Wood Boring Insect Infestations in Relation to Mesquite Control Practices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Prescribed Fire and Fire Surrogates on Pollinators and Saproxylic Beetles in North Carolina and Alabama
EFFECTS OF PRESCRIBED FIRE AND FIRE SURROGATES ON POLLINATORS AND SAPROXYLIC BEETLES IN NORTH CAROLINA AND ALABAMA by JOSHUA W. CAMPBELL (Under the Direction of James L. Hanula) ABSTRACT Pollinating and saproxylic insects are two groups of forest insects that are considered to be extremely vital for forest health. These insects maintain and enhance plant diversity, but also help recycle nutrients back into the soil. Forest management practices (prescribed burns, thinnings, herbicide use) are commonly used methods to limit fuel build up within forests. However, their effects on pollinating and saproxylic insects are poorly understood. We collected pollinating and saproxylic insect from North Carolina and Alabama from 2002-2004 among different treatment plots. In North Carolina, we captured 7921 floral visitors from four orders and 21 families. Hymenoptera was the most abundant and diverse order, with Halictidae being the most abundant family. The majority of floral visitors were captured in the mechanical plus burn treatments, while lower numbers were caught on the mechanical only treatments, burn only treatments and control treatments. Overall species richness was also higher on mechanical plus burn treatments compared to other treatments. Total pollinator abundance was correlated with decreased tree basal area (r2=0.58) and increased percent herbaceous plant cover (r2=0.71). We captured 37,191 saproxylic Coleoptera in North Carolina, comprising 20 families and 122 species. Overall, species richness and total abundance of Coleoptera were not significantly different among treatments. However, total numbers of many key families, such as Scolytidae, Curculionidae, Cerambycidae, and Buprestidae, have higher total numbers in treated plots compared to untreated controls and several families (Elateridae, Cleridae, Trogositidae, Scolytidae) showed significant differences (p≤0.05) in abundance. -
Effects Of. Prescribed Fire and Fire Surrogates on Saproxylic Coleoptera in the Southern Appalachians of North Carolina 1
Effects of. Prescribed Fire and Fire Surrogates on Saproxylic Coleoptera in the Southern Appalachians of North Carolina 1 2 Joshua W. Campbell , James L. Hanula and Thomas A. Waldrop 3 USDA Forest Service, Southern Research Station, 320 Green St., Athens, Georgia 30602-2044 USA J. Entomol. Sci. 43(1): 57-75 (January 2008) Abstract We examined the effects of forest management practices (prescribed burning, me chanical, and prescribed burn plus mechanical) on saproxylic forest Coleoptera in the southern Appalachian Mountains of North Carolina. During the 2-yr study, we captured 37,191 Coleoptera with baited multiple-funnel traps and pipe traps, comprising 20 families and 122 species that were used for our analysis. Saproxylic beetle numbers increased greatly from the first year to the second year on all treatments. Species richness and total abundance of Coleoptera were not significantly affected by the treatments, but several families (e.g., Elateridae, Cleridae, Trogositi dae, Scolytidae) were significantly more abundant on treated plots. Abundances of many spe cies, including various species of Scolytidae were significantly affected by the treatments. How ever, these scolytids (Hylastes salebrosus Eichoff, Ips grandicollis Eichoff, Xyloborinus saxeseni Ratzburg, Xyleborus sp., Xyleborus atratus Eichoff) did not respond in the same way to the treatments. Likewise, other Coleoptera such as Pityophagus sp. (Nitidulidae), Hylobius pales Herbst (Curculionidae), and Xylotrechus sagittatus Germar (Cerambycidae) also varied in their responses to the treatments. Species richness was not significantly different for the spring 2003 trapping seasons, but the fall 2003 sample had a higher number of species on mechanical shrub removal only and mechanical shrub removal plus prescribed burning plots compared with con trols. -
And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-CCo-Chairvhiadi rA. -
Bibliographical Record
September--October ISSS.] tS UCtIE. [4564-4577 11 BIBLIOGRAPHICAL RECORD. Authors and societies are requested to .forward tkeir works to t]e editors as soon as #ublisked. Tke date of ublicaNon, g'iven in 3racke/s [], mars te time at wkica tae work was received, unless an earlier date of ublicalion is known to recorder or editor. nless otaerwise slated eac& record is made directly from lae work tat is noticed. A colon after [nildal designates tae most common ffiven name, as: A: Augustus: B: Ben- [ami,t; C: Carles; D: David; E: Edward; F: Wrederic; G: George; H: Henry; I: Isaac; : on; Karl; L: Louis; M: Mark; : Wicaolas; 0: Otto; P: Peter; R: gicaard; S: Namuel; T: Taomas; W: William. Tae initials at te end of eaca record, or note, are taose of lae recorder. Correclzbns of errors and notices of omissions are soliciled. Anderson, Joseph jr. Entom61ogical col- Chapin, S. F. Scale insects. (Ist rept. lections. (Entomologist, Dec. 1887, v. 20, Board state hortic, comm. Cal., 1882, p. p. 329-33o.) 65-88, i.) Discusses value of entomological collections, and Account of habits of several species of coccidae: especially the of setting specitnens. G: yD. (4564) consideration of various remedies used for scale-in. I3ayford, E.G. The hessian fly previously sects. G: Z). (457o) in Great Britain. (Entomologist, Dec. Cockerell, T. D.A. A code of varietal no- 188 7, v. 20, p. 327 .) menclature. (Entomologist, June 1887, v. Ootes notice of the hessian fly (cecidomyia 20, p. 15o-52.) destructor) by E Newman, dated Feb. 1876. -
Karyotype Analysis of Four Jewel-Beetle Species (Coleoptera, Buprestidae) Detected by Standard Staining, C-Banding, Agnor-Banding and CMA3/DAPI Staining
COMPARATIVE A peer-reviewed open-access journal CompCytogen 6(2):Karyotype 183–197 (2012) analysis of four jewel-beetle species (Coleoptera, Buprestidae) .... 183 doi: 10.3897/CompCytogen.v6i2.2950 RESEARCH ARTICLE Cytogenetics www.pensoft.net/journals/compcytogen International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining Gayane Karagyan1, Dorota Lachowska2, Mark Kalashian1 1 Institute of Zoology of Scientific Center of Zoology and Hydroecology, National Academy of Sciences of Armenia, P. Sevak 7, Yerevan 0014, Armenia 2 Department of Entomology, Institute of Zoology Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland Corresponding author: Gayane Karagyan ([email protected]) Academic editor: Robert Angus | Received 15 February 2012 | Accepted 17 April 2012 | Published 27 April 2012 Citation: Karagyan G, Lachowska D, Kalashian M (2012) Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining. Comparative Cytogenetics 6(2): 183–197. doi: 10.3897/CompCytogen.v6i2.2950 Abstract The male karyotypes of Acmaeodera pilosellae persica Mannerheim, 1837 with 2n=20 (18+neoXY), Sphe- noptera scovitzii Faldermann, 1835 (2n=38–46), Dicerca aenea validiuscula Semenov, 1895 – 2n=20 (18+Xyp) and Sphaerobothris aghababiani Volkovitsh et Kalashian, 1998 – 2n=16 (14+Xyp) were studied using conventional staining and different chromosome banding techniques: C-banding, AgNOR-band- ing, as well as fluorochrome Chromomycin 3A (CMA3) and DAPI. It is shown that C-positive segments are weakly visible in all four species which indicates a small amount of constitutive heterochromatin (CH). -
Karyotype Analysis of Four Jewel-Beetle Species (Coleoptera, Buprestidae) Detected by Standard Staining, C-Banding, Agnor-Banding and CMA3/DAPI Staining
COMPARATIVE A peer-reviewed open-access journal CompCytogen 6(2):Karyotype 183–197 (2012) analysis of four jewel-beetle species (Coleoptera, Buprestidae) .... 183 doi: 10.3897/CompCytogen.v6i2.2950 RESEARCH ARTICLE Cytogenetics www.pensoft.net/journals/compcytogen International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining Gayane Karagyan1, Dorota Lachowska2, Mark Kalashian1 1 Institute of Zoology of Scientific Center of Zoology and Hydroecology, National Academy of Sciences of Armenia, P. Sevak 7, Yerevan 0014, Armenia 2 Department of Entomology, Institute of Zoology Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland Corresponding author: Gayane Karagyan ([email protected]) Academic editor: Robert Angus | Received 15 February 2012 | Accepted 17 April 2012 | Published 27 April 2012 Citation: Karagyan G, Lachowska D, Kalashian M (2012) Karyotype analysis of four jewel-beetle species (Coleoptera, Buprestidae) detected by standard staining, C-banding, AgNOR-banding and CMA3/DAPI staining. Comparative Cytogenetics 6(2): 183–197. doi: 10.3897/CompCytogen.v6i2.2950 Abstract The male karyotypes of Acmaeodera pilosellae persica Mannerheim, 1837 with 2n=20 (18+neoXY), Sphe- noptera scovitzii Faldermann, 1835 (2n=38–46), Dicerca aenea validiuscula Semenov, 1895 – 2n=20 (18+Xyp) and Sphaerobothris aghababiani Volkovitsh et Kalashian, 1998 – 2n=16 (14+Xyp) were studied using conventional staining and different chromosome banding techniques: C-banding, AgNOR-band- ing, as well as fluorochrome Chromomycin 3A (CMA3) and DAPI. It is shown that C-positive segments are weakly visible in all four species which indicates a small amount of constitutive heterochromatin (CH). -
La Compensation Dans Les Interactions Plantes-Insectes : Modélisation, Simulation Et Expérimentation Audrey Lebon
La compensation dans les interactions plantes-insectes : modélisation, simulation et expérimentation Audrey Lebon To cite this version: Audrey Lebon. La compensation dans les interactions plantes-insectes : modélisation, simulation et expérimentation. Biologie végétale. Université Montpellier II - Sciences et Techniques du Languedoc, 2014. Français. NNT : 2014MON20161. tel-01747618 HAL Id: tel-01747618 https://tel.archives-ouvertes.fr/tel-01747618 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par UNIVERSITE MONTPELLIER 2 Préparée au sein de l’école doctorale Sibaghe Et de l’unité de recherche AMAP (CIRAD) Spécialité : Écologie, Évolution, Ressources Génétiques, Paléontologie (EERGP) Présentée par Audrey Lebon La compensation dans les interactions plantes-insectes : modélisation, simulation et expérimentation Soutenue le 10 décembre 2014 devant le jury composé de M. Yves DUMONT, directeur de recherche, CIRAD, Montpellier Directeur de thèse M. Michel GENARD, directeur de recherche, INRA, Avignon Rapporteur M. Frédéric GROGNARD, chargé de recherche, INRIA, Sophia Antipolis Examinateur M. Serge KREITER, professeur, SupAgro, Montpellier Examinateur M. Jean-Christophe POGGIALE, professeur, AMU, Marseille Rapporteur “La r´eflexion peut nuire gravement `ala sant´e,ou du moins `ala paix de l’esprit.” Geert Kelchtermans R´esum´e La r´esistance et la tol´erance, c’est `adire la capacit´ede la plante `asupporter la pr´esence des ravageurs, sont deux moyens dont usent les plantes pour se d´efendre. -
FEIS Citation Retrieval System Keywords
FEIS Citation Retrieval System Keywords 29,958 entries as KEYWORD (PARENT) Descriptive phrase AB (CANADA) Alberta ABEESC (PLANTS) Abelmoschus esculentus, okra ABEGRA (PLANTS) Abelia × grandiflora [chinensis × uniflora], glossy abelia ABERT'S SQUIRREL (MAMMALS) Sciurus alberti ABERT'S TOWHEE (BIRDS) Pipilo aberti ABIABI (BRYOPHYTES) Abietinella abietina, abietinella moss ABIALB (PLANTS) Abies alba, European silver fir ABIAMA (PLANTS) Abies amabilis, Pacific silver fir ABIBAL (PLANTS) Abies balsamea, balsam fir ABIBIF (PLANTS) Abies bifolia, subalpine fir ABIBRA (PLANTS) Abies bracteata, bristlecone fir ABICON (PLANTS) Abies concolor, white fir ABICONC (ABICON) Abies concolor var. concolor, white fir ABICONL (ABICON) Abies concolor var. lowiana, Rocky Mountain white fir ABIDUR (PLANTS) Abies durangensis, Coahuila fir ABIES SPP. (PLANTS) firs ABIETINELLA SPP. (BRYOPHYTES) Abietinella spp., mosses ABIFIR (PLANTS) Abies firma, Japanese fir ABIFRA (PLANTS) Abies fraseri, Fraser fir ABIGRA (PLANTS) Abies grandis, grand fir ABIHOL (PLANTS) Abies holophylla, Manchurian fir ABIHOM (PLANTS) Abies homolepis, Nikko fir ABILAS (PLANTS) Abies lasiocarpa, subalpine fir ABILASA (ABILAS) Abies lasiocarpa var. arizonica, corkbark fir ABILASB (ABILAS) Abies lasiocarpa var. bifolia, subalpine fir ABILASL (ABILAS) Abies lasiocarpa var. lasiocarpa, subalpine fir ABILOW (PLANTS) Abies lowiana, Rocky Mountain white fir ABIMAG (PLANTS) Abies magnifica, California red fir ABIMAGM (ABIMAG) Abies magnifica var. magnifica, California red fir ABIMAGS (ABIMAG) Abies -
Lopes at Dr Rcla Par.Pdf
RESSALVA Atendendo solicitação do(a) autor(a), o texto completo desta tese será disponibilizado somente a partir de 04/04/2018. UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (BIOLOGIA CELULAR E MOLECULAR) MECANISMOS DE DIFERENCIAÇÃO CROMOSSÔMICA EM BESOUROS DA SUBFAMÍLIA CASSIDINAE S.L. (POLYPHAGA, CHRYSOMELIDAE) AMÁLIA TORREZAN LOPES Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutora em Ciências Biológicas (Biologia Celular e Molecular) Rio Claro, São Paulo, Brasil Março de 2016 AMÁLIA TORREZAN LOPES MECANISMOS DE DIFERENCIAÇÃO CROMOSSÔMICA EM BESOUROS DA SUBFAMÍLIA CASSIDINAE S.L. (POLYPHAGA, CHRYSOMELIDAE) Orientadora: Profa. Dra. Marielle Cristina Schneider Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutora em Ciências Biológicas (Biologia Celular e Molecular) Rio Claro, São Paulo, Brasil Março de 2016 Lopes, Amália Torrezan 591.15 Mecanismos de diferenciação cromossômica em besouros L864m da subfamília Cassidinae s.l. (Polyphaga, Chrysomelidae) / Amália Torrezan Lopes. - Rio Claro, 2016 145 f. : il., figs., tabs. Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientadora: Marielle Cristina Schneider 1. Genética animal. 2. Cariótipo. 3. Genes ribossomais. 4. Heterocromatina constitutiva. 5. Meiose. 6. Sistema cromossômico sexual. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP Dedido este trabalho a família Lopes, Edison, Iriana e Ramon, a minha avó Dulce, e a meu marido Henrique, que sempre apoiaram e incentivaram as minhas escolhas. -
Tracking List
Tracked Taxa List: Current as of Invertebrates 2021-May-17 This list contains the tracked invertebrate animal taxa known by the Saskatchewan Conservation Data Centre (SKCDC) to occur within Saskatchewan, as of the date provided above. If you notice any errors or omissions, please contact [email protected]. For more information about how the SKCDC generates these lists and what determines when a species is tracked by the SKCDC, visit: http://biodiversity.sk.ca/lists.htm Conservation ranks/status are provided for each species. For details on each, refer to the following resources: ◦ Subnational (S), National (N) and Global (G) Ranks: www.biodiversity.sk.ca/ranking.htm ◦ Government of Saskatchewan Wild Species at Risk Regulations: https://publications.saskatchewan.ca/#/products/1609 ◦ COSEWIC: https://www.cosewic.ca/index.php ◦ SARA; Government of Canada Species at Risk public registry: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry.html SYNONYMS: This list is being provided by the SKCDC as a tool to facilitate users in determining the current, accepted taxonomy. If a name is currently out of use in Saskatchewan, it’s current synonym is provided, indented in the line below the accepted name. In this row, we are unable to distinguish between true synonyms and misapplied names used as synonyms. For example, Cryptantha fendleri is an accepted name for a vascular plant that is currently found in Saskatchewan. This name, however, has also been misapplied to both Cryptantha kelseyana and Cryptantha minima in the past. Therefore, it appears as a synonym to those two species. -
Coleoptera: Buprestidae) Collected in North Carolina and Tennessee William E
Seasonal flight activity and distribution of metallic woodboring beetles (Coleoptera: Buprestidae) collected in North Carolina and Tennessee William E. Klingeman1,*, Jason A. Hansen2, Joshua P. Basham3, Jason B. Oliver3, Nadeer N. Youssef3, Whitney Swink4, Christine A. Nalepa4, Donna C. Fare5, and J. Kevin Moulton2 Abstract Distribution records and seasonal flight activity information for metallic woodboring beetle (Coleoptera: Buprestidae) species have not been com- piled for North Carolina and Tennessee. Institutional, research, and private collections in North Carolina and Tennessee were reviewed to provide seasonal activity data of 5 subfamilies of buprestid beetle species. Label information was checked for 15,217 specimens of 135 species collected between 1901 and 2013 (North Carolina) and between 1934 and 2013 (Tennessee). These collections provided data on adult seasonal activity and county records for 121 species (4,467 specimens) and 105 species (10,750 specimens) from North Carolina and Tennessee, respectively. Two species, Agrilus carpini Knull and A. pensus Horn, are reported as New State Records for North Carolina. The data reveal key geographic areas in both states where few to no collections have been made, highlighting opportunities to validate species distributions and locations where future collecting- ef forts can be matched with the occurrence of larval and adult host plant resources. Seasonal activity records will inform future biosurveillance efforts for invasive and endemic pests and facilitate predictions of buprestid species that are likely to be active within the hunting flight season ofCerceris fumipennis (Say) (Hymenoptera: Crabronidae) wasps. Activity periods of the buprestids also can focus the management of selected economic pest species to times of the year when treatment efforts, particularly through use of contact insecticides, are likely to be most effective. -
SB003 1888 Observations on Two Insect Pests
EXPERIMENT STATION KANSAS STATE AGRICULTURAL COLLEGE MANHATTAN, KANSAS BULLETIN NO. 3 JUNE, 1888 OBSERVATIONS ON TWO INSECT PESTS By E. A. POPENOE, Entomologist BY ORDER OF THE COUNCIL: E. M. SHELTON, Director MANHATTAN, KANSAS PRINTING DEPARTMENT, AGRICULTURAL COLLEGE 1888 Historical Document Kansas Agricultural Experiment Station THE APPLE TREE FLEA BEETLE. 205 The eggs, one twenty-fourth of an inch in length, red in color, are found singly upon the midrib of the leaf upon its under side, set, like an acorn in its cup, in a brownish excrementitious mass, as shown in Fig. 1, Plate I. The natural size is indicated ap- proximately in the outline figure connected by a dotted line at the left. The larvae, when full grown, measure about one-fourth of an inch in length, are short, curved, six-footed grubs, of a general pale yellowish color, with the head, legs, shield on first segment and space above the bases of second and third pairs of legs dark brown or blackish, polished; the body is sparsely hairy, more especially upon the anterior portion. The larva is a case bearer, and carries about with it from the time of hatching a thick, blunt, white-downy protecting case constructed of its own castings, and covered apparently with the tomentum from the under surface of the sycamore leaf. The case is from time to time enlarged to suit the needs of the growing larva, and when the latter is mature, its case, now about one-quarter of an inch in length, serves further, when glued mouth downward upon some smooth surface, as a protection for the insect during its helpless pupal existence.