Faraoni Level, Latest Hauterivian, Early Cretaceous)

Total Page:16

File Type:pdf, Size:1020Kb

Faraoni Level, Latest Hauterivian, Early Cretaceous) Palaeogeography, Palaeoclimatology, Palaeoecology 224 (2005) 186–199 www.elsevier.com/locate/palaeo Biotic changes linked to a minor anoxic event (Faraoni Level, latest Hauterivian, Early Cretaceous) Miguel Companya,*, Roque Aguadob, Jose´ Sandovala, Jose´ M. Taveraa, Concepcio´n Jime´nez de Cisnerosc, Juan A. Veraa aDepartamento de Estratigrafı´a y Paleontologı´a, Facultad de Ciencias, Universidad de Granada, 18002 Granada, Spain bDepartamento de Geologı´a, Escuela Universitaria Polite´cnica de Linares, Universidad de Jae´n, 23700 Linares, Spain cEstacio´n Experimental del Zaidı´n (CSIC), C/ Pedro Albareda, 1. 18008 Granada, Spain Received 19 January 2004; received in revised form 22 October 2004; accepted 23 March 2005 Abstract A conspicuous renewal in the ammonite faunas of the Mediterranean Tethys occurred in the latest Hauterivian. This faunal turnover took place following a stepwise pattern. The first step occurred at the boundary between the Pseudothurmannia ohmi Subzone and the Pseudothurmannia mortilleti Subzone, coinciding with the base of the so-called Faraoni Level. This is a Corg- rich interval that has been recognised in several basins of the Mediterranean Tethys and seems to be the expression of a short- lived oxygen-deficient event. It correlates with a well-documented second-order peak transgression. The oxygen depletion preferentially affected the deep nektic ammonites, which would explain the extinctions within this group around the Faraoni Level. On the contrary, an increase in the trophic resources in the photic zone favoured the diversification of epipelagic ammonites. Concurrently, an abrupt change took place at this level in the nannoconid assemblage composition. A minor second event, located at the base of the Pseudothurmannia picteti Subzone, was marked by the replacement of a few planktic ammonite species by closely related forms, and the structure of the ammonite assemblage was not substantially altered. The coincidence of this event with a further restructuring of the calcareous nannofossil assemblage suggests that some changes had to occur in the planktic ecosystem during the sea-level highstand subsequent to the peak transgression. The third and last stage of the renewal process started in the upper part of the P. picteti Subzone, coinciding with a drastic sea-level fall. It is characterised by the extinction of many of the species that had appeared in the two previous events, resulting in an extensive modification of the assemblage structure. The regression would probably cause a drop in the primary productivity and, consequently, an improvement in the oxygenation level of the sea bottom. This would explain the extinction of several planktic ammonite species and the appearance of new nektic and nektobenthic lineages. D 2005 Elsevier B.V. All rights reserved. Keywords: Biotic changes; Anoxic event; Ammonites; Calcareous nannofossils; Hauterivian; Mediterranean Tethys * Corresponding author. Tel.: +34 958243201; fax: +34 958248528. E-mail address: [email protected] (M. Company). 0031-0182/$ - see front matter D 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.palaeo.2005.03.034 M. Company et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 224 (2005) 186–199 187 1. Introduction in sea level would have caused a severe telescoping of ammonite biotopes over the shelf edge, hence enhanc- The ammonite faunas of the Mediterranean Tethys ing selection pressure and extinction. underwent a remarkable turnover during the latest The start of this renewal process coincides with the Hauterivian and earliest Barremian. More than 90% so-called Faraoni Level, a Corg-rich stratigraphic in- of the species present in this interval were involved in terval, which has been recognised in several western the renewal, and taxa that had been major components Mediterranean basins and has been interpreted as the of the Hauterivian assemblages (like the Criocera- sedimentary record of a short-lived oxygen-deficient tites–Pseudothurmannia lineage or the genera Ple- event (Cecca et al., 1994; Baudin et al., 1999, siospitidiscus and Neolissoceras) disappeared at that 2002a,b). Moreover, marked changes in the microflo- time and were replaced by typical Barremian groups ral and microfaunal assemblages have also been (Barremites and the first representatives of Silesitidae, recorded within this interval (Coccioni et al., 1998). Holcodiscinae, and Leptoceratoidinae). Hoedemaeker In this paper, we analyse the extent and signifi- (1995a,b) previously documented this turnover, which cance of this ammonite faunal turnover, which we he related to a rapid eustatic sea-level fall. Such drop reinterpret in the context of the Faraoni event. 0 0 ALBACETE 1 0 Oliva 9 IBERIAN PENINSULA 8 Alcoy Elda 7 ALICANTE Elche Caravaca 3 5 4 0 38 6 MURCIA JAEN Huéscar 1 2 Lorca Cartagena Baza Lucena Iberian Massif Guadalquivir Bassin GRANADA Prebetic 370 ALMERIA Subbetic Internal Zones MALAGA Mediterranean Sea 0 50 100 150 Km Fig. 1. Simplified geological map of the Betic Cordillera and location of the studied Hauterivian/Barremian boundary sections: (1) Barranco de la Aguzadera (sections X.G and X.G1); (2) Ermita de Cuadros (section X.EC); (3) Rı´o Argos (sections X.Ag1, X.Ag4 and X.Ag5); (4) Barranco de Cavila (section X.Kv3); (5) Arroyo de Gilico (section X.V1); (6) Cerro del Tornajo (sections X.Tj1 and X.Tj2); (7) Sierra del Cid (sections X.A1 and X.A2); (8) Barranco de la Querola (section X.Q); (9) Cantera de l’Almuixic (section X.O). 188 M. Company et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 224 (2005) 186–199 2. Biostratigraphic framework et al., 2003) by establishing a subdivision of the zones classically admitted within this interval. Thus, the C. 2.1. Ammonite biostratigraphy balearis Zone is divided into four subzones defined by the consecutive appearance of four species belong- This study is based on the stratigraphic distribu- ing to the same Crioceratites lineage: C. balearis, C. tion of more than 5000 ammonites collected bed-by- binelli, C. krenkeli and C. angulicostatus. The P. ohmi bed from 14 sections located in different palaeogeo- Zone comprises three subzones characterised by three graphic domains of the Betic Cordillera, southeastern successive species of the genus Pseudothurmannia: P. Spain (Fig. 1). Widespread lithostratigraphic and ohmi, P. mortilleti and P. picteti. The lowermost biostratigraphic markers have enabled a precise cor- Barremian T. hugii Zone can in turn be divided into relation between those sections and the construction a lower T. hugii Subzone and an upper Psilotissotia of accurate composite ranges for the ammonite spe- colombiana Subzone. cies (Fig. 2). Published data from other areas (mainly Ammonites are scarce in the lower part of the C. SE France and Italy) have also been taken into balearis Zone. For this reason, we have limited our account. study to the interval between the upper part of that The stratigraphic interval analysed corresponds to zone and the lower part of the T. hugii Zone, where the uppermost Hauterivian and the lowermost Barre- ammonites are much more abundant and data are mian, including the Crioceratites balearis, Pseu- more consistent. dothurmannia ohmi and Taveraidiscus hugii Zones. The biostratigraphic scheme used in this paper is that 2.2. Calcareous nannofossil biostratigraphy proposed by Company et al. (2002, 2003), which improves the resolution of the current standard zona- The stratigraphic distribution of calcareous nan- tion (Hoedemaeker and Rawson, 2000; Hoedemaeker nofossils has been investigated in four selected sec- s latum bulum ficilis dius anum li e pseudomalbosi ohmi winkleri morloti guerini subgrasianum ras infundi nnia picteti ras nnia nnia mortilleti nnia s hugii interme subcylindrica jourdani fumisugina uhligi munieri thetys favrei vermeuleni neumayri mallada ” boutini dimboviciorensi tabarelli meriani obliquestrangu densifimbriatum spp. ceras thiollierei ceras koechlini sotia mazuca oceras pitidiscus subdif s atites angulicostatus atites binelli atites majoricensis atites krenke Sequence stratigraphy Subzone (adapted from Barremites Zone Anahamulina Anahamulina Originations Arnaudiella Psilotis Anahamulina Phyllopachyce Acrioceras ramkrishnai Acrioceras Pseudothurma Emerici Paraspinocera Emerici Acrioceras Discoidellia Phyllopachyce Plesios Lytoceras subfimbriatum Lytoceras Pseudothurma Hamulinites nicklesi Pseudothurma Silesite Abrytusites Discoidellia Pseudothurma Phylloceras Hamulinites Neoliss Lytoceras Barremites Paraspiticeras Criocer Extincions Criocer Taveraidiscus Criocer Criocer Taveraidiscus “ “Barremites” Hardenbolet al. 1998) STAGE . ) TS T. hugii My (p.p. BAR T.hugii 3 127.10 P. picteti SBHa7 2 P. mortilleti Faraoni Level P. ohmi p.p . 1 MFS 127.39 () P. ohmi C. anguli- TS costatus (p.p.) SBHa6 127.82 HAUTERIVIEN C. krenkeli MFS 128.10 C. binelli C. balearis ABCDE F TS 4 2 0 2 4 6 Fig. 2. Stratigraphic distribution, extinction and origination levels, and turnover steps (1,2,3) of the ammonite species throughout the Hauterivian/Barremian boundary interval in the Mediterranean Tethys. Inferred life-habit groups: (A) planktic drifters; (B) epipelagic vertical migrants; (C) epipelagic nekton; (D) mesopelagic vertical migrants; (E) mesopelagic nekton; (F) nektobenthic. M. Company et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 224 (2005) 186–199 189 tions (X.G1, X.EC, X.Ag1 and X.V1 in Fig. 1). untreated samples in order to retain the original Sampling was restricted to the marly interbeds, sample composition unaltered,
Recommended publications
  • 03 Lukeneder ACTA LAYAUT
    Acta Geologica Polonica, Vol. 63 (2013), No. 1, pp. 89–104 DOI: 10.2478/agp-2013-0003 Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent: new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy) ALEXANDER LUKENEDER1 AND PATRICK GRUNERT 2 1 Natural History Museum, Geological-Paleontological Department, Burgring 7, A-1010 Vienna, Austria. E-mail: [email protected] 2 University of Graz, Institute for Earth Sciences, Heinrichstraße 26, A-8010 Graz, Austria. E-mail: [email protected] ABSTRACT: Lukeneder, A. and Grunert, P. 2013. Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent: new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy). Acta Geologica Polonica, 63 (1), 89–104. Warszawa. New stratigraphic and palaeoenvironmental data are presented for the northeastern part of the Trento Plateau (Puez area, Southern Alps, Italy). The studied section corresponds to the upper Hauterivian Balearites balearis and “Pseudothurmannia ohmi” ammonite zones and normal palaeomagnetic chron upper M5. A c. 30-cm-thick bed is identified as the equivalent of the Faraoni Level, based on its position within the Pseudothurmannia mortilleti Sub- 13 zone, the composition of its ammonite fauna and the peak of a minor positive trend in the δ Cbulk record. Microfa- cies and geochemical proxies compare well with those of the southeastern part of the Trento Plateau and indicate palaeoceanographic continuity along the eastern margin of the plateau. The abundances of radiolarians and nanno- conids suggest a turnover in the trophic structure from eutrophic conditions around the Faraoni Level equivalent to oligotrophic conditions.
    [Show full text]
  • Stratigraphic Implications of a New Lower Cretaceous Ammonoid Fauna from the Puez Area (Valanginian – Aptian, Dolomites, Southern Alps, Italy)
    Geo.Alp, Vol. 3, S. 55–83, 2006 STRATIGRAPHIC IMPLICATIONS OF A NEW LOWER CRETACEOUS AMMONOID FAUNA FROM THE PUEZ AREA (VALANGINIAN – APTIAN, DOLOMITES, SOUTHERN ALPS, ITALY) Alexander Lukeneder1 & Christian Aspmair2 With 6 figures and 8 plates 1 Natural History Museum, Geological-Palaeontological Department, Burgring 7, A-1010 Wien, Austria, e-mail: [email protected] 2 Prissian 102, I – 39010 Tisens (BZ), Italy Abstract Lower Cretaceous ammonoids (n = 424) were collected at the Puez locality in the Dolomites of Southern Tyrol. The cephalopod fauna from the marly limestones to marls here indicates Late Valanginian to Early Aptian age. The deposition of the marly limestones and marls of this interval occurred during depositional- ly unstable conditions. The underlying Biancone Formation (Maiolica Formation) is of Early Valanginian, whereas the lowermost Rosso Ammonitico is of Jurassic to Berriasian age. The ammonoid fauna consists of 27 different genera, each represented by 1-2 species. The assemblage at the Puez section is dominated by the Phylloceratina (30%) and the Ammonitina (34%). Phyllopachyceras (17%) and Phylloceras (13%) (both Phylloceratina) are the most frequent components, followed by Lytoceras (12%) (Lytoceratina), and Barremites (10%) and Melchiorites (8%) (both Ammonitina). The cephalopod fauna is purely of Mediterranean origin. Zusammenfassung Unterkreide Ammonoideen (424 Exemplare) der Puez Lokalität in den Dolomiten Süd-Tirols wurden unter- sucht. Die Fauna der mergeligen Kalke und Mergel von Puez zeigen ein Alter von Ober-Valanginium bis Unter-Aptium an. Die mergeligen Kalke und Mergel dieses Abschnitts lagerten sich unter instabiler Bedingungen ab. Die unterlagernde Biancone Formation (Maiolica Formation) zeigt Unter-Valanginium an, wogegen die tiefste Formation des Rosso Ammonitico auf Ober-Jura bis Berriasium hindeutet.
    [Show full text]
  • Ammonoidea) Del Aptiense Inferior (Cretácico Inferior) De La Subcuenca De Oliete, Cordillera Ibérica Oriental (Teruel, España)
    DESMOCERÁTIDOS APTIENSES DE LA SUBCUENCA DE OLIETE 7 DESMOCERÁTIDOS (AMMONOIDEA) DEL APTIENSE INFERIOR (CRETÁCICO INFERIOR) DE LA SUBCUENCA DE OLIETE, CORDILLERA IBÉRICA ORIENTAL (TERUEL, ESPAÑA) Antoni GRAUGES1, Josep Anton MORENO- BEDMAR2 y Ricardo MARTÍNEZ1 1 Departament de Geologia (Paleontologia). Universitat Autònoma de Barcelona. Edifici C. 08193-Bellaterra, (Barcelona) Españ[email protected] , [email protected] 2 Departament de Geoquímica, Petrologia i Prospecció Geològica, Universitat de Barcelona. Martí i Franquès s/n, 08028 Barcelona, España. [email protected] Grauges, A., Moreno-Bedmar, J. A. & Martínez, R. 2010. Desmocer���������tidos�������������������������������� (Ammonoidea) del Aptiense �n�e��- rior (Cret�cico �n�erior) de la subcuenca de Oliete, Cordillera �bérica Oriental (Teruel, España). [Lower Aptian (Lower Cretaceous) desmoceratids (Ammonoidea) o� the Oliete sub-basin, �berian Range (Teruel, Spain).] Re- vista Española de Paleontología, 25 (1), 7-18. �SSN 0213-6937. ABSTRACT This study �ocuses on the lower Aptian desmoceratid �auna o� Oliete sub-basin (Teruel province). The systematic revision o� these biostratigraphy well constrained ammonites, allowed us to work on two issues. On the fist place, we improved the systematic and taxonomic knowledge about Pseudosaynella raresulcata (d’Orbigny, 1841), Pseudosaynella bicurvata (Michelin, 1838) and Pseudohaploceras liptoviensis (Zeuschner, 1856) whose definitions, previous to this study, were based on scarce material and �ew studies on their ontoge- netic variation. On a second place, we constrained their stratigraphical ranges, especially �or the Pseudosaynella species, and their correlation with the lower Aptian standard ammonite Mediterranean zonation. Keywords: lower Aptian, ammonoids, systematics, biostratigraphy, Oliete sub-basin, Iberian Chain, Te- ruel, Spain. RESUMEN Este estudio trata de la �auna de desmocer�tidos del Aptiense in�erior de la subcuenca de Oliete (provincia de Teruel).
    [Show full text]
  • Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
    Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U
    [Show full text]
  • The Barremian Heteromorph Ammonite Dissimilites from Northern Italy: Taxonomy and Evolutionary Implications
    The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxonomy and evolutionary implications ALEXANDER LUKENEDER and SUSANNE LUKENEDER Lukeneder, A. and Lukeneder, S. 2014. The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxon- omy and evolutionary implications. Acta Palaeontologica Polonica 59 (3): 663–680. A new acrioceratid ammonite, Dissimilites intermedius sp. nov., from the Barremian (Lower Cretaceous) of the Puez area (Dolomites, northern Italy) is described. Dissimilites intermedius sp. nov. is an intermediate form between D. dissimilis and D. trinodosum. The new species combines the ribbing style of D. dissimilis (bifurcating with intercalating single ribs) with the tuberculation style of D. trinodosum (trituberculation on entire shell). The shallow-helical spire, entirely comprising single ribs intercalated by trituberculated main ribs, is similar to the one of the assumed ancestor Acrioceras, whereas the increasing curvation of the younger forms resembles similar patterns observed in the descendant Toxoc- eratoides. These characters support the hypothesis of a direct evolutionary lineage from Acrioceras via Dissimilites to Toxoceratoides. D. intermedius sp. nov. ranges from the upper Lower Barremian (Moutoniceras moutonianum Zone) to the lower Upper Barremian (Toxancyloceras vandenheckii Zone). The new species allows to better understand the evolu- tion of the genus Dissimilites. The genus appears within the Nicklesia pulchella Zone represented by D. duboise, which most likely evolved into D. dissimilis. In the Kotetishvilia compressissima Zone, two morphological forms developed: smaller forms very similar to Acrioceras and forms with very long shaft and juvenile spire like in D. intermedius sp. nov. The latter most likely gave rise to D. subalternatus and D. trinodosum in the M.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • New Data on the Stratigraphy of the Lower Cretaceous of the Gerecse Mts
    New data on the stratigraphy of the Lower Cretaceous of the Gerecse Mts. (Hungary) and the Lackbach section (Austria) 1 llona Bo0Roc1 , Attila FoGARAs1 2 This paper is dedicated to the memory of C. F. WE101cH (7'" Nov. 1952-10'" Nov. 1992) Bo0Roc1, 1. & foGARASI, A., 2002: New data on the stratigraphy of the Lower Cretaceous of the Gerecse Mts. (Hungary) and the Lackbach section (Austria). - In: WAGREICH, M. (Ed.): Aspects of Cretaceous Stratigraphy and Palaeobiogeography. - Österr. Akad. Wiss„ Schriftenr. Erdwiss. Komm. 15: 295-313, 4 Figs., 3 Pis., Wien. Abstract: Biostratigraphie and lithostratigraphic studies have been made on four boreholes (Ago­ styan Agt-2, Neszmely N-4, Tatabänya Ta-1472, Ta-1486) in the Gerecse Mts. and the Tatabanya basin in Hungary. The Lower Cretaceous succession of this area comprises the Neszmely Sandstone Formation (NSF, Barremian-Aptian), the Tata Limestone Formation(TLF, Aptian) and the Vertes­ som16 Formation (VF, Lower and Middle Albian). In its stratotype, borehole N-4, the NSF was subdivided into four integrated ammonite and planktonic foraminifera zones from top to bottom: The Ticinella bejaouensis ivz - Hedbergella gorbachikae ivz (Late Aptian - ?Early Albian), the G/obigerinelloides algerianus trz (early Late Aptian), the Shackoina cabrii trz - Globigerinelloides blowi ivz (Early and Mid Aptian), and the Hedbergella sigali ivz (Barremian). In the lower and middle part of the Sh. cabrii trz - GI. blowi ivz the ammonites Procheloniceras albrechtiaustriae HoH., Pseudosaynella ex gr. matheronites (o'ORBIGNY), and Barremites difficilis (o'ORBIGNY) indicate the Early Aptian Deshayesites weissi ammonite Zone. In the H. sigali ivz Costidiscus redicostatus (o'ORBIGNY) and Spitidiscus vandeckii (o'ORBIGNY) give evidence for a Barremian age.
    [Show full text]
  • Geological Survey of Austria ©Geol
    ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt, 120 Berichte der Geologischen Bundesanstalt, Benjamin Sames (Ed.) th 10 International Symposium on the Cretaceous: ABSTRACTS Berichte der Geologischen Bundesanstalt, 120 www.geologie.ac.at Geological Survey of Austria ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt (ISSN 1017-8880) Band 120 10th International Symposium on the Cretaceous Vienna, August 21–26, 2017 — ABSTRACTS BENJAMIN SAMES (Ed.) ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at und www.zobodat.at Berichte der Geologischen Bundesanstalt, 120 ISSN 1017-8880 Wien, im Juli 2017 10th International Symposium on the Cretaceous Vienna, August 21–26, 2017 – ABSTRACTS Benjamin Sames, Editor Dr. Benjamin Sames, Universität Wien, Department for Geodynamics and Sedimentology, Center for Earth Sciences, Althanstraße 14, 1090 Vienna, Austria. Recommended citation / Zitiervorschlag Volume / Gesamtwerk Sames, B. (Ed.) (2017): 10th International Symposium on the Cretaceous – Abstracts, 21–26 August 2017, Vienna. – Berichte der Geologischen Bundesanstalt, 120, 351 pp., Vienna. Abstract (example / Beispiel) Granier, B., Gèze, R., Azar, D. & Maksoud, S. (2017): Regional stages: What is the use of them – A case study in Lebanon. – In: Sames, B. (Ed.): 10th International Symposium on the Cretaceous – Abstracts, 21–26 August 2017, Vienna. – Berichte der Geologischen Bundesanstalt, 120, 102, Vienna. Cover design: Monika Brüggemann-Ledolter (Geologische Bundesanstalt). Cover picture: Postalm section, upper Campanian red pelagic limestone-marl cycles (CORBs) of the Nierental Formation, Gosau Group, Northern Calcareous Alps (Photograph: M. Wagreich). 10th ISC Logo: Benjamin Sames The 10th ISC Logo is composed of selected elements of the Viennese skyline with, from left to right, the Stephansdom (St.
    [Show full text]
  • Neoselachii; Early Cretaceous, Antarctica
    Antarctic Science 21(5), 501–504 (2009) & Antarctic Science Ltd 2009 doi:10.1017/S0954102009990228 The oldest hexanchiform shark from the Southern Hemisphere (Neoselachii; Early Cretaceous, Antarctica) ALBERTO LUIS CIONE1* and FRANCISCO MEDINA2 1Divisio´n Paleontologı´a de Vertebrados, Museo de La Plata, 1900 La Plata, Argentina 2Departamento de Ciencias Geolo´gicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina *[email protected] Abstract: The oldest record of the hexanchiform sharks from the Southern Hemisphere and the second chondrichthyan report known from Carboniferous to Early Cretaceous beds in Antarctica is given. The material was collected in late Aptian rocks of the Kotick Point Formation outcropping in the western part of James Ross Island, near Antarctic Peninsula. It consists of an isolated tooth assignable to a hexanchiform different from the other described genera. The tooth shows putative plesiomorphic cusp (few cusps, no serrations) and apomorphic root characters (relatively deep, quadrangular). It could be related to a species close to the origin of Hexanchus (unknown in beds older than Cenomanian). Received 6 December 2008, accepted 23 March 2009 Key words: Aptian, Hexanchiformes, James Ross Island, Neoselachii Introduction volcanic arc was located in the Antarctic Peninsula, while a back-arc basin (the James Ross Island or Larsen basin) The chondrichthyan fossil record from Antarctica is scant developed to the east. Cretaceous strata on James Ross and patchy. It is restricted to some Devonian primitive Island comprise a thick succession divided into two major sharks (Young 1982), a palaeospinacid tooth from Early lithostratigraphic units: the Gustav Group (Ineson et al.
    [Show full text]
  • Origin of the Tethyan Hemihoplitidae Tested with Cladistics (Ancyloceratina, Ammonoidea, Early Cretaceous): an Immigration Event? Didier Bert, Stéphane Bersac
    Origin of the Tethyan Hemihoplitidae tested with cladistics (Ancyloceratina, Ammonoidea, Early Cretaceous): an immigration event? Didier Bert, Stéphane Bersac To cite this version: Didier Bert, Stéphane Bersac. Origin of the Tethyan Hemihoplitidae tested with cladistics (Ancylo- ceratina, Ammonoidea, Early Cretaceous): an immigration event?. Carnets de Geologie, Carnets de Geologie, 2014, 14 (13), pp.255-272. insu-01071656 HAL Id: insu-01071656 https://hal-insu.archives-ouvertes.fr/insu-01071656 Submitted on 17 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Carnets de Géologie [Notebooks on Geology] - vol. 14, n° 13 Origin of the Tethyan Hemihoplitidae tested with cladistics (Ancyloceratina, Ammonoidea, Early Cretaceous): an immigration event? Didier BERT 1, 2 Stéphane BERSAC 2 Abstract: The Late Barremian Hemihoplitidae (Ancyloceratina, Ammonoidea) are widely known in the northern Tethyan Margin and the Essaouira-Agadir Basin (Morocco). Their rapid evolution and diversifi- cation make them one of the key groups for that period, but their origin remains poorly known and several competing hypotheses have been published. These hypotheses are tested here with cladistic analysis in order to reject those receiving the least support and discuss those well supported.
    [Show full text]
  • Paleontological Contributions
    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations.
    [Show full text]
  • Geologica Hungarica Series Palaeontologica Fasciculus 57
    FASCICULI INSTITUTI GEOLOGICI HUNGARIAE AD ILLUSTRANDAM NOTIONEM GEOLOGICAM ET PALAEONTOLOGICAM GEOLOGICA HUNGARICA SERIES PALAEONTOLOGICA FASCICULUS 57 Aptian–Campanian ammonites of Hungary Editor: OTTILIA SZIVES Written by OTTILIA SZIVES, LÁSZLÓ CSONTOS, LÁSZLÓ BUJTOR, ISTVÁN FÕZY BUDAPEST, 2007 © Copyright Geological Institute of Hungary (Magyar Állami Földtani Intézet), 2007 All rights reserved! Minden jog fenntartva! Serial editor: LÁSZLÓ KORDOS Reviewer: ATTILA VÖRÖS Technical editor: DEZSŐ SIMONYI OLGA PIROS DTP: OLGA PIROS DEZSŐ SIMONYI Cover design: DEZSŐ SIMONYI Published by the Geological Institute of Hungary — Kiadja a Magyar Állami Földtani Intézet Responsible editor: LÁSZLÓ KORDOS Director This book has been subsidized by The comittee on Publishing Scientific Books and Periodicals of Hungarian Academy of Sciences HU ISSN 0374–1893 ISBN 978-963-671-261-7 Geologica Hungarica series Palaeontologica, Fasciculus 57 3 Contents Preface......................................................................................................................................................................... 7 Acknowledgments ................................................................................................................................................. 7 Introduction (OTTILIA SZIVES)...................................................................................................................................... 9 Source of the material ............................................................................................................................................
    [Show full text]