Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-194 Manuscript under review for journal Hydrol. Earth Syst. Sci. Discussion started: 10 May 2019 c Author(s) 2019. CC BY 4.0 License. Drainage of soft cohesive sediment with and without Phragmites australis as an ecological engineer Rémon M. Saaltink1,6*, Maria Barciela-Rial2*, Thijs van Kessel3, Stefan C. Dekker1,5, Hugo J. de Boer1, Claire Chassagne2, Jasper Griffioen1,4, Martin J. Wassen1, 5 Johan C. Winterwerp2 1Department of Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, The Netherlands. 2Section of Environmental Fluid Mechanics, Delft University of Technology, The Netherlands. 3Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands. 10 4TNO Geological Survey of the Netherlands, The Netherlands. 5Faculty of Management, Science and Technology, Open University, Heerlen, The Netherlands 6HAS University of Applied Sciences, ‘s-Hertogenbosch, the Netherlands *Both authors contributed equally to this work Correspondence to: Maria Barciela-Rial (
[email protected]) 15 Abstract. Conventional drainage techniques are often used to speed up consolidation of fine sediment. These techniques are relatively expensive, are invasive and often degrade the natural value of the ecosystem. This paper focusses on exploring an alternative approach that uses natural processes, rather than a technological solution, to speed up drainage of soft cohesive sediment. In a controlled column experiment, we studied how Phragmites australis can act as an ecological engineer that enhances drainage, thereby potentially promoting sediment 20 consolidation. We measured the dynamics of pore water pressures at 10 cm depth intervals during a 129-day period in a column with and without plants, while the water level was fixed.