A ROSAT Survey of Wolf–Rayet Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

A ROSAT Survey of Wolf–Rayet Galaxies Mon. Not. R. Astron. Soc. 294, 523–547 (1998) A ROSAT survey of Wolf–Rayet galaxies Ian R. Stevensw and David K. Stricklandw School of Physics and Space Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT Accepted 1997 July 22. Received 1997 June 30; in original form 1996 August 12 Downloaded from https://academic.oup.com/mnras/article/294/4/523/1025955 by guest on 26 September 2021 ABSTRACT We present results from a ROSAT Position Sensitive Proportional Counter (PSPC) survey of the X-ray emission from Wolf–Rayet (WR) galaxies, a class of galaxies believed to be young starbursts (with ages of t14–6 Myr), many of which are blue compact dwarf galaxies. Of the 36 WR galaxies listed in the catalogue of Conti, a total of 14 have been observed deliberately or serendipitously with the ROSAT PSPC, and of these, seven have been detected. The derived X-ray luminosities of WR galaxies range over nearly three orders of 1 Å 38 Ð1 Å 41 Ð1 magnitude, from LX 4 10 s to 2 10 erg s . The X-ray spectra of the WR galaxies can typically be well-fitted with a single temperature Raymond–Smith spectral model, with a temperature in the range kT\0.3–1.0 keV, with the general trend that the more X-ray-luminous WR galaxies have hotter spectra. WR galaxies are significantly X-ray-overluminous for their blue luminosity, compared with a sample of nearby spiral and starburst galaxies. In addition, the X-ray luminosity of WR galaxies correlates well with the far-infrared luminosity LFIR and the number of Lyman continuum photons NLyc. No strong correlation was found with the equivalent width of the WR emission feature around l4686 Å, the presence of which essentially defines the class of galaxies. There is little evidence of extended X-ray emission. Various explanations for the observed properties of WR galaxies are explored, and we conclude that the X-ray emission provides strong evidence that a large fraction of the observed X-rays are coming from a hot superbubble formed by the combined action of stellar winds from massive early-type stars in the central starburst cluster. These results are consistent with, and add weight to, the view that WR galaxies are young starbursts, in which the duration of the star-forming epoch was very short, and that we are viewing them a few Myr after the initiation of the starburst. As such, WR galaxies represent an important epoch in the evolution of starburst galaxies. Key words: stars: Wolf–Rayet – ISM: jets and outflows – galaxies: starburst – galaxies: stellar content – X-rays: galaxies. galaxies with a bright nucleus that is bluer than expected for 1 INTRODUCTION its morphological type, which emits strong narrow emission Wolf–Rayet (WR) galaxies are a subset of emission-line (or lines similar to low ionization H II regions as a consequence H II) galaxies, and are defined as ‘those galaxies in whose of photoionization by the ultraviolet radiation from hot 40 42 Ð1 integrated spectra a broad emission feature at He II l4686, stars, with a typical Ha luminosity of 10 –10 erg s ’ attributed to WR stars, has been detected’ (Conti 1991). On (Gonz´alez-Delgado et al. 1995). These definitions of star- the other hand, starburst galaxies can be defined as ‘spiral burst and WR galaxies should be considered as general criteria rather than as hard rules. For instance, local galaxies w E-mail: [email protected] (IRS); such as M33 or M101 contain giant H II regions where WR [email protected] (DKS) stars have been detected in the integrated spectra, but we © 1998 RAS 524 I. R. Stevens and D. K. Strickland shall follow Conti (1991) and not include such galaxies in example Conti 1991 and Vacca & Conti 1992) and studies of our sample. In addition, while some of our sample galaxies individual objects (see comments on individual galaxies in (NGC 5253 and Mrk 33) appear to have to have some of the Sections 4 and 5). The purpose of this paper is to present an characteristics of (dwarf) elliptical galaxies, they are clearly X-ray survey of a sample of WR galaxies, using the ROSAT undergoing starburst activity. X-ray Telescope (XRT) and PSPC, which are well suited to Conti (1991) produced the first catalogue of WR galaxies, the study of WR galaxies. The spatial resolution of this and we shall use this sample as our baseline for this X-ray instrument is very good compared with previous instru- study, as it also provides a collation of other relevant data. A ments (the 90 per cent enclosed radius at 1 keV for the few additional WR galaxies have been discovered since the PSPC is 27 arcsec), and the modest spectral resolution publication of the Conti catalogue (for example, Masegosa, allows better spectral fitting than was possible with the Ein- Moles & del Olmo 1991, Contini, Davoust & Consid`ere stein Imaging Proportional Counter. 1995 and Thuan, Izotov & Lipovetsky 1996), but we shall For nearby starbursts, ROSAT has been able to resolve not discuss these objects here. extended X-ray emission around galaxies, which is indica- In this paper we shall report on an X-ray study of a tive of a superwind or galactic-scale outflow driven by the Downloaded from https://academic.oup.com/mnras/article/294/4/523/1025955 by guest on 26 September 2021 sample of WR galaxies, using observations made with the starburst (for example M82, Strickland, Ponman & Stevens ROSAT Position Sensitive Proportional Counter (PSPC). 1997; NGC 253, Read, Ponman & Strickland 1997; NGC X-ray studies of galaxies have revealed a wealth of informa- 2146, Armus et al. 1995; NGC 3628, Fabbiano, Heckman & tion about energetic phenomena such as X-ray binaries, the Keel 1990). The WR galaxies in this sample are typically hot phase of the interstellar medium (ISM), superbubbles further away than these galaxies (cf. Table 1), and this, and galactic-scale winds. As there is a general consensus coupled with the fact that WR galaxies are likely younger that the phenomena of starburst and WR galaxies are starbursts, means that we do not expect to see such closely related, and that a WR galaxy is probably a starburst extended emission around the sample galaxies. galaxy observed at an early stage in the evolution of the In this study of WR galaxies we shall make extensive starburst, it seems sensible to undertake an X-ray study of comparisons with the ROSAT XRT survey of Read et al. WR galaxies and to compare their X-ray properties with (1997), which studied 17 nearby spiral galaxies, including both normal ‘quiescent’ galaxies and starbursts. In physical some starbursts. The Read et al. (1997) sample provides us terms, the defining characteristics for a WR galaxy is for a with a reasonably extensive sample of galaxies, analysed in a large number of WR stars to be present (or at least an similar manner, with which to compare the X-ray properties unusually large proportion of WR stars compared with the of WR galaxies. number of O stars). WR stars are believed to be the descen- There are several interrelated goals to this work. the first dants of the most massive stars (with initial masses is to provide an overview of the X-ray emission properties of E40 M>), and their lifetimes as WR stars are typically less WR galaxies as a test of the hypothesis that they are young than 106 yr, although this is dependent on metallicity. As starbursts. A second goal is to explore the X-ray evolution discussed by Conti (1991), WR galaxies form a rather of starbursts. A third is to compare the optical and X-ray heterogenous sample, ranging from isolated galaxies morphology of WR galaxies, and a fourth to study the through interacting/merging galaxies to IR-luminous emis- growth of superbubbles and superwinds in starbursts. sion-line galaxies. In some systems the WR stars are found Consequently, we do not attempt a detailed analysis of each in a star-forming nucleus, while in others there is a single observation, but attempt to provide an overview of the X- giant H II region. WR galaxies form a subset of H II galaxies, ray emission from this class of galaxy. Some results from and are often blue compact dwarf galaxies (BCDGs). Heck- ROSAT observations of individual galaxies in this sample man et al. (1995), reporting on observations of the star- have already been published (for example, NGC 5253, Mar- bursting H II galaxy NGC 1569, discuss the importance of tin & Kennicutt 1995; NGC 4861, Motch, Pakull & Pietsch BCDGs in the context of galaxy evolution and the X-ray 1994; Fourniol, Pakull & Motch 1996). background (see also the discussion in Fabian & Ward 1993 The paper is organized as follows. In Section 2 we discuss on ROSAT observations of NGC 5408). the selection of galaxies in this ROSAT sample, as well as the Vacca & Conti (1992) concluded from their study of 10 other relevant parameters for the galaxies. In Section 3 we WR galaxies that the observed stellar characteristics of describe the method of analysis for the ROSAT data. In these objects can only be reconciled with the constraints of Section 4, for those galaxies actually detected with ROSAT, stellar evolution if the massive star content was formed in a we present the results of the X-ray observations along with burst of star formation of less than 106 yr duration and about a general description of galaxy characteristics. In Section 5 a few 106 yr ago (see also Arnault, Kunth & Schild 1989 and we briefly discuss those galaxies not detected and derive Schaerer 1995).
Recommended publications
  • The Local Radio-Galaxy Population at 20
    Mon. Not. R. Astron. Soc. 000, 1–?? (2013) Printed 2 December 2013 (MN LATEX style file v2.2) The local radio-galaxy population at 20GHz Elaine M. Sadler1⋆, Ronald D. Ekers2, Elizabeth K. Mahony3, Tom Mauch4,5, Tara Murphy1,6 1Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia 2Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia 3ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo, The Netherlands 4Oxford Astrophysics, Department of Physics, Keble Road, Oxford OX1 3RH 5SKA Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405, South Africa 6School of Information Technologies, The University of Sydney, NSW 2006, Australia Accepted 0000 December 08. Received 0000 December 08; in original form 0000 December 08 ABSTRACT We have made the first detailed study of the high-frequency radio-source population in the local universe, using a sample of 202 radio sources from the Australia Telescope 20GHz (AT20G) survey identified with galaxies from the 6dF Galaxy Survey (6dFGS). The AT20G- 6dFGS galaxies have a median redshift of z=0.058 and span a wide range in radio luminosity, allowing us to make the first measurement of the local radio luminosity function at 20GHz. Our sample includes some classical FR-1 and FR-2 radio galaxies, but most of the AT20G-6dFGS galaxies host compact (FR-0) radio AGN which appear lack extended radio emission even at lower frequencies. Most of these FR-0 sources show no evidence for rela- tivistic beaming, and the FR-0 class appears to be a mixed population which includes young Compact Steep-Spectrum (CSS) and Gigahertz-Peaked Spectrum (GPS) radio galaxies.
    [Show full text]
  • A Synchrotron Superbubble in the IC 10 Galaxy: a Hypernova Remnant?
    Mon. Not. R. Astron. Soc. 000, 1–?? (2007) Printed 28 October 2018 (MN LATEX style file v2.2) A synchrotron superbubble in the IC 10 Galaxy: a hypernova remnant? T. A. Lozinskaya1⋆ and A. V. Moiseev2 1Sternberg Astronomical Institute, Universitetskii pr. 13, Moscow, 119991 Russia 2Special Astrophysical Observatory, Nizhnii Arkhyz, Karachaevo-Cherkesia, 369167 Russia Accepted 2007 June 29. Received 2007 June; in original form 2007 June 4 ABSTRACT The nature of the synchrotron superbubble in the IC 10 galaxy is discussed using the results of our investigation of its ionized gas structure, kinematics, and emission spectrum from observations made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, and based on our analysis of the radio emission of the region. The hypernova explosion is shown to be a more plausi- ble mechanism of the formation of the synchrotron superbubble compared with the earlier proposed model of multiple supernova explosions. A compact remnant of this hypernova may be identified with the well known X-ray binary X-1 – an accreting black hole. Key words: ISM: bubbles – ISM: kinematics and dynamics – supernova remnants galaxies: individual: IC 10. 1 INTRODUCTION. and observations with a scanning Fabry–Perot interferom- eter (FPI) in the Hα line. We report the detailed results The synchrotron superbubble in the IC 10 galaxy was discov- of our observations in a separate paper (Lozinskaya et al. ered by Yang & Skillman (1993). They associated it with the 2007). In this Letter we summarize the main results of these explosion of about ten supernovae. The synchrotron nature observations and the ensuing conclusions.
    [Show full text]
  • XIII Publications, Presentations
    XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys.
    [Show full text]
  • Observational Studies of the Galaxy Peculiar Velocity Field
    OBSERVATIONAL STUDIES OF THE GALAXY PECULIAR VELOCITY FIELD by Philip Andrew James Astrophysics Group Blackett Laboratory Imperial College of Science, Technology and Medicine London SW7 2BZ A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College November 1988 1 ABSTRACT This thesis describes two observational studies of the peculiar velocity field of galaxies over scales of 50-100 Jr1 Mpc, and the consequences of these measurements for cosmological theories. An introduction is given to observational cosmology, emphasising the crucial questions of the nature of the dark matter and the formation of structure. The principal cosmological models are discussed, and the role of observations in developing these models is stressed. Consideration is given to those observations that are likely to prove good discriminators between the competing models, particular emphasis being given to studies of the coherent velocities of samples of galaxies. The first new study presented here uses optical photometry and redshifts, from the literature, for First Ranked Cluster Galaxies (FRCG’s). These galaxies are excellent standard candles, and thus ideal for peculiar velocity studies. A simple one­ dimensional analysis detects no relative motion between the Local Group of galaxies and 60 FRCG’s with redshifts of up to 15000 kms-1. This is shown to imply a streaming motion of the cluster galaxies of at least 600 kms_1 relative to the CBR. The second observational study is a reanalysis of the Rubin et al. (1976a,b) sample of Sc galaxies. Near-IR photometry is used in our reanalysis to minimise the effects of extinction and to facilitate the use of luminosity indicators in reducing the effects of selection biases.
    [Show full text]
  • Arxiv:1805.06071V2 [Astro-Ph.GA] 19 Nov 2018
    DRAFT: NOVEMBER 20, 2018 Preprint typeset using LATEX style emulateapj v. 01/23/15 THE KECK LYMAN CONTINUUM SPECTROSCOPIC SURVEY (KLCS): THE EMERGENT IONIZING SPECTRUM OF GALAXIES AT Z ∼ 31 CHARLES C. STEIDEL2 ,MILAN BOGOSAVLJEVIC´ 2,9 ,ALICE E. SHAPLEY3 ,NAVEEN A. REDDY4,5 ,GWEN C. RUDIE6 , MAX PETTINI8 ,RYAN F. TRAINOR7 ,ALLISON L. STROM2,6 DRAFT: November 20, 2018 ABSTRACT We present results of a deep spectroscopic survey quantifying the statistics of the escape of hydrogen-ionizing photons from star-forming galaxies at z ∼ 3. The Keck Lyman Continuum Spectroscopic Survey (KLCS) includes spectra of 124 galaxies with hzi = 3:05 ± 0:18 and -22:1 ≤ Muv ≤ -19:5, observed in 9 independent < fields, covering a common rest-wavelength range 880 ≤ λ0=Å ∼ 1750. We measure the ratio of ionizing to non-ionizing UV flux density h f900= f1500iobs, where f900 is the mean flux density evaluated over the range λ0 = [880;910] Å. To quantify h f900= f1500iout– the emergent ratio of ionizing to non-ionizing UV flux density – we use detailed Monte Carlo modeling of the opacity of H I in the intergalactic (IGM) and circumgalactic (CGM) medium as a function of source redshift. By analyzing high-S/N composite spectra formed from sub-samples exhibiting common observed properties and numbers sufficient to reduce the uncertainty in the IGM+CGM correction, we obtain precise values of h f900= f1500iout, including a full-sample average h f900= f1500iout = 0:057± 0:006. We further show that h f900= f1500iout increases monotonically with Lyα rest equivalent width Wλ(Lyα), inducing an inverse correlation with UV luminosity as a by-product.
    [Show full text]
  • V. Spatially-Resolved Stellar Angular Momentum, Velocity Dispersion, and Higher Moments of the 41 Most Massive Local Early-Type Galaxies
    MNRAS 000,1{20 (2016) Preprint 9 September 2016 Compiled using MNRAS LATEX style file v3.0 The MASSIVE Survey - V. Spatially-Resolved Stellar Angular Momentum, Velocity Dispersion, and Higher Moments of the 41 Most Massive Local Early-Type Galaxies Melanie Veale,1;2 Chung-Pei Ma,1 Jens Thomas,3 Jenny E. Greene,4 Nicholas J. McConnell,5 Jonelle Walsh,6 Jennifer Ito,1 John P. Blakeslee,5 Ryan Janish2 1Department of Astronomy, University of California, Berkeley, CA 94720, USA 2Department of Physics, University of California, Berkeley, CA 94720, USA 3Max Plank-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching, Germany 4Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA 5Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria BC V9E2E7, Canada 6George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present spatially-resolved two-dimensional stellar kinematics for the 41 most mas- ∗ 11:8 sive early-type galaxies (MK . −25:7 mag, stellar mass M & 10 M ) of the volume-limited (D < 108 Mpc) MASSIVE survey. For each galaxy, we obtain high- quality spectra in the wavelength range of 3650 to 5850 A˚ from the 246-fiber Mitchell integral-field spectrograph (IFS) at McDonald Observatory, covering a 10700 × 10700 field of view (often reaching 2 to 3 effective radii). We measure the 2-D spatial distri- bution of each galaxy's angular momentum (λ and fast or slow rotator status), velocity dispersion (σ), and higher-order non-Gaussian velocity features (Gauss-Hermite mo- ments h3 to h6).
    [Show full text]
  • Astro2020 Science White Paper Lyman Continuum Observations Across Cosmic Time: Recent Developments, Future Requirements
    Astro2020 Science White Paper Lyman continuum observations across cosmic time: recent developments, future requirements Thematic Areas: Galaxy Evolution Cosmology and Fundamental Physics Principal Author: Stephan R. McCandliss Johns Hopkins University, Department of Physics and Astronomy, Center for Astrophysical Sciences, 3400 North Charles Street, Baltimore, MD 21218 [email protected], 410-516-5272 Co-authors: Daniela Calzetti (astro.umass.edu), Henry C. Ferguson (stsci.edu), Steven Finkelstein (astro.as.utexas.edu), Brian T. Fleming (colorado.edu), Kevin France (colorado.edu), Matthew Hayes (astro.su.se), Tim- othy Heckman (jhu.edu), Alaina Henry (stsci.edu), Akio K. Inoue (aoni.waseda.jp), Anne Jaskot (astro.umass.edu), Claus Leitherer, (stsci.edu), Sally Oey (umich.edu), John O’Meara (keck.hawaii.edu), Marc Postman (stsci.edu), Laura Prichard (stsci.edu) Swara Ravindranath (stsci.edu), Jane Rigby (nasa.gov), Claudia Scarlata (astro.umn.edu), Daniel Schaerer (unige.ch), Alice Shapley (astro.ucla.edu), Eros Vanzella (inaf.it) Abstract: Quantifying the physical conditions that allow radiation emitted shortward of the hy- drogen ionization edge at 911.7 A˚ to escape the first collapsed objects and ultimately reionize the universe is a compelling problem for astrophysics. The escape of LyC emission from star-forming galaxies and active galactic nuclei is intimately tied to the emergence and sustenance of the meta- galactic ionizing background (MIB) that pervades the universe to the present day and in turn is tied to the emergence of structure at all epochs. The James Webb Space Telescope (JWST) was built in part to search for the source(s) responsible for reionization, but it cannot observe LyC escape directly, because of the progressive increase in the mean transmission of the intergalactic medium towards the epoch of reionization.
    [Show full text]
  • Jet-Induced Star Formation in 3C 285 and Minkowski's Object⋆
    A&A 574, A34 (2015) Astronomy DOI: 10.1051/0004-6361/201424932 & c ESO 2015 Astrophysics Jet-induced star formation in 3C 285 and Minkowski’s Object? Q. Salomé, P. Salomé, and F. Combes LERMA, Observatoire de Paris, CNRS UMR 8112, 61 avenue de l’Observatoire, 75014 Paris, France e-mail: [email protected] Received 5 September 2014 / Accepted 6 November 2014 ABSTRACT How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that active galactic nucleus (AGN) can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (e.g. Centaurus A, Minkowski’s Object, 3C 285, and the higher redshift 4C 41.17). Here we present CO observations of 3C 285 and Minkowski’s Object, which are examples of jet-induced star formation. A spot (named 3C 285/09.6 in the present paper) aligned with the 3C 285 radio jet at a projected distance of ∼70 kpc from the galaxy centre shows star formation that is detected in optical emission. Minkowski’s Object is located along the jet of NGC 541 and also shows star formation. Knowing the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 3C 285/09.6, and Minkowski’s Object with the IRAM 30 m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy.
    [Show full text]
  • Star Formation in Ring Galaxies Susan C
    East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2016 Star Formation in Ring Galaxies Susan C. Olmsted East Tennessee State Universtiy Follow this and additional works at: https://dc.etsu.edu/honors Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation Olmsted, Susan C., "Star Formation in Ring Galaxies" (2016). Undergraduate Honors Theses. Paper 322. https://dc.etsu.edu/honors/ 322 This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Star Formation in Ring Galaxies Susan Olmsted Honors Thesis May 5, 2016 Student: Susan Olmsted: ______________________________________ Mentor: Dr. Beverly Smith: ____________________________________ Reader 1: Dr. Mark Giroux: ____________________________________ Reader 2: Dr. Michele Joyner: __________________________________ 1 Abstract: Ring galaxies are specific types of interacting galaxies in which a smaller galaxy has passed through the center of the disk of another larger galaxy. The intrusion of the smaller galaxy causes the structure of the larger galaxy to compress as the smaller galaxy falls through, and to recoil back after the smaller galaxy passes through, hence the ring-like shape. In our research, we studied the star-forming regions of a sample of ring galaxies and compared to those of other interacting galaxies and normal galaxies. Using UV, optical, and IR archived images in twelve wavelengths from three telescopes, we analyzed samples of star-forming regions in ring and normal spiral galaxies using photometry.
    [Show full text]
  • Breaching the Eddington Limit in the Most Massive, Most Luminous Stars
    Mass Loss from (Hot) Massive Luminous Stars Stan Owocki Bartol Research Institute Department of Physics & Astronomy University of Delaware Wednesday, January 12, 2011 Massive Stars in the Whirlpool Galaxy Wednesday, January 12, 2011 Henize 70: LMC SuperBubble Wind-Blown Bubbles in ISM Some key scalings: Wednesday, January 12, 2011 Henize 70: LMC SuperBubble Wind-Blown Bubbles in ISM Some key scalings: WR wind bubble NGC 2359 Wednesday, January 12, 2011 Henize 70: LMC SuperBubble Wind-Blown Bubbles in ISM Some key scalings: WR wind bubble NGC 2359 Superbubble in the Large Magellanic Cloud Wednesday, January 12, 2011 Pistol Nebula Wednesday, January 12, 2011 Eta Carinae Wednesday, January 12, 2011 P-Cygni Line Profile Line-scattering in massive winds Wednesday, January 12, 2011 Observed wind line profiles Resonance line-scattering Recombination line O-star P-Cygni profile WR-star emission profile −v∞ +v −v∞ ∞ Wednesday, January 12, 2011 Basic Mass Loss Properties i 2 Mass Loss rate M = 4πρvr Terminal speed Velocity law v(r) v∞ 8 Wednesday, January 12, 2011 Massive-Star Mass Loss i M 1. OB Winds M ~ 10−9 − 10−6 yr v∞ 1000 − 3000 km / s – opt. thin τ c < 1 2. Wolf-Rayet Winds i M M ~ 10−6 − 10−5 yr – opt. thick τ c > 1 v∞ 1000 − 3000 km / s 3. Luminous Blue Variable (LBV) Eruptions i 1 −5 M -very opt. thick τ c M ~ 10 − 1 !! yr v∞ 50 − 1000 km / s Wednesday, January 12, 2011 Q: What can drive such extreme mass loss?? Wednesday, January 12, 2011 Q: What can drive such extreme mass loss?? A: The force of light! Wednesday, January 12, 2011
    [Show full text]
  • In IAU Symp. 193, Wolf-Rayet Phenomena in Stars and Starburst
    Synthesis Models for Starburst Populations with Wolf-Rayet Stars Claus Leitherer Space Telescope Science Institute1, 3700 San Martin Drive, Baltimore, MD 21218 Abstract. The prospects of utilizing Wolf-Rayet populations in star- burst galaxies to infer the stellar content are reviewed. I discuss which Wolf-Rayet star features can be detected in an integrated stellar pop- ulation. Specific examples are given where the presence of Wolf-Rayet stars can help understand galaxy properties independent of the O-star population. I demonstrate how populations with small age spread, such as super star clusters, permit observational tests to distinguish between single-star and binary models to produce Wolf-Rayet stars. Different synthesis models for Wolf-Rayet populations are compared. Predictions for Wolf-Rayet properties vary dramatically between individual models. The current state of the models is such that a comparison with starburst populations is more useful for improving Wolf-Rayet atmosphere and evo- lution models than for deriving the star-formation history and the initial mass function. 1. Wolf-Rayet Signatures in Young Populations The central 30 Doradus region has the highest concentration of Wolf-Rayet (WR) stars in the LMC. Parker et al. (1995) classify 15 stars within 2000 (or 5 pc) of R136 as WR stars, including objects which may appear WR-like due to very dense winds (de Koter et al. 1997). This suggests that about 1 out of 10 ionizing stars around R136 is of WR type. The WR stars can be seen in an ultraviolet (UV) drift-scan spectrum of the integrated 30 Dor population obtained by Vacca et al.
    [Show full text]
  • Modelling Supernova Remnant Kinematics and X-Ray Emission: Some Examples
    Modelling Supernova Remnant kinematics and X-ray emission: Some Examples. Margarita Rosado Instituto de Astronomía UNAM Collaborators: • Pablo Velázquez, Ary Rodríguez González (ICN-UNAM) • Jorge Reyes Iturbide (IT Santiago Tianguistengo) • Patricia Ambrocio-Cruz (UAEH) • Mónica Sánchez-Cruces (ESFM-IPN) I. The Kinematics: By means of a FP Interferometer (i.e. the PUMA) One gets millions of Halpha or [SII] profiles over the field. From Valdez- Gutiérrez et al. 2001 OAN: San Pedro Mártir, B.C. Mexico PUMA INTERFEROMETER PUMA parameters - Detector CCD 1024x1024 – FP scanning steps 48 – Finesse 24 – Spectral resolution 47.3 km s-1 – Plate scale 0.59 arcsec pix -1 – Filters Hα [SII] – Central lambda a 6570 6720 – Interference order 330 332 – Free spectral range b 847 931 – Sampling step c 17.6 19.4 – Calibration line a Hα (6562.7) Ne (6717.04) a) in units of angstroms, b) in km s -1, c) in km s -1 channel -1 Doppler Effect Iso-velocity contours in our Galaxy Rotation curve of our Galaxy (also from Bland & Blitz ) The kinematics of SNRs is a powerful tool that we can use to estimate the DISTANCE, and other important parameters of those objects. The Galactic SNR CTB 109 and the quest for its distance: Radio Einstein X-rays continuum, and CO CO and HI From Gregory & Falman (1980), Tatematsu et al. (1987), Kothes et al. (2002, 2006) While in the optical: Hurford & Fesen (1995) Sánchez -Cruces et al. (2017) 2D [SII]/Hα line-ratios of the optical filaments è a radiative shock Typical [SII] velocity profiles of two regions: è SNR CTB 109 IS IN THE PERSEUS ARM è THIS SNR HOSTING A MAGNETAR HAS RATHER TYPICAL INITIAL ENERGY II.
    [Show full text]