Classification of Visual Field Abnormalities in the Ocular Hypertension Treatment Study

Total Page:16

File Type:pdf, Size:1020Kb

Classification of Visual Field Abnormalities in the Ocular Hypertension Treatment Study CLINICAL SCIENCES Classification of Visual Field Abnormalities in the Ocular Hypertension Treatment Study John L. Keltner, MD; Chris A. Johnson, PhD; Kimberly E. Cello, BSc; Mary A. Edwards, BSc; Shannan E. Bandermann, MA; Michael A. Kass, MD; Mae O. Gordon, PhD; for the Ocular Hypertension Treatment Study Group Objectives: (1) To develop a classification system for Main Outcome Measures: A 97% interreader hemi- visual field (VF) abnormalities, (2) to determine inter- field agreement. reader and test-retest agreement, and (3) to determine the frequency of various VF defects in the Ocular Hy- Results: The average hemifield classification agree- pertension Treatment Study. ment (between any 2 of 3 readers) for 5018 hemifields was 97% and 88% for the 1266 abnormal VFs that were Methods: Follow-up VFs are performed every 6 months reread (agreement between the first and second and are monitored for abnormality, indicated by a glau- classifications). Glaucomatous patterns of loss (partial coma hemifield test result or a corrected pattern SD arcuate, paracentral, and nasal step defects) composed outside the normal limits. As of January 1, 2002, 1636 the majority of VF defects. patients had 2509 abnormal VFs. Three readers inde- pendently classified each hemifield using a classifica- Conclusion: The Ocular Hypertension Treatment tion system developed at the VF reading center. A Study classification system has high reproducibility and subset (50%) of the abnormal VFs was reread to evalu- provides a possible nomenclature for characterizing VF ate test-retest reader agreement. A mean deviation was defects. calculated separately for the hemifields as an index to the severity of VF loss. Arch Ophthalmol. 2003;121:643-650 HE OCULAR Hypertension confirmed on the next retest.7 Originally, Treatment Study (OHTS) is the OHTS criterion for reproducibility of a randomized clinical trial a visual field abnormality was 2 consecu- to evaluate the safety and tive abnormal visual fields with the ab- efficacy of topical hypoten- normality in the same location and on the Tsive medication in delaying or prevent- same index. However, in June 1997, the ing the onset of primary open-angle glau- abnormality criterion was changed to 3 coma (POAG) in participants with ocular consecutive abnormal fields with the ab- hypertension. The onset of POAG is de- normality in the same location and on the fined as either the development of repro- same index. In this article, we describe a ducible visual field loss (as determined by novel system for classifying the types of From the Visual Field Reading the visual field reading center) and/or re- visual field defects (glaucomatous and non- Center, Department of producible optic nerve damage (as deter- glaucomatous; reproducible and not re- Ophthalmology, University of California–Davis (Dr Keltner mined by the optic disc reading center) at- producible) and report the frequency of and Mss Cello, Edwards, and tributed to POAG. The OHTS Endpoint these defects during follow-up in the OHTS Bandermann); Discoveries in Committee determines POAG and is by their classification. Sight, Devers Eye Institute, masked to the participant’s randomiza- A number of investigators have devel- Portland, Ore (Dr Johnson); tion assignment. A detailed description of oped systems for classifying the severity and and the Department of the OHTS protocol and manual of proce- pattern of glaucomatous visual field loss.8-22 Ophthalmology and Visual dures1-3 as well as the baseline visual field Although these classification systems are Science, Washington University characteristics for the OHTS4 partici- typically based on cross-sectional data, they School of Medicine, St Louis, pants have been previously published. Re- contain the implicit assumption that glau- Mo (Drs Kass and Gordon). cent articles by Kass et al5 and Gordon et comatous visual field loss progresses from For a complete list of authors, 6 refer to the Ocular al have been published regarding the out- small, shallow deficits to large, deep de- Hypertension Treatment come of the OHTS. In addition, we have fects according to a particular sequential Study Web site: http://www reported that 86% of first-occurring ab- pattern. Some of these classification sys- .vrcc.wustl.edu. normal visual fields in the OHTS were not tems have been developed to characterize (REPRINTED) ARCH OPHTHALMOL / VOL 121, MAY 2003 WWW.ARCHOPHTHALMOL.COM 643 Downloaded from www.archophthalmol.com at Washington University - St Louis, on March 26, 2009 ©2003 American Medical Association. All rights reserved. the frequency, location, and shape of initial glaucoma- deviation plots; (2) 3 adjacent points (cluster) beyond normal lim- tous visual field deficits.10-12,14 By using inclusion/ its (PϽ.05) and at least 1 point worse than the .01 probability exclusion criteria that restrict the study sample to indi- level on the total and/or pattern deviation plots (a cluster is de- fined as Ն2 horizontally or vertically contiguous abnormal points viduals with small, shallow visual field deficits, some Ͻ investigations have assumed that these visual field de- with P .05); and (3) 3 or more clustered points worse than the .05 probability level on the total and/or pattern deviation plot. fects represent early glaucomatous visual field loss. For all 3 classification evaluations, the pattern of loss has to be Unlike other studies, the OHTS provides a unique consistent with ocular visual field abnormalities. Thus, for a hemi- opportunity to examine the characteristics of initial glau- field to be classified as normal, it must not meet any of the afore- comatous visual field loss in a longitudinal study. There mentioned criteria for hemifield abnormality. are many reports that use quantitative methods for de- The procedures for hemifield classification are as fol- scribing progressive visual field loss. However, quanti- lows: (1) The superior and inferior hemifields of visual fields tative methods may not capture information on the pat- that meet the OHTS abnormality criteria are evaluated sepa- tern and location of visual field loss that may be more rately, with the superior hemifield being classified first. Hemi- helpful in tracking the progression of glaucoma. field classifications are separated by a slash. If a defect straddles To be eligible for the OHTS, each eye was required the horizontal midline, only a single designation is given and to have 2 sets of normal and reliable visual fields at en- no slash is presented. (2) In general, the pattern on the devia- try in addition to other eye-specific and patient-specific tion plot (“total” or “pattern”) showing the greater number of abnormal points is used to determine the appropriate classifi- eligibility criteria. Follow-up visual fields were then ob- cation for a hemifield abnormality. However, the other devia- tained at 6-month intervals. The purpose of this report tion plot as well as the gray scale are evaluated to confirm the was to characterize visual field defects in OHTS partici- appropriateness of the classification. Abnormal points that are pants observed during follow-up. To accomplish this, it extraneous to the salient pattern are considered less impor- was necessary to develop a classification system and to tant for the determination of the hemifield classification. Thus, use trained readers to perform these classifications with the most predominant pattern is classified. high interreader agreement (agreement between read- Between February 28, 1994, and January 1, 2002, 38328 ers for a given reading) and high test-retest reader follow-up visual fields were evaluated in this report, which in- agreement (agreement between the first and second cluded 2509 that met the OHTS criteria for abnormality (glau- reading). comatous and nonglaucomatous; reproducible and not reproducible). Hemifields were not evaluated for the second- ary definition of abnormality unless the visual field first met METHODS the OHTS criteria for abnormality. Approximately 94% (2345/ 2509) of the abnormal visual fields classified in this report were The procedures employed by the OHTS and the baseline char- reliable, and only 6% (164/2509) were unreliable. acteristics of OHTS participants have been previously de- In 1990, 2 of us (J.L.K. and C.A.J.) began characterizing scribed.2 Briefly, 1636 participants were randomized in the OHTS the types and severity of visual field defects in the Optic Neu- at 22 participating clinical centers. To be eligible for the OHTS, ritits Treatment Trial (ONTT).23,24 As with ONTT, the authors participants were required to have an intraocular pressure be- developed a classification system for the OHTS in 1997 to iden- tween 24 and 32 mm Hg in one eye and between 21 and 32 tify glaucomatous visual field abnormalities in patients with ocu- mm Hg in the fellow eye. Visual fields were performed using lar hypertension. The categories included patterns of visual field Humphrey (Carl Zeiss Meditech, Dublin, Calif) 30-2 full- loss that were characteristic of glaucoma, patterns that were threshold, white-on-white, static perimetry. To meet visual field characteristic of other ocular and neurologic diseases, and pat- eligibility criteria, individuals completed a minimum of 2 and terns that were associated with testing artifacts. In the devel- a maximum of 3 visual field tests. Two of the 3 tests had to meet opmental stages of the classification system, each of the read- reliability criteria of less than 33% false positives, less than 33% ers evaluated a subset of 129 abnormal visual fields. These fields false negatives, and less than 33% fixation losses. Two of the 3 were subsequently included in the final set of the 2509 abnor- visual fields had to be judged normal by the visual field read- mal fields. Each reader’s classification from this training set was ing center, requiring a STATPAC II (Carl Zeiss Meditech) global compared and discussed to refine and standardize the criteria indices for corrected pattern SD (CPSD) within the 95% age- for developing the 17 mutually exclusive categories presented specific population norm, and a glaucoma hemifield test re- in Table 1.
Recommended publications
  • GUIDE for the Evaluation of VISUAL Impairment
    International Society for Low vision Research and Rehabilitation GUIDE for the Evaluation of VISUAL Impairment Published through the Pacific Vision Foundation, San Francisco for presentation at the International Low Vision Conference VISION-99. TABLE of CONTENTS INTRODUCTION 1 PART 1 – OVERVIEW 3 Aspects of Vision Loss 3 Visual Functions 4 Functional Vision 4 Use of Scales 5 Ability Profiles 5 PART 2 – ASSESSMENT OF VISUAL FUNCTIONS 6 Visual Acuity Assessment 6 In the Normal and Near-normal range 6 In the Low Vision range 8 Reading Acuity vs. Letter Chart Acuity 10 Visual Field Assessment 11 Monocular vs. Binocular Fields 12 PART 3 – ESTIMATING FUNCTIONAL VISION 13 A General Ability Scale 13 Visual Acuity Scores, Visual Field Scores 15 Calculation Rules 18 Functional Vision Score, Adjustments 20 Examples 22 PART 4 – DIRECT ASSESSMENT OF FUNCTIONAL VISION 24 Vision-related Activities 24 Creating an Activity Profile 25 Participation 27 PART 5 – DISCUSSION AND BACKGROUND 28 Comparison to AMA scales 28 Statistical Use of the Visual Acuity Score 30 Comparison to ICIDH-2 31 Bibliography 31 © Copyright 1999 by August Colenbrander, M.D. All rights reserved. GUIDE for the Evaluation of VISUAL Impairment Summer 1999 INTRODUCTION OBJECTIVE Measurement Guidelines for Collaborative Studies of the National Eye Institute (NEI), This GUIDE presents a coordinated system for the Bethesda, MD evaluation of the functional aspects of vision. It has been prepared on behalf of the International WORK GROUP Society for Low Vision Research and Rehabilitation (ISLRR) for presentation at The GUIDE was approved by a Work Group VISION-99, the fifth International Low Vision including the following members: conference.
    [Show full text]
  • Vision Rehabi I Itation for Patients with Age Related Macular Degeneration
    Vision rehabi I itation for GARY S. RUBIN patients with age­ related macular degeneration Epidemiology of low vision The over-representation of macular degeneration patients in the low-vision clinic is The epidemiology of vision impairment is dealt reflected in the chief complaints of those with in detail elsewhere.1 However, there is one referred for rehabilitation. A study of 1000 particularly salient factor that bears emphasis. consecutive patients seen at the Wilmer Low The prevalence of vision impairment increases Vision clinic indicated that 64% listed 'reading' dramatically with advancing age. Statistics as their chief complaint, while other activities compiled in the UK by the Royal National were identified by fewer than 8% of patients. Institute for the Blind2 indicate that there were Undoubtedly the bias towards reading approximately 1.1 million blind or partially problems results partly from the nature of the sighted persons in 1996, of whom 82% were 65 low-vision services offered. Those served by a years of age or older. Thus it is not surprising to community-based programme that includes learn that the major causes of vision impairment home visits might be more likely to report are age-related eye diseases. Fig. 1 illustrates the problems with activities of daily living, while a distribution of causes of vision impairment blind rehabilitation centre would be more likely 5 from three recent studies?- Approximately to address mobility issues. Nevertheless, most equal percentages are attributed to macular macular degeneration patients are referred to degeneration and cataract, with smaller hospital or optometry clinic services, and as percentages for glaucoma, diabetic retinopathy their overwhelming concern is with reading, and optic neuropathies.
    [Show full text]
  • 425-428 YOSHI:Shoja
    European Journal of Ophthalmology / Vol. 19 no. 3, 2009 / pp. 425-428 Effects of astigmatism on the Humphrey Matrix perimeter TOSHIAKI YOSHII, TOYOAKI MATSUURA, EIICHI YUKAWA, YOSHIAKI HARA Department of Ophthalmology, Nara Medical University, Nara - Japan PURPOSE. To evaluate the influence of astigmatism in terms of its amount and direction on the results of Humphrey Matrix perimetry. METHODS. A total of 31 healthy volunteers from hospital staff were consecutively recruited to undergo repeat testing with Humphrey Matrix 24-2 full threshold program with various induced simple myopic astigmatism. All subjects had previous experience (at least twice) with Matrix testing. To produce simple myopic astigmatism, a 0 diopter (D), +1 D, or +2 D cylindrical lens was added and inserted in the 180° direction and in the 90° direction after complete correction of distance vision. The influences of astigmatism were evaluated in terms of the mean deviation (MD), pattern standard deviation (PSD), and test duration (TD). RESULTS. A significant difference was observed only in the MD from five sessions. The MD in cases of 2 D inverse astigmatism was significantly lower than that in the absence of astig- matism. CONCLUSIONS. In patients with inverse myopic astigmatism of ≥ 2 D, the influences of astig- matism on the visual field should be taken into consideration when the results of Humphrey Matrix perimetry are evaluated. (Eur J Ophthalmol 2009; 19: 425-8) KEY WORDS. Astigmatism, Frequency doubling technology, FDT Matrix, Perimetry Accepted: October 10, 2008 INTRODUCTION as an FDT perimeter and became commercially available. In this perimeter, the examination time was shortened due Refractive error is one of the factors affecting the results to changes in the algorithm, the target size was made of perimetry.
    [Show full text]
  • IMI Pathologic Myopia
    Special Issue IMI Pathologic Myopia Kyoko Ohno-Matsui,1 Pei-Chang Wu,2 Kenji Yamashiro,3,4 Kritchai Vutipongsatorn,5 Yuxin Fang,1 Chui Ming Gemmy Cheung,6 Timothy Y. Y. Lai,7 Yasushi Ikuno,8–10 Salomon Yves Cohen,11,12 Alain Gaudric,11,13 and Jost B. Jonas14 1Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan 2Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan 3Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan 4Department of Ophthalmology, Otsu Red-Cross Hospital, Otsu, Japan 5School of Medicine, Imperial College London, London, United Kingdom 6Singapore Eye Research Institute, Singapore National Eye Center, Singapore 7Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Hong Kong 8Ikuno Eye Center, 2-9-10-3F Juso-Higashi, Yodogawa-Ku, Osaka 532-0023, Japan 9Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan 10Department of Ophthalmology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan 11Centre Ophtalmologique d’Imagerie et de Laser, Paris, France 12Department of Ophthalmology and University Paris Est, Creteil, France 13Department of Ophthalmology, APHP, Hôpital Lariboisière and Université de Paris, Paris, France 14Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany Correspondence: Kyoko Pathologic myopia is a major cause of visual impairment worldwide. Pathologic myopia is Ohno-Matsui, Department of distinctly different from high myopia. High myopia is a high degree of myopic refractive Ophthalmology and Visual Science, error, whereas pathologic myopia is defined by a presence of typical complications in Tokyo Medical and Dental the fundus (posterior staphyloma or myopic maculopathy equal to or more serious than University, Tokyo, Japan; diffuse choroidal atrophy).
    [Show full text]
  • Bass – Glaucomatous-Type Field Loss Not Due to Glaucoma
    Glaucoma on the Brain! Glaucomatous-Type Yes, we see lots of glaucoma Field Loss Not Due to Not every field that looks like glaucoma is due to glaucoma! Glaucoma If you misdiagnose glaucoma, you could miss other sight-threatening and life-threatening Sherry J. Bass, OD, FAAO disorders SUNY College of Optometry New York, NY Types of Glaucomatous Visual Field Defects Paracentral Defects Nasal Step Defects Arcuate and Bjerrum Defects Altitudinal Defects Peripheral Field Constriction to Tunnel Fields 1 Visual Field Defects in Very Early Glaucoma Paracentral loss Early superior/inferior temporal RNFL and rim loss: short axons Arcuate defects above or below the papillomacular bundle Arcuate field loss in the nasal field close to fixation Superotemporal notch Visual Field Defects in Early Glaucoma Nasal step More widespread RNFL loss and rim loss in the inferior or superior temporal rim tissue : longer axons Loss stops abruptly at the horizontal raphae “Step” pattern 2 Visual Field Defects in Moderate Glaucoma Arcuate scotoma- Bjerrum scotoma Focal notches in the inferior and/or superior rim tissue that reach the edge of the disc Denser field defects Follow an arcuate pattern connected to the blind spot 3 Visual Field Defects in Advanced Glaucoma End-Stage Glaucoma Dense Altitudinal Loss Progressive loss of superior or inferior rim tissue Non-Glaucomatous Etiology of End-Stage Glaucoma Paracentral Field Loss Peripheral constriction Hereditary macular Loss of temporal rim tissue diseases Temporal “islands” Stargardt’s macular due
    [Show full text]
  • Visual Pathways
    Visual Pathways Michael Davidson Professor, Ophthalmology Diplomate, American College of Veterinary Ophthalmologists Department of Clinical Sciences College of Veterinary Medicine North Carolina State University Raleigh, North Carolina, USA <[email protected]> Vision in Animals Miller PE, Murphy CJ. Vision in Dogs. JAVMA. 1995; 207: 1623. Miller PE, Murphy CJ. Equine Vision. In Equine Ophthalmology ed. Gilger BC. 2nd ed. 2011: pp 398- 433. Ofri R. Optics and Physiology of Vision. In Veterinary Ophthalmology. ed. Gelatt KN 5th ed. 2013: 208-270, Visual Pathways, Responses and Reflexes: Relevant Structures Optic n (CN II) – somatic afferent Oculomotor n (CN III), Trochlear n (CN IV), Abducens n (CN VI) – somatic efferent to extraocular muscles Facial n (CN VII)– visceral efferent to eyelids Rostral colliculi – brainstem center that mediates somatic reflexes in response to visual stimuli Cerebellum Cerebro-cortex esp. occipital lobe www.studyblue.com Visual Pathway Visual Cortex Optic Radiation Lateral Geniculate Body www.studyblue.com Visual Field each cerebral hemisphere receives information from contralateral visual field (“the area that can be seen when the eye is directed forward”) visual field Visual Fiber (Retinotopic) Segregation nasal retinal fibers decussate at chiasm, temporal retinal fibers remain ipsilateral Nasal Temporal Retina Retina Fibers Fibers Decussate Remain Ipsilateral OD Visual Field OS Total visual field OD temporal nasal hemifield hemifield temporal nasal fibers fibers Nasal Temporal Retina = Retina = Temporal
    [Show full text]
  • Central Serous Choroidopathy
    Br J Ophthalmol: first published as 10.1136/bjo.66.4.240 on 1 April 1982. Downloaded from British Journal ofOphthalmology, 1982, 66, 240-241 Visual disturbances during pregnancy caused by central serous choroidopathy J. R. M. CRUYSBERG AND A. F. DEUTMAN From the Institute of Ophthalmology, University of Nijmegen, Nijmegen, The Netherlands SUMMARY Three patients had during pregnancy visual disturbances caused by central serous choroidopathy. One of them had a central scotoma in her first and second pregnancy. The 2 other patients had a central scotoma in their first pregnancy. Symptoms disappeared spontaneously after delivery. Except for the ocular abnormalities the pregnancies were without complications. The complaints can be misinterpreted as pregnancy-related optic neuritis or compressive optic neuropathy, but careful biomicroscopy of the ocular fundus should avoid superfluous diagnostic and therapeutic measures. Central serous choroidopathy (previously called lamp biomicroscopy of the fundus with a Goldmann central serous retinopathy) is a spontaneous serous contact lens showed a serous detachment of the detachment of the sensory retina due to focal leakage neurosensory retina in the macular region of the from the choriocapillaris, causing serous fluid affected left eye. Fluorescein angiography was not accumulation between the retina and pigment performed because of pregnancy. In her first epithelium. This benign disorder occurs in healthy pregnancy the patient had consulted an ophthal- adults between 20 and 45 years of age, who present mologist on 13 June 1977 for exactly the same with symptoms of diminished visual acuity, relative symptoms, which had disappeared spontaneously http://bjo.bmj.com/ central scotoma, metamorphopsia, and micropsia. after delivery.
    [Show full text]
  • Visual Field Defects Essentials for Neurologists
    J Neurol (2003) 250:407–411 DOI 10.1007/s00415-003-1069-1 REVIEW Ulrich Schiefer Visual field defects Essentials for neurologists Introduction I The visual pathway – a highly sensitive “functional trip-wire” The visual pathway achieves neuronal signal transduc- tion between retinal photoreceptors, visual cortex and higher order visual areas. Lesions affecting this “trip- wire” will result in visual impairment which should in- duce the affected person to contact a physician. Correct interpretation of such symptoms and choice of appro- priate psychophysical examination methods will usually provide the examiner with specific information on topography and eventual progression, if baseline results are available [3,6].These data are essential prerequisites for effective neuroimaging, as well as for an adequate follow-up. Fig. 1 Functional anatomy of the human visual pathways Functional anatomy of the human visual pathways About 7 million cones and approximately 120 million The different sections of the visual pathways differ rods are distributed on the human retinal surface (area markedly with respect to the number,density and extent ~ 12 cm2). Each retinal element is directly linked to a of “intermixture” of neuronal elements, which will specific location within the visual field. More than strongly influence local resolution power and diagnos- 10 million bipolar cells forward the visual information tic relevance (Fig. 1). onto only 1.2 million ganglion cells.These cells are wide- spread on the retinal surface, and converge to 300–500 fibre-bundles with a total surface area of less than Received: 18 January 2003 0.2 cm2. There is a maximum neuronal density in the re- Accepted: 30 January 2003 gion of the optic chiasm: the entire visual information is “packed” into this “visual bottleneck” of about 1 cm3! In Prof.
    [Show full text]
  • Diagnosis and Treatment of Neurotrophic Keratopathy
    An Evidence-based Approach to the Diagnosis and Treatment of Neurotrophic Keratopathy ACTIVITY DIRECTOR A CME MONOGRAPH Esen K. Akpek, MD This monograph was published by Johns Hopkins School of Medicine in partnership Wilmer Eye Institute with Catalyst Medical Education, LLC. It is Johns Hopkins School of Medicine not affiliated with JAMA medical research Baltimore, Maryland publishing. Visit catalystmeded.com/NK for online testing to earn your CME credit. FACULTY Natalie Afshari, MD Mina Massaro-Giordano, MD Shiley Eye Institute University of Pennsylvania School of Medicine University of California, San Diego Philadelphia, Pennsylvania La Jolla, California Nakul Shekhawat, MD, MPH Sumayya Ahmad, MD Wilmer Eye Institute Mount Sinai School of Medicine Johns Hopkins School of Medicine New York, New York Baltimore, Maryland Pedram Hamrah, MD, FRCS, FARVO Christopher E. Starr, MD Tufts University School of Medicine Weill Cornell Medical College Boston, Massachusetts New York, New York ACTIVITY DIRECTOR FACULTY Esen K. Akpek, MD Natalie Afshari, MD Mina Massaro-Giordano, MD Professor of Ophthalmology Professor of Ophthalmology Professor of Clinical Ophthalmology Director, Ocular Surface Diseases Chief of Cornea and Refractive Surgery University of Pennsylvania School and Dry Eye Clinic Vice Chair of Education of Medicine Wilmer Eye Institute Fellowship Program Director of Cornea Philadelphia, Pennsylvania Johns Hopkins School of Medicine and Refractive Surgery Baltimore, Maryland Shiley Eye Institute Nakul Shekhawat, MD, MPH University of California,
    [Show full text]
  • Dominant Optic Atrophy
    Lenaers et al. Orphanet Journal of Rare Diseases 2012, 7:46 http://www.ojrd.com/content/7/1/46 REVIEW Open Access Dominant optic atrophy Guy Lenaers1*, Christian Hamel1,2, Cécile Delettre1, Patrizia Amati-Bonneau3,4,5, Vincent Procaccio3,4,5, Dominique Bonneau3,4,5, Pascal Reynier3,4,5 and Dan Milea3,4,5,6 Abstract Definition of the disease: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology: The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description: DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology: Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy.
    [Show full text]
  • Endoscopic Vitreoretinal Surgery: Principles, Applications and New Directions Radwan S
    Ajlan et al. Int J Retin Vitr (2019) 5:15 International Journal https://doi.org/10.1186/s40942-019-0165-z of Retina and Vitreous REVIEW Open Access Endoscopic vitreoretinal surgery: principles, applications and new directions Radwan S. Ajlan1*, Aarsh A. Desai2 and Martin A. Mainster1 Abstract Purpose: To analyze endoscopic vitreoretinal surgery principles, applications, challenges and potential technological advances. Background: Microendoscopic imaging permits vitreoretinal surgery for tissues that are not visible using operat- ing microscopy ophthalmoscopy. Evolving instrumentation may overcome some limitations of current endoscopic technology. Analysis: Transfer of the fine detail in endoscopic vitreoretinal images to extraocular video cameras is constrained currently by the caliber limitations of intraocular probes in ophthalmic surgery. Gradient index and Hopkins rod lenses provide high resolution ophthalmoscopy but restrict surgical manipulation. Fiberoptic coherent image guides offer surgical maneuverability but reduce imaging resolution. Coaxial endoscopic illumination can highlight delicate vitreo- retinal structures difficult to image in chandelier or endoilluminator diffuse, side-scattered lighting. Microendoscopy’s ultra-high magnification video monitor images can reveal microscopic tissue details blurred partly by ocular media aberrations in contemporary surgical microscope ophthalmoscopy, thereby providing a lower resolution, invasive alternative to confocal fundus imaging. Endoscopic surgery is particularly useful when ocular
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]