Robert Y. Moore
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Masakazu Konishi
Masakazu Konishi BORN: Kyoto, Japan February 17, 1933 EDUCATION: Hokkaido University, Sapporo, Japan, B.S. (1956) Hokkaido University, Sapporo, Japan, M.S. (1958) University of California, Berkeley, Ph.D. (1963) APPOINTMENTS: Postdoctoral Fellow, University of Tübingen, Germany (1963–1964) Postdoctoral Fellow, Division of Experimental Neurophysiology, Max-Planck Institut, Munich, Germany (1964–1965) Assistant Professor of Biology, University of Wisconsin, Madison (1965–1966) Assistant Professor of Biology, Princeton University (1966–1970) Associate Professor of Biology, Princeton University (1970–1975) Professor of Biology, California Institute of Technology (1975– 1980) Bing Professor of Behavioral Biology, California Institute of Technology (1980– ) HONORS AND AWARDS (SELECTED): Member, American Academy of Arts and Sciences (1979) Member, National Academy of Sciences (1985) President, International Society for Neuroethology (1986—1989) F. O. Schmitt Prize (1987) International Prize for Biology (1990) The Lewis S. Rosenstiel Award, Brandeis University (2004) Edward M. Scolnick Prize in Neuroscience, MIT (2004) Gerard Prize, the Society for Neuroscience (2004) Karl Spencer Lashley Award, The American Philosophical Society (2004) The Peter and Patricia Gruber Prize in Neuroscience, The Society for Neuroscience (2005) Masakazu (Mark) Konishi has been one of the leaders in avian neuroethology since the early 1960’s. He is known for his idea that young birds initially remember a tutor song and use the memory as a template to guide the development of their own song. He was the fi rst to show that estrogen prevents programmed cell death in female zebra fi nches. He also pioneered work on the brain mechanisms of sound localization by barn owls. He has trained many students and postdoctoral fellows who became leading neuroethologists. -
The Limbic System Conception and Its Historical Evolution
Review Article TheScientificWorldJOURNAL (2011) 11, 2427–2440 ISSN 1537-744X; doi:10.1100/2011/157150 The Limbic System Conception and Its Historical Evolution Marcelo R. Roxo,1, 2 Paulo R. Franceschini,1, 2 Carlos Zubaran,3, 4 Fabrício D. Kleber,1, 5 and Josemir W. Sander6, 7 1Faculty of Medicine, University of Caxias do Sul, Caxias do Sul, RS, Brazil 2Department of Neurosurgery, Hospital São José, Complexo Hospitalar Santa Casa de Misericórdia, Porto Alegre, RS 90020-090, Brazil 3School of Medicine, University of Western Sydney, Sydney, NSW 2751, Australia 4Department of Psychiatry, Sydney West Area Health Service, Blacktown, NSW 2148, Australia 5Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil 6UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 7SEIN-Stichting Epilepsie Instellingen Nederland, 2103 SW Heemstede, The Netherlands Received 14 February 2011; Accepted 19 September 2011 Academic Editor: Roger Whitworth Bartrop Throughout the centuries, scientific observers have endeavoured to extend their knowledge of the interrelationships between the brain and its regulatory control of human emotions and behaviour. Since the time of physicians such as Aristotle and Galen and the more recent observations of clinicians and neuropathologists such as Broca, Papez, and McLean, the field of affective neuroscience has matured to become the province of neuroscientists, neuropsychologists, neurologists, and psychiatrists. It is accepted that the prefrontal cortex, amygdala, anterior cingulate cortex, hippocampus, and insula participate in the majority of emotional processes. New imaging technologies and molecular biology discoveries are expanding further the frontiers of knowledge in this arena. The advancements of knowledge on the interplay between the human brain and emotions came about as the legacy of the pioneers mentioned in this field. -
Introduction to CNS: Anatomical Techniques
9.14 - Brain Structure and its Origins Spring 2005 Massachusetts Institute of Technology Instructor: Professor Gerald Schneider A sketch of the central nervous system and its origins G. Schneider 2005 Part 1: Introduction MIT 9.14 Class 2 Neuroanatomical techniques Primitive cellular mechanisms present in one-celled organisms and retained in the evolution of neurons • Irritability and conduction • Specializations of membrane for irritability • Movement • Secretion • Parallel channels of information flow; integrative activity • Endogenous activity The need for integrative action in multi cellular organisms • Problems that increase with greater size and complexity of the organism: – How does one end influence the other end? – How does one side coordinate with the other side? – With multiple inputs and multiple outputs, how can conflicts be avoided (often, if not always!)? • Hence, the evolution of interconnections among multiple subsystems of the nervous system. How can such connections be studied? • The methods of neuroanatomy (neuromorphology): Obtaining data for making sense of this “lump of porridge”. • We can make much more sense of it when we use multiple methods to study the same brain. E.g., in addition we can use: – Neurophysiology: electrical stimulation and recording – Neurochemistry; neuropharmacology – Behavioral studies in conjunction with brain studies • In recent years, various imaging methods have also been used, with the advantage of being able to study the brains of humans, cetaceans and other animals without cutting them up. However, these methods are very limited for the study of pathways and connections in the CNS. A look at neuroanatomical methods Sectioning Figure by MIT OCW. Cytoarchitecture: Using dyes to bind selectively in the tissue -- Example of stains for cell bodies Specimen slide removed due to copyright reasons. -
Julia Anne Leonard Employment Education
JULIA ANNE LEONARD 425 S University Ave, Philadelphia, PA 19104 [email protected] November, 2020 EMPLOYMENT Yale University Assistant Professor, Department of Psychology July 2021 - University of Pennsylvania September 2018 - present MindCore postdoctoral fellow with Dr. Allyson Mackey Advisory committee: Dr. Angela Duckworth, Dr. Martha Farah, Dr. Joe Kable EDUCATION Massachusetts Institute of Technology September 2013 – May 2018 PhD in Brain and Cognitive Sciences with Dr. John Gabrieli and Dr. Laura Schulz Thesis: Social Influences on Children’s Learning Wesleyan University May 2011 B.A. Neuroscience and Behavior, Phi Beta Kappa, High Honors, GPA: 4.0 Advisor: Anna Shusterman Honors Thesis: The Effects of Touch on Compliance in Preschool-Age Children HONORS AND AWARDS MindCORE Postdoctoral Fellowship, University of Pennsylvania (2018) Walle Nauta Award for Continued Dedication to Teaching, MIT (2017, 2018) Neurohackweek Fellow, University of Washington eScience Institute (2016, 2017) UCLA-Semel Institute Neuroimaging Training Program Fellow (2016) Summer Institute in Cognitive Neuroscience Fellow, UCSB (2015) Graduate Student Summer Travel Award, MIT (2015) Latin America School for Education, Cognition, and Neural Sciences Fellow (2015, 2018) NSF Graduate Student Research Fellowship (2014) Ida M. Green Graduate School Fellowship, MIT (2013) High Honors in Neuroscience and Behavior, Wesleyan University (2011) Connecticut Higher Education Community Service Award Nominee (2011) Dean’s List, Wesleyan University (2008, 2009, 2010, 2011) Phi Beta Kappa, Chapter of Wesleyan University (2010) PUBLICATIONS Leonard, J.A., Martinez, D.N., Dashineau, S., Park, A.T. & Mackey, A.P. (In press). Children persist less when adults take over. Child Development. Julia A. Leonard 1 Leonard, J.A., Sandler, J., Nerenberg, A., Rubio, A., Schulz, L.E., & Mackey, A. -
A Transmitter Candidate for the Retinohypothalamic Tract (Suprachiasmatic Nucleus/Supraoptic Nucleus/Peptide Immunohistochemistry/Circadian Rhythms) JOHN R
Proc. Nati. Acad. Sci. USA Vol. 87, pp. 8065-8069, October 1990 Neurobiology N-Acetylaspartylglutamate: A transmitter candidate for the retinohypothalamic tract (suprachiasmatic nucleus/supraoptic nucleus/peptide immunohistochemistry/circadian rhythms) JOHN R. MOFFETT*, LuRA WILLIAMSON*, MIKLOS PALKOVITSt, AND M. A. A. NAMBOODIRI*t *Department of Biology, Georgetown University, Washington, D.C. 20057; and tLaboratory of Cell Biology, National Institute of Mental Health, Bethesda, MD 20892 Communicated by Dominick P. Purpura, July 2, 1990 ABSTRACT The retinohypothalamic tract is the neural mission in a number of sensory and motor systems in the pathway mediating the photic entrainment of circadian brain (15). Therefore, it was ofinterest to determine ifNAAG rhythms in mammals. Important targets for these retinal fibers could be identified in the terminal fields of the RHT within are the suprachiasmatic nuclei (SCN) of the hypothalamus, the hypothalamus. Here we present immunohistochemical which are thought to be primary sites for the biological clock. and radioimmunoassay data indicating extensive NAAG The neurotransmitters that operate in this projection system immunoreactivity (NAAG-IR) in the SCN and other target have not yet been determined. Immunohistochemistry and zones of the RHT in the rat. Further, the NAAG-IR in the radioimmunoassay performed with affinity-purified antibodies optic chiasm and SCN decreased substantially following to N-acetylaspartylglutamate (NAAG) demonstrate that this unilateral or bilateral optic nerve transections. This obser- neuron-specific dipeptide, which may act as an excitatory vation raises the possibility that NAAG may act as a trans- neurotransmitter, is localized extensively in the retinohypotha- mitter mediating the effects of light in the retinohypothalamic lamic tract and its target zones, including the SCN. -
The First Annual Meeting of the Society for Neuroscience, 1971: Reflections Approaching the 50Th Anniversary of the Society’S Formation
The Journal of Neuroscience, October 31, 2018 • 38(44):9311–9317 • 9311 Progressions The First Annual Meeting of the Society for Neuroscience, 1971: Reflections Approaching the 50th Anniversary of the Society’s Formation R. Douglas Fields National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, Maryland 20904 The formation of the Society for Neuroscience in 1969 was a scientific landmark, remarkable for the conceptual transformation it represented by uniting all fields touching on the nervous system. The scientific program of the first annual meeting of the Society for Neuroscience,heldinWashington,DCin1971,issummarizedhere.Byreviewingthescientificprogramfromthevantagepointofthe50th anniversary of the Society for Neuroscience, the trajectory of research now and into the future can be tracked to its origins, and the impact that the founding of the Society has had on basic and biomedical science is evident. The broad foundation of the Society was firmly cast at this first meeting, which embraced the full spectrum of science related to the nervous system, emphasized the importance of public education, and attracted the most renowned scientists of the day who were drawn together by a common purpose and eagerness to share research and ideas. Some intriguing areas of investigation discussed at this first meeting blossomed into new branches of research that flourishtoday,butothersdwindledandhavebeenlargelyforgotten.Technologicaldevelopmentsandadvancesinunderstandingofbrain function have been profound since 1971, but the success of the first meeting demonstrates how uniting scientists across diversity fueled prosperity of the Society and propelled the vigorous advancement of science. Introduction and behavioral levels, but all of these scientific elements of what Before the formation of the Society for Neuroscience (Sf N), in we now recognize as “neuroscience” were represented at that first 1969, research concerning the nervous system was conducted in meeting. -
PACAP in Hypothalamic Regulation of Sleep and Circadian Rhythm: Importance for Headache Philip R
Holland et al. The Journal of Headache and Pain (2018) 19:20 The Journal of Headache https://doi.org/10.1186/s10194-018-0844-4 and Pain REVIEWARTICLE Open Access PACAP in hypothalamic regulation of sleep and circadian rhythm: importance for headache Philip R. Holland1*, Mads Barloese2* and Jan Fahrenkrug3 Abstract The interaction between sleep and primary headaches has gained considerable interest due to their strong, bidirectional, clinical relationship. Several primary headaches demonstrate either a circadian/circannual rhythmicity in attack onset or are directly associated with sleep itself. Migraine and cluster headache both show distinct attack patterns and while the underlying mechanisms of this circadian variation in attack onset remain to be fully explored, recent evidence points to clear physiological, anatomical and genetic points of convergence. The hypothalamus has emerged as a key brain area in several headache disorders including migraine and cluster headache. It is involved in homeostatic regulation, including pain processing and sleep regulation, enabling appropriate physiological responses to diverse stimuli. It is also a key integrator of circadian entrainment to light, in part regulated by pituitary adenylate cyclase-activating peptide (PACAP). With its established role in experimental headache research the peptide has been extensively studied in relation to headache in both humans and animals, however, there are only few studies investigating its effect on sleep in humans. Given its prominent role in circadian entrainment, established in preclinical research, and the ability of exogenous PACAP to trigger attacks experimentally, further research is very much warranted. The current review will focus on the role of the hypothalamus in the regulation of sleep-wake and circadian rhythms and provide suggestions for the future direction of such research, with a particular focus on PACAP. -
Neuromodulation of Ganglion Cell Photoreceptors
NEUROMODULATION OF GANGLION CELL PHOTORECEPTORS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Puneet Sodhi, B.S. Graduate Program in Neuroscience The Ohio State University 2015 Dissertation Committee: Dr. Andrew TE Hartwick, Advisor Dr. Karl Obrietan Dr. Stuart Mangel Dr. Heather Chandler Copyright by Puneet Sodhi 2015 ABSTRACT Intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a rare subset of ganglion cells in the mammalian retina that are primarily involved in non-image forming (NIF) visual processes. In the presence of light, ipRGC photoreceptors exhibit sustained depolarization, in contrast to the transient hyperpolarizing responses of rod and cone photoreceptors. The persistence of this response with light offset underlies the reduced temporal resolution exhibited by these ipRGCs. The overall aim of this thesis was to determine whether the unique temporal dynamics of ipRGC photoresponses are subject to modification by endogenous retinal neuromodulators. As post-synaptic photoreceptors, ipRGCs are capable of integrating photic information transmitted from pre-synaptic neurons regulated by rod- and cone-driven signaling. Given that ipRGCs possess dense dendritic nets that span the entire retina, I hypothesized that these ganglion cell photoreceptors were capable of being modulated by extrinsic input from the retinal network. Using multi-electrode array recordings on rat retinas, I demonstrated that the duration of light-evoked ipRGC spiking can be modified through an intracellular cAMP/PKA-mediated signaling pathway. Specifically, stimulation of the cAMP/PKA pathway leads to prolonged ipRGC light responses. Expanding upon these findings, I next identified an endogenous retinal neuromodulator capable of modulating ipRGC photoresponses through this signaling pathway. -
Neuron: Electrolytic Theory & Framework for Understanding Its
Neuron: Electrolytic Theory & Framework for Understanding its operation Abstract: The Electrolytic Theory of the Neuron replaces the chemical theory of the 20th Century. In doing so, it provides a framework for understanding the entire Neural System to a comprehensive and contiguous level not available previously. The Theory exposes the internal workings of the individual neurons to an unprecedented level of detail; including describing the amplifier internal to every neuron, the Activa, as a liquid-crystalline semiconductor device. The Activa exhibits a differential input and a single ended output, the axon, that may bifurcate to satisfy its ultimate purpose. The fundamental neuron is recognized as a three-terminal electrolytic signaling device. The fundamental neuron is an analog signaling device that may be easily arranged to process pulse signals. When arranged to process pulse signals, its axon is typically myelinated. When multiple myelinated axons are grouped together, the group are labeled “white matter” because of their translucent which scatters light. In the absence of myelination, groups of neurons and their extensions are labeled “dark matter.” The dark matter of the Central Nervous System, CNS, are readily divided into explicit “engines” with explicit functional duties. The duties of the engines of the Neural System are readily divided into “stages” to achieve larger characteristic and functional duties. Keywords: Activa, liquid-crystalline, semiconductors, PNP, analog circuitry, pulse circuitry, IRIG code, 2 Neurons & the Nervous System The NEURONS and NEURAL SYSTEM This material is excerpted from the full β-version of the text. The final printed version will be more concise due to further editing and economical constraints. -
Spring 03 Complete
brain and cognitive sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Spring 2003 Volume V; Issue 2 MESSAGE FROM THE MATT WILSON small private college, and Matt developed DEPARTMENT HEAD an affinity for football. Hes been a Packer fan ever since and he and his sons go to the MRIGANKA SUR games in cheese head apparel. The affairs of the department are He attended a parochial school where usually concerned with local details, but the nuns practiced corporal punishment, as the Spring term gets into full swing, and he has vivid memories of having his two national events have assumed major mouth taped shut for talking too much significance for MIT and for us: the (even though he claims to have been very economy and the war. The downturn in shy). Matt likes to characterize himself as the economy has had a significant negative shy but devilish, not overtly delinquent, impact on the MIT operating budget and but lacking a sense of conformity. He likes hence on the departments budget. Like all doing things outside the norm, seeks new other departments, BCS faces a cut in its challenges, and particularly prefers being on budget allocation for July 03 - June 04. the forefront of mischief and academics. The war in Iraq has brought a heightened In his high school days, Matt was sense of tension and apprehension to our interested in constructing things, and spent campus. President Vest has created a a summer building a harpsichord that he Committee on the Community, led by still has. Then, when he got his first Matt and youngest son, Brian Chancellor Phil Clay, to provide guidelines computer, an Apple II, he modified it until for preserving our community and its Matts father was an anthropologist it was his own personal computing device. -
Neurotransmitters of the Retino-Hypothalamic Tract
Cell Tissue Res (2002) 309:73–88 DOI 10.1007/s00441-002-0574-3 REVIEW Jens Hannibal Neurotransmitters of the retino-hypothalamic tract Received: 4 January 2002 / Accepted: 2 April 2002 / Published online: 29 May 2002 © Springer-Verlag 2002 Abstract The brain’s biological clock, which, in mam- Keywords PACAP · Glutamate · Substance P · mals, is located in the suprachiasmatic nucleus (SCN), Melanopsin · Suprachiasmatic nucleus · Circadian generates circadian rhythms in behaviour and physiolo- rhythm · Entrainment gy. These biological rhythms are adjusted daily (en- trained) to the environmental light/dark cycle via a monosynaptic retinofugal pathway, the retinohypotha- Introduction lamic tract (RHT). In this review, the anatomical and physiological evidence for glutamate and pituitary ade- The mammalian biological clock is located in the hypo- nylate cyclase-activating polypeptide (PACAP) as princi- thalamic suprachiasmatic nuclei (SCN), which in the rat pal transmitters of the RHT will be considered. A combi- consist of a heterogeneous group of approximately nation of immunohistochemistry at both the light- and 16,000 neurons (van den Pol 1980). The SCN drives di- electron-microscopic levels and tract-tracing studies urnal changes in physiology and behaviour, such as hor- have revealed that these two transmitters are co-stored in mone secretion, temperature and the sleep-waking cy- a subpopulation of retinal ganglion cells projecting to cles, in a predictable manner thereby preparing the body the retino-recipient zone of the ventral SCN. The for oncoming events and demands (Klein et al. 1991). PACAP/glutamate-containing cells, which constitute the When examined under constant conditions (constant RHT, also contain a recently identified photoreceptor darkness or constant light), the endogenous rhythms protein, melanopsin, which may function as a “circadian driven by the clock oscillate with a period length close to photopigment”. -
Pineal Gland - a Mystic Gland Daniel Silas Samuel1, Revathi Duraisamy1, M
Review Article Pineal gland - A mystic gland Daniel Silas Samuel1, Revathi Duraisamy1, M. P. Santhosh Kumar2* ABSTRACT The pineal gland has been the subject of amazement and awe down the centuries. The structure and function of this enigmatic gland play an important role in day-to-day life of human beings. The pineal gland secretes an important hormone melatonin which is necessary for lightening the skin tone, and it has several other important functions in humans. The pineal gland is composed mainly of pinealocytes. The pineal gland is present in the midline of the skull and is a part of epithalamus and hypothalamus. It regulates the secretion of both. The pineal gland is activated by darkness and it is mandatory to maintain a normal circadian rhythm of sleep-wake cycle, if not humans may turn into zombies. The pineal gland is also present in animals. The secretion of this gland in higher amounts causes precocious puberty and development of primary and secondary sexual characters mainly in boys. It is also called the third eye since after eye, and it is the only gland which detects light but, on the contrary, secretes melatonin largely under darkness. This gland also affects the mood of human beings, thereby getting involved in the psychological behavior of men. It increases the immune action of human beings; thereby, it also acts as immunostimulant preventing a person from attack of antigen by producing a suitable antibody. Its presence hinders the spread of tumor and becomes malignant, and its calcification affects the memory or the memorizing capacity of the brain leading to dementia.