a child (lived in Paris age 8-13). Peter Woit (Mathematics Department ColumbiaParticle University) theory: a view from a neighboring field March 7, 2018 2 / 31 The SM: a victim of its own success The Standard Model, some history 1973: SU(3) x SU(2) X U(1) gauge theory of strong, weak and electromagnetic forces 1983: Discovery of W/Z bosons 1995: Discovery of the top quark 1998: Discovery of non-zero neutrino masses (an extension of the original SM) 2012: Discovery of the Higgs at the LHC Current situation All high energy accelerator experiments consistent with the SM. Ongoing experiments at the LHC at 13 TeV center of mass energy. Peter Woit (Mathematics Department ColumbiaParticle University) theory: a view from a neighboring field March 7, 2018
    [Show full text]