Platycerium Ferns Summer 2020 Platycerium Ferns Are Some of the Most Beautiful and Majestic Plants in Cultivation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Staghorn Fern - Platycerium Bifurcatum Platycerium Bifurcatum Is an Amazing Fern That Is Native to Eastern Australia
Staghorn Fern - Platycerium bifurcatum Platycerium bifurcatum is an amazing fern that is native to eastern Australia. It is one of eighteen species in the Platycerium genus, all of whom share a very dramatic, sculptural style. At first glance, most observers would not recognize these plants as ferns at all, since they are anything but ferny! Instead, the fronds of these beautiful, silvery green stunners resemble the antlers of elk or deer, which is why they have earned the common name of Staghorn or Elkhorn Fern. The resemblance is only heightened by the fact that they are epiphytes and grow outwards as if a large buck had left his rack hanging there. Platycerium bifurctum can easily be grown outdoors in subtropical gardens, but here in St. Louis we can imitate their native environment by mounting them on wooden plaques that can be brought indoors once the temperatures begin to cool. These plaques make striking decorations for a porch or patio. Learn how to craft your own on the next page. a few words on the anatomy of a staghorn • Staghorn ferns are epiphytes, clinging and growing vertically on tall trees or rock surfaces. They derive moisture and nutrients from the air and rain, supplemented by the plant debris that accumulates around their anchoring structures. • While the anchors for most epiphytes (such as orchids and bromeliads) are aerial roots or rhizomes, staghorn ferns add a covering layer of thick, spongy fronds that make a basket or inverted plate-like structure over the short, creeping rhizomes, providing a rooting media for the arching foliage fronds. -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
Microsorum 3 Tohieaense (Polypodiaceae)
Systematic Botany (2018), 43(2): pp. 397–413 © Copyright 2018 by the American Society of Plant Taxonomists DOI 10.1600/036364418X697166 Date of publication June 21, 2018 Microsorum 3 tohieaense (Polypodiaceae), a New Hybrid Fern from French Polynesia, with Implications for the Taxonomy of Microsorum Joel H. Nitta,1,2,3 Saad Amer,1 and Charles C. Davis1 1Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, Massachusetts 02138, USA 2Current address: Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Japan, 305-0005 3Author for correspondence ([email protected]) Communicating Editor: Alejandra Vasco Abstract—A new hybrid microsoroid fern, Microsorum 3 tohieaense (Microsorum commutatum 3 Microsorum membranifolium) from Moorea, French Polynesia is described based on morphology and molecular phylogenetic analysis. Microsorum 3 tohieaense can be distinguished from other French Polynesian Microsorum by the combination of sori that are distributed more or less in a single line between the costae and margins, apical pinna wider than lateral pinnae, and round rhizome scales with entire margins. Genetic evidence is also presented for the first time supporting the hybrid origin of Microsorum 3 maximum (Microsorum grossum 3 Microsorum punctatum), and possibly indicating a hybrid origin for the Hawaiian endemic Microsorum spectrum. The implications of hybridization for the taxonomy of microsoroid ferns are discussed, and a key to the microsoroid ferns of the Society Islands is provided. Keywords—gapCp, Moorea, rbcL, Society Islands, Tahiti, trnL–F. Hybridization, or interbreeding between species, plays an et al. 2008). However, many species formerly placed in the important role in evolutionary diversification (Anderson 1949; genus Microsorum on the basis of morphology (Bosman 1991; Stebbins 1959). -
Fern Gazette
THE FERN GAZETTE Edited by BoAoThomas lAoCrabbe & Mo6ibby THE BRITISH PTERIDOLOGICAL SOCIETY Volume 14 Part 3 1992 The British Pteridological Society THE FERN GAZETTE VOLUME 14 PART 3 1992 CONTENTS Page MAIN ARTICLES A Revised List of The Pteridophytes of Nevis - B.M. Graham, M.H. Rickard 85 Chloroplast DNA and Morphological Variation in the Fern Genus Platycerium(Polypodiaceae: Pteridophyta) - Johannes M. Sandbrink, Roe/and C.H.J. Van Ham, Jan Van Brederode 97 Pteridophytes of the State of Veracruz, Medico: New Records - M6nica Pa/acios-Rios 119 SHORT NOTES Chromosome Counts for Two Species of Gleichenia subgenus Mertensiafrom Ecuador - Trevor G. Walker 123 REVIEWS Spores of The Pteridophyta - A. C. Jermy 96 Flora Malesiana - A. C. Jermy 123 The pteridophytes of France and their affinities: systematics. chorology, biology, ecology. - B. A. Thoinas 124 THE FERN GAZ ETTE Volume 14 Pa rt 2 wa s publis hed on lO Octobe r 1991 Published by THE BRITISH PTERIDOLOGICAL SOCIETY, c/o Department of Botany, The Natural History Museum, London SW7 580 ISSN 0308-0838 Metloc Printers Ltd .. Caxton House, Old Station Road, Loughton, Essex, IG10 4PE ---------------------- FERN GAZ. 14(3) 1992 85 A REVISED LIST OF THE PTERIDOPHYTES OF NEVIS BMGRAHAM Polpey, Par, Cornwall PL24 2T W MHRICKARD The Old Rectory, Leinthall Starkes, Ludlow, Shropshire SY8 2HP ABSTRACT A revised list of the pteridophytes of Nevis in the Lesser Antilles is given. This includes 14 species not previously recorded for the island. INTRODUCTION Nevis is a small volcanic island in the West Indian Leeward Islands. No specific li st of the ferns has ev er been pu blished, although Proctor (1977) does record each of the species known to occur on the island. -
Epiphytic Ferns
HortFacts 74-04 Plants for Your Home and Office Epiphytic Ferns Bob Anderson, Extension Specialist in Floriculture Ferns are admirable plants for interior decoration. In most cases, ferns will tolerate filtered to low light conditions and continue to grow. Terrestrial ferns are often limited by insufficient humidity in the interior environment. However, epiphytic ferns are adapted to a drier habitat than most terrestrial types, are more suited to the centrally heated, and air conditioned environment of a Kentucky home. Cultural techniques are different for epiphytic ferns than for many other houseplants. Epiphytic ferns naturally occur on the branches of trees in subtropical and tropical forests. This habitat is much different from most terrestrial habitats and these ferns have adaptations appropriate to this unusual location. Thus, epiphytic ferns must be grown under conditions that mimic their natural habitat, or poor growth and plant death will occur. Epiphytic ferns grow naturally in a totally soilless condition. These ferns grow without using the typical water and nutrient storage of soil. The plants obtain water and nutrients (leached from tree leaves) only during rain. Between periods of rain, the tree bark of the branch is dry. For these reasons, epiphytic ferns should be grown in very well-drained media composed mainly of fir or redwood bark, osmunda fiber, Styrofoam beads, tree fern fiber, shredded pine bark, or sphagnum moss. Soak your epiphytic fern each time you water and allow it to remain dry 2-4 days before you water again. Low concentrations of soluble fertilizer, organic or inorganic, can be added in every second or third irrigation. -
Sporophyte and Gametophyte Development of Platycerium Coronarium (Koenig) Desv
Saudi Journal of Biological Sciences (2010) 17,13–22 King Saud University Saudi Journal of Biological Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Sporophyte and gametophyte development of Platycerium coronarium (Koenig) Desv. and P. grande (Fee) C. Presl. (Polypodiaceae) through in vitro propagation Reyno A. Aspiras Department of Biology, College of Arts and Sciences, Central Mindanao University, University Town, Musuan, Bukidnon, Philippines Available online 22 December 2009 KEYWORDS Abstract The sporophyte and gametophyte development of Platycerium coronarium and P. grande Propagation techniques; were compared through ex situ propagation using in vitro culture technique and under greenhouse Endangered species; and field conditions. Staghorn ferns; The morphology of the sporophyte and gametophyte, type of spore germination and prothallial Sporophyte; development of P. coronarium and P. grande were documented. Gametophytes of P. coronarium Gametophyte and P. grande were cultured in vitro using different media. The gametophytes were then transferred and potted in sterile chopped Cyathea spp. (anonotong) roots and garden soil for sporophyte forma- tion. Sporophytes (plantlets) of the two Platycerium species were attached on the slabs of anonotong and on branches and trunks of Swietenia macrophylla (mahogany) under greenhouse and field condi- tions. Sporophyte morphology of P. coronarium and P. grande varies but not their gametophyte morphol- ogy. P. coronarium and P. grande exhibited rapid spore germination and gametophyte development in both spore culture medium and Knudson C culture medium containing 2% glucose. Gametophytes of P. coronarium and P. grande transferred to potting medium produced more number of sporophytes while the gametophytes inside the culture media did not produce sporophytes. -
HARDY FERN FOUNDATION QUARTERLY the HARDY FERN FOUNDATION Quarterly Volume 8 • No
THE HARDY FERN FOUNDATION P.O. Box 166 Medina, WA 98039-0166 [email protected] Web site darkwing, uoregon .edu/~sueman/ The Hardy Fern Foundation was founded in 1989 to establish a comprehensive collection of the world’s hardy ferns for display, testing, evaluation, public educa¬ tion and introduction to the gardening and horticultural community. Many rare and unusual species, hybrids and varieties are being propagated from spores and tested in selected environments for their different degrees of hardiness and orna¬ mental garden value. The primary fern display and test garden is located at, and in conjunction with, The Rhododendron Species Botanical Garden at the Weyerhaeuser Corporate Headquarters, in Federal Way, Washington. Satellite fern gardens are at the Stephen Austin Arboretum, Nacogdoches, Texas, Birmingham Botanical Gardens, Birmingham, Alabama, California State Univer¬ sity at Sacramento, Sacramento, California, Dallas Arboretum, Dallas, Texas, Denver Botanic Gardens. Denver, Colorado, Georgeson Botanical Garden, Uni¬ versity of Alaska, Fairbanks, Alaska, Harry P. Leu Garden, Orlando, Florida, Coastal Maine Botanical Garden, Wiscasset, Maine, Inniswood Metro Gardens, Colum¬ bus, Ohio, New York Botanical Garden, Bronx, New York, and Strybing Arbore¬ tum, San Francisco, California. The fern display gardens are at Lakewold, Tacoma, Washington, Les Jardins de Metis, Quebec, Canada, University of Northern Colorado, Greeley, Colorado, and Whitehall Historic Home and Garden, Louisville, KY. Hardy Fern Foundation members participate in a spore exchange, receive a quar¬ terly newsletter and have first access to ferns as they are ready for distribution. Cover Design by Willanna Bradner. HARDY FERN FOUNDATION QUARTERLY THE HARDY FERN FOUNDATION Quarterly Volume 8 • No. 3 • Editor Sue Olsen \ T *2 W4 g WS11 U President’s Message.47 Anne C. -
Polypods Exposed by Tom Stuart
Volume 36 Number 2 & 3 Apr-June 2009 Editors: Joan Nester-Hudson and David Schwartz Polypods Exposed by Tom Stuart What is a polypod? The genus Polypodium came from the biblical source, the Species Plantarum of 1753. Linnaeus made it the largest genus of ferns, including species as far flung as present day Dryopteris, Cystopteris and Cyathea. This apparently set the standard for many years as a broad lumping ground. The family Polypodiaceae was defined in 1820 and its composition has never been stagnant. Now it is regarded as comprising 56 genera, listed in Smith et al. (2008). As a measure of the speed of change, thirty years ago about 20 of these genera were in different families, a few were yet to be created or resurrected, and several were often regarded as sub-genera of a broadly defined Polypodium. Estimates of the number of species vary, but they are all well over 1000. The objectives here are to elucidate the differences between the members of the family and help you identify an unknown polypod. First let's separate the family from the rest of the ferns. The principal family characteristics include (glossary at the end): • a creeping rhizome as opposed to an erect or ascending one • fronds usually jointed to the rhizome via phyllopodia • fronds in two rows with a row on either side of the rhizome The aforementioned characters define the family with the major exception of the grammitid group. • mainly epiphytic, occasionally epilithic, rarely terrestrial, never aquatic (unique exception: Microsorum pteropus) Epiphytic fern groups are few: the families Davalliaceae, Hymenophyllaceae, Vittariaceae, and some Asplenium and Elaphoglossum. -
Advanced Research in Life Sciences 2(1), 2018, 1-6
ADVANCED RESEARCH IN LIFE SCIENCES 2(1), 2018, 1-6 www.degruyter.com/view/j/arls DOI: 10.1515/arls-2018-0019 Research Article Chemical Composition, Antioxidant and Antibacterial Properties of Chloroform Fraction of Platycerium Bifurcatum Ikpa Chinyere Benardette Chinaka1, Onoja Samuel Okwudili2*, Dozie-Akaniro Ijeoma Nkiru3 1Departement of Chemistry, Imo State University P.M.B 2000, Owerri, Imo State Nigeria 2Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Michael Okpara University of Agriculture Umudike, PMB 7267, Umuahia Abia State Nigeria 3Departement of Plants Science and Biotechnology. Imo State University P.M.B 2000, Owerri, Imo State Nigeria Accepted March, 2018 Abstract The study investigated the bioactive constituents, antioxidant and antibacterial activities of Platycerium bifucartum leaves. Chloroform fraction of P. bifurcatum was prepared by partitioning the ethanol extract with chloroform and water. The phytochemical analysis was carried out using standard methods. Fourier transformer-infrared (FT-IR) and Gas chromatography-mass spectroscopy (GC/MS) were used in the characterization of the bioactive compounds. The antioxidant and antibacterial activities of the chloroform fraction were evaluated using standard protocols. The fourier transformer-infrared analysis showed the presence of C=O, OH, CHO, C-F and –NH functional groups. GC/MS characterization gave benzeneethaneamine (33.3%), 2-amino-1-(4-methylphenyl) propane (17.04%), hydroxyurea (30.26%) and epinephrine (13.26). The extract inhibited the growth of the bacterial isolates. The fraction exhibited antioxidant properties that were comparable with ascorbic acid. The presence of these compounds showed that the leaves of Platycerium bifurcatum can be used for the treatment of some bacterial diseases. -
Supplementary Table 1
Supplementary Table 1 SAMPLE CLADE ORDER FAMILY SPECIES TISSUE TYPE CAPN Eusporangiate Monilophytes Equisetales Equisetaceae Equisetum diffusum developing shoots JVSZ Eusporangiate Monilophytes Equisetales Equisetaceae Equisetum hyemale sterile leaves/branches NHCM Eusporangiate Monilophytes Marattiales Marattiaceae Angiopteris evecta developing shoots UXCS Eusporangiate Monilophytes Marattiales Marattiaceae Marattia sp. leaf BEGM Eusporangiate Monilophytes Ophioglossales Ophioglossaceae Botrypus virginianus Young sterile leaf tissue WTJG Eusporangiate Monilophytes Ophioglossales Ophioglossaceae Ophioglossum petiolatum leaves, stalk, sporangia QHVS Eusporangiate Monilophytes Ophioglossales Ophioglossaceae Ophioglossum vulgatum EEAQ Eusporangiate Monilophytes Ophioglossales Ophioglossaceae Sceptridium dissectum sterile leaf QVMR Eusporangiate Monilophytes Psilotales Psilotaceae Psilotum nudum developing shoots ALVQ Eusporangiate Monilophytes Psilotales Psilotaceae Tmesipteris parva Young fronds PNZO Cyatheales Culcitaceae Culcita macrocarpa young leaves GANB Cyatheales Cyatheaceae Cyathea (Alsophila) spinulosa leaves EWXK Cyatheales Thyrsopteridaceae Thyrsopteris elegans young leaves XDVM Gleicheniales Gleicheniaceae Sticherus lobatus young fronds MEKP Gleicheniales Dipteridaceae Dipteris conjugata young leaves TWFZ Hymenophyllales Hymenophyllaceae Crepidomanes venosum young fronds QIAD Hymenophyllales Hymenophyllaceae Hymenophyllum bivalve young fronds TRPJ Hymenophyllales Hymenophyllaceae Hymenophyllum cupressiforme young fronds and sori -
Does the C4 Plant Trianthema Portulacastrum (Aizoaceae) Exhibit
CSIRO PUBLISHING Functional Plant Biology, 2021, 48, 655–665 https://doi.org/10.1071/FP20247 Trianthema portulacastrum Does the C4 plant (Aizoaceae) exhibit weakly expressed crassulacean acid metabolism (CAM)? Klaus Winter A,C, Milton GarciaA, Aurelio Virgo A, Jorge Ceballos A and Joseph A. M. Holtum A,B ASmithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama. BCollege of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia. CCorresponding author. Email: [email protected] Abstract. We examined whether crassulacean acid metabolism (CAM) is present in Trianthema portulacastrum L. (Aizoaceae), a pantropical, salt-tolerant C4 annual herb with atriplicoid-type Kranz anatomy in leaves but not in stems. The leaves of T. portulacastrum are slightly succulent and the stems are fleshy, similar to some species of Portulaca, the only genus known in which C4 and CAM co-occur. Low- level nocturnal acidification typical of weakly expressed, predominantly constitutive CAM was measured in plants grown for their entire life-cycle in an outdoor raised garden box. Acidification was greater in stems than in leaves. Plants showed net CO2 uptake only during the light irrespective of soil water availability. However, nocturnal traces of CO2 exchange exhibited curved kinetics of reduced CO2 loss during the middle of the night consistent with low-level CAM. Trianthema becomes the second genus of vascular land plants in which C4 and features of CAM have been demonstrated to co-occur in the same plant and the first C4 plant with CAM-type acidification described for the Aizoaceae. Traditionally the stems of herbs are not sampled in screening studies. -
Significance of Gametophyte Form in Tropical, Epiphytic Ferns Cynthia Lynn Dassler Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1995 Significance of gametophyte form in tropical, epiphytic ferns Cynthia Lynn Dassler Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Dassler, Cynthia Lynn, "Significance of gametophyte form in tropical, epiphytic ferns " (1995). Retrospective Theses and Dissertations. 10774. https://lib.dr.iastate.edu/rtd/10774 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directfy from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from ai^ ^pe of coiiq}uter printer. The qnality of this reproduction is dqoendait upon the quality of the copy snbmitted. Broken or indistinct print, colored or poor quality illustrations and photogrs^hs, print bleedthrough, substandard margins, and inqvoper alignment can adversety affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note win indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing firom left to right in equal sections with .small overk^.