MF2512 Economic Issues with Soybeans

Total Page:16

File Type:pdf, Size:1020Kb

MF2512 Economic Issues with Soybeans MF-2512 Economic Issues with Soybeans Kansas State University Agricultural Experiment Station and Cooperative Extension Service Economic Issues with Soybeans The United States is the largest pro- Figure 1. Planted Soybean Acres in Kansas and United States, 1980 to 2000 80 3.5 ducer and exporter of soybeans worldwide. U.S. 70 While Kansas ranks 10th in U.S. soybean 3.0 production, it only accounts for approxi- 60 2.5 mately three percent of the total production Kansas (Kansas Ag Statistics). Although Kansas’ 50 2.0 soybean production has been a relatively 40 small share of total U.S. production, 1.5 30 soybeans are becoming an increasingly U.S. acres (millions) 1.0 Kansas acres (millions) important crop to the state. Soybean 20 acreage has nearly doubled in the last 20 0.5 10 years from 1.55 million acres in 1980 to 0 0.0 2.95 million acres in 2000 (Figure 1). 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 From 1981 to 1985 the annual average Figure 2. Soybean Production in Kansas and United States, 1980 to 2000 acres planted to soybeans in Kansas was 3,000 150 approximately 1.63 million acres, how- U.S. ever, acres planted from 1996 to 2000 to 2,500 125 soybeans increased to 2.56 million annu- ally (an increase of 57 percent). During 2,000 100 this same time period, acres planted to soybeans in the United States increased by only 6.4 percent. Figure 2 illustrates U.S. 1,500 75 and Kansas’ soybean production from Kansas 1,000 50 1980 through 2000. Historically, about 75 U.S. bushels (millions) percent of the production in Kansas has Kansas bushels (millions) come from the eastern third of the state, 500 25 however, soybeans have become increas- ingly more important statewide since the 0 0 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 1996 Farm Bill (Figure 3). This publica- tion describes new uses for soybeans and Figure 3. Distribution of Soybean Production in Kansas by Region, illustrates differences in value across 1980 to 2000 90% soybean varieties. 80% Demand for Soybeans 70% Eastern KS Much of the soybean’s popularity is 60% attributed to its versatility. The soybean’s many uses can be categorized into three 50% groups: industrial, human food, and 40% Central KS livestock feed. 30% Currently, industrial uses of soybeans Production Total Percent of are a small portion of total soybean use. 20% However, many new products are becom- 10% Western KS ing available as scientists find new uses for 0% soybeans. Many of these products are 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 substitutes for petroleum-based products. active ingredients in performing their task. For example, soybean oil-based pesticide Soybean oil-based lubricants and cleaners spray adjuvants are widely used by farmers are relatively new, but the demand for and custom applicators. They provide a them as an environmentally friendly safe, cost-effective tank mix that aids the alternatives to petroleum-based products is 1 increasing. Biodiesel includes a partial and Drug Administration. Tofu, tempeh, blend of a soy-based product that improves and natto are soyfood products common in lubricity and reduces harmful emissions Asia. Soy flour often is mixed with other after combustion. flours to increase the protein content. About 7.4 billion pounds of adhesives Soybeans are also used as a soy analog in are used annually in the United States for meat products. Soybean oil has many uses applications in plywood, particleboard, in the food industry. paper manufacturing, bookbinding, and A large majority of the U.S. soybean packaging and labeling. The various forms production is for livestock feed. Soybeans of wood use represent the largest and most are the most cost effective source of diverse market for adhesives today. protein in many feed rations. Usually the Petroleum-based adhesives for plywood or soybean is crushed, separating the oil from fiber cardboard applications often contain the remaining flake or meal. Soybean meal phenol/urea formaldehyde as a cross typically contains 44 to 50 percent protein. linking agent. These applications cause Figure 4 shows a steady increase in unpleasant environmental effects due to monthly meal and oil production from formaldehyde emission and toxicity 1992 through 2000 (USDA). The lines for problems during product manufacturing soybean oil and soybean meal lie on top of and distribution. The plywood industry is each other because, on average, a bushel of currently seeking new types of wood soybeans yields oil and meal in constant adhesives from renewable resources, proportions. potentially increasing the demand for soybeans. Overview of New Researchers at Kansas State University Soybean Varieties are developing formaldehyde-free adhe- Small, niche markets exist for several sives from soybean proteins, and types of specialty soybeans. Care at evaluating their adhesive performance for harvest is critical to ensure food-grade plywood and particleboard applications soybeans meet quality standards. Many of (Sun). While many new uses for soybeans these specialty or “value-added” soybeans exist, most are cost prohibitive relative to are grown under a production contract (see petroleum-based products based on current MF-2431 Economic Issues with Vertical market conditions. Coordination for a discussion of the Another soybean use is human con- differences between marketing and pro- sumption. Soybeans provide a valuable duction contracts). source of protein and are considered a Tofu or clear hilum food-grade soy- “heart healthy” product by the U.S. Food beans are usually produced for human consumption in the form of soymilk or Figure 4. Monthly Soybean Oil and Soybean Meal Production in the tofu. Soymilk is a milk-like liquid, pro- United States, 1992 to 2000 cessed by the soaking and grinding of 2,000 4,000 Soybean oil whole soybeans with water. Soymilk is a Soybean meal substitute for dairy milk for lactose- 1,750 3,500 intolerant people. Tofu is a soybean curd, 1,500 3,000 made by mixing soymilk with a coagulat- ing agent. It can be eaten in its original 1,250 2,500 form, fried, baked or used as a meat or dairy substitute. 1,000 2,000 Organic food-grade soybeans have Soybean Oil (million pounds) gained tremendous popularity in the last Soybean meal (thousand tons) 750 1,500 decade. A sizable market has developed demanding organically grown food, 500 1,000 although the supply of organic crops is still 1992 1993 1994 1995 1996 1997 1998 1999 2000 2 less than 0.5 percent of all food produced of all soybeans. Mandatory labeling in in the United States (Greene). The USDA certain countries is in its early stages and it has set certification guidelines for organic is unclear whether a premium exists for products that rely on sustainable produc- non-GMO soybeans. For example, Parcell tion processes without the use of synthetic concluded that the price differential fertilizers and pesticides. between the futures contract for Tokyo High sucrose soybeans decrease Grain Exchange’s new genetically en- abdominal discomfort and improve flavor, hanced soybean (of U.S. origin) and that which are two problems commonly for its existing conventional soybean (of associated with regular soybeans. These U.S. origin), was probably not sufficient to varieties contain higher levels of sucrose recoup the costs of the identity-preserved and lower levels of oligosaccharides, the system for the genetically enhanced indigestible sugars that cause abdominal soybean. Additional information on discomfort. High sucrose soybeans also genetically modified soybeans can be offer improved flavor, enabling larger found in MF-2449 Economic Issues with amounts of health beneficial soy product to Genetically Modified (GM) Food and Feed be present in food products. Grains. High oleic soybeans produce a bean that is high in oleic acid and Soybean Processing monounsaturated fatty acid and low in As of 1997 there were 93 soybean- polyunsaturated fat. This gives the high processing plants in the United States with oleic soybean greater heat resistance and payrolls totaling $237 million and value health benefits than the regular soybean. added by manufacturing worth $1.7 billion The soybean’s makeup also permits it to be (U.S. Department of Commerce). Kansas used for many industrial applications had four processing plants that employed because of its greater stability, lubricity 201 people with a value added by manu- and biodegradability. facturing worth $7 million in 1997. Low saturate soybeans contain half the saturated fat of commodity soybeans, The Crush Process while maintaining flavor. Low saturate Before soybeans are processed, they soybean oil has only 7 to 8 percent satu- first need to be dried to a moisture content rated fats, making it similar to canola oil. of 10 percent. After cooling, the soybeans Salad dressings and sauces made with low are cleaned by removing inert matter. The saturate soybean oil have very little or no soybeans are then weighed before they saturated fat. move to the next step, which is the cracker. Low linolenic soybeans produce During this process, the soybeans move cooking oil that has 50 percent less lino- through a series of rollers that crush the lenic acid than commodity soybean oil. beans into smaller pieces. After crushing, This reduces the need for hydrogenated the hulls (outer skin) are removed before oils that are high in unhealthy transfatty steam heating the soybean pieces. Once acids, thereby lowering LDL “bad” the soybean pieces are brought to 11 cholesterol levels and raising HDL “good” percent moisture content, they go through cholesterol levels. a series of rollers that produce thin flakes. High protein soybeans are mainly After the soybean pieces are rolled targeted for the soy food market.
Recommended publications
  • 54 Soy-Milk Waste with Soybean Meal Dietary Substitution
    Jurnal Peternakan Indonesia, Juni 2017 Vol. 19 (2): 54-59 ISSN 1907-1760 E-ISSN 2460-3716 Soy-Milk Waste with Soybean Meal Dietary Substitution: Effects on Growth Performance and Meat Quality of Broiler Chickens Penggantian Bungkil Kedelai dengan Ampas Susu Kedelai dalam Pakan: Pengaruhnya pada Kinerja Pertumbuhan dan Kualitas Daging Ayam Broiler N. D. Dono*, E. Indarto, and Soeparno1 1Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281 E-mail: [email protected] (Diterima: 23 Februari 2017; Disetujui: 12 April 2017) ABSTRACT Sixty male broiler chickens was used to investigate the effects of dietary soybean meal (SBM) with soy-milk waste (SMW) substitution using growth performance, protein-energy efficiency ratio, and physical meat quality as response criteria. The birds were given control diet (SMW-0), or a control diets with 5% (SMW-1), 10% (SMW-2), and 15% (SMW-3) soy-milk waste substitutions. Each treatment was replicate 3 times, with 5 birds per replication. The obtained data were subjected to Oneway arrangement of A129A, and continued suEsequently with Duncan‘s new 0ultiple Range Test. Results showed that substituting SBM with SMW did not influence protein and energy consumption, as well as feed consumption and energy efficiency ratio. However, dietary substitution with 10% SMW improved (P<0.05) protein efficiency ratio, body weight gain, and slaughter weight, resulting in lower (P<0.05) feed conversion ratio. The meat pH, water holding capacity, cooking loss, and tenderness values did not influence by 5-15% SMW substitution. Keywords: broiler chickens, growth performance, physical meat quality, soybean meal substitution, soy- milk waste ABSTRAK Enam puluh ekor ayam broiler jantan digunakan untuk mengetahui pengaruh penggantian tepung bungkil kedelai (SBM) dengan ampas susu kedelai (SMW) dengan menggunakan kinerja pertumbuhan, rasio efisiensi protein-energi, serta kualitas fisik daging sebagai respon kriteria yang diamati.
    [Show full text]
  • (Okara) As Sustainable Ingredients for Nile Tilapia (O
    animals Article Processed By-Products from Soy Beverage (Okara) as Sustainable Ingredients for Nile Tilapia (O. niloticus) Juveniles: Effects on Nutrient Utilization and Muscle Quality Glenise B. Voss 1,2, Vera Sousa 1,3, Paulo Rema 1,4, Manuela. E. Pintado 2 and Luísa M. P. Valente 1,3,* 1 CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Nórton de Matos, S/N, 4450-208 Matosinhos, Portugal; [email protected] (G.B.V.); [email protected] (V.S.); [email protected] (P.R.) 2 CBQF—Laboratório Associado, Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; [email protected] 3 ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal 4 UTAD—Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal * Correspondence: [email protected]; Tel.: +351-223-401-825; Fax: +351-223-390-608 Simple Summary: The consumption of soy products increases worldwide and generates large amounts of by-products, which are often discarded. Okara is a soybean by-product with high nutritional value. This work evidenced the great potential of okara meal, after appropriate technological processing, to be used as feed ingredient in Nile tilapia diets. It was clearly demonstrated the effectiveness of Citation: Voss, G.B.; Sousa, V.; Rema, the autoclave and the use of proteases from C. cardunculus without fermentation to increase okara P.; Pintado, M..E.; Valente, L.M.P.
    [Show full text]
  • Distribution of Isoflavones and Coumestrol in Fermented Miso and Edible Soybean Sprouts Gwendolyn Kay Buseman Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1996 Distribution of isoflavones and coumestrol in fermented miso and edible soybean sprouts Gwendolyn Kay Buseman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Buseman, Gwendolyn Kay, "Distribution of isoflavones and coumestrol in fermented miso and edible soybean sprouts" (1996). Retrospective Theses and Dissertations. 18032. https://lib.dr.iastate.edu/rtd/18032 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Distribution of isoflavones and coumestrol in fermented miso and edible soybean sprouts by Gwendolyn Kay Buseman A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department Food Science and Human Nutrition Major: Food Science and Technology Major Professor: Patricia A. Murphy Iowa State University Ames, Iowa 1996 ii Graduate College Iowa State University This is to certify that the Master's thesis of Gwendolyn Kay Buseman has met the thesis requirements of Iowa State University Signatures have been redacted for privacy iii TABLE OF CONTENTS LIST OF FIGURES v LIST OF TABLES
    [Show full text]
  • Okara: a Possible High Protein Feedstuff for Organic Pig Diets
    Animal Industry Report Animal Industry Report AS 650 ASL R1965 2004 Okara: A Possible High Protein Feedstuff For Organic Pig Diets J. R. Hermann Iowa State University Mark S. Honeyman Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/ans_air Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Hermann, J. R. and Honeyman, Mark S. (2004) "Okara: A Possible High Protein Feedstuff For Organic Pig Diets," Animal Industry Report: AS 650, ASL R1965. DOI: https://doi.org/10.31274/ans_air-180814-197 Available at: https://lib.dr.iastate.edu/ans_air/vol650/iss1/124 This Swine is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. Iowa State University Animal Industry Report 2004 Swine Okara: A Possible High Protein Feedstuff For Organic Pig Diets A.S. Leaflet R1965 creating disposal problems (3). Work with okara as an alternative feedstuff is limited (4). We know of no published J.R. Hermann, Research Assistant, studies involving okara as an alternative swine feedstuff. M.S. Honeyman, Professor, Therefore our objective was to determine the effect of Department of Animal Science dietary okara on growth performance of young pigs. Summary and Implications Materials and Methods A potential alternative organic protein source is okara. Animals Okara is the residue left from ground soybeans after Four replicate trials involving a total of 48 pigs extraction of the water portion used to produce soy milk and (average initial body weight of 13.23 kg) were conducted at tofu.
    [Show full text]
  • Report Name:Utilization of Food-Grade Soybeans in Japan
    Voluntary Report – Voluntary - Public Distribution Date: March 24, 2021 Report Number: JA2021-0040 Report Name: Utilization of Food-Grade Soybeans in Japan Country: Japan Post: Tokyo Report Category: Oilseeds and Products Prepared By: Daisuke Sasatani Approved By: Mariya Rakhovskaya Report Highlights: This report provides an overview of food-grade soybean use and market trends in Japan. Manufacturing requirements for traditional Japanese foods (e.g. tofu, natto, miso, soy sauce, simmered soybean) largely determine characteristics of domestic and imported food-grade soybean varieties consumed in Japan. Food-Grade Soybeans THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Soybeans (Glycine max) can be classified into two distinct categories based on use: (i) food-grade, primarily used for direct human consumption and (ii) feed-grade, primarily used for crushing and animal feed. In comparison to feed-grade soybeans, food-grade soybeans used in Japan have a higher protein and sugar content, typically lower yield and are not genetically engineered (GE). Japan is a key importer of both feed-grade and food-grade soybeans (2020 Japan Oilseeds Annual). History of food soy in Japan Following introduction of soybeans from China, the legume became a staple of the Japanese diet. By the 12th century, the Japanese widely cultivate soybeans, a key protein source in the traditional largely meat-free Buddhist diet. Soybean products continue to be a fundamental component of the Japanese diet even as Japan’s consumption of animal products has dramatically increased over the past century. During the last 40 years, soy products have steadily represented approximately 10 percent (8.7 grams per day per capita) of the overall daily protein intake in Japan (Figure 1).
    [Show full text]
  • Right Ingredients, Great Solutions
    RIGHT INGREDIENTS, GREAT SOLUTIONS Annual Report Ingredion is constantly improving, innovating, developing and efficiently delivering ingredient solutions that align with rapidly evolving consumer trends and customer needs. We enjoy a rich legacy of exceptional performance and market-leading innovation. In 2017, we continued to leverage our strengths — global reach with local touch, texture expertise and innovator — delivering another year of solid operating results and financial performance — creating consistent, compelling value for our customers and shareholders. About Ingredion Ingredion Incorporated provides the world with ingredients that make everyday products better. We turn grains, fruits, vegetables and other plant materials into ingredients that make yogurt creamy, candy sweet, crackers crispy, paper strong and nutrition bars high in fiber. We serve more than 60 diverse sectors in the food, beverage, paper and corrugating, brewing and other industries. Headquartered outside of Chicago, Illinois, Ingredion employs approximately 11,000 people worldwide and operates global manufacturing, R&D and sales offices that serve customers in more than 120 countries. INGREDION INCORPORATED 1 RIGHT INGREDIENTS, GREAT SOLUTIONS WINNING RECIPE FOR INGREDIENT SOLUTIONS We continue to build on our strong presence around the world by adhering to our six distinguishing strengths: global go-to-market model, market/customer relevance, innovation capability, operating excellence, a broad ingredient portfolio and geographic diversity. This strategy positions us for long-term profitable growth in current and emerging markets. Customer-centric mindset Regional teams and facilities are stra- Global With a global reach and local touch, we tegically located close to our customers create and deliver outstanding customer to better understand local consumer Go-to-Market Model experiences that position Ingredion as trends and customer needs, whether in the supplier of choice.
    [Show full text]
  • Physicochemical Properties of Soy- and Pea-Based Imitation Sausage Patties ______
    PHYSICOCHEMICAL PROPERTIES OF SOY- AND PEA-BASED IMITATION SAUSAGE PATTIES ______________________________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _____________________________________________________ by CHIH-YING LIN Dr. Fu-hung Hsieh, Thesis Supervisor MAY 2014 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled PHYSICOCHEMICAL PROPERTIES OF SOY- AND PEA-BASED IMITATION SAUSAGE PATTIES presented by Chih-ying Lin a candidate for the degree of Master Science, and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Fu-hung Hsieh, Department of Biological Engineering & Food Science Dr. Andrew Clarke, Department of Food Science Dr. Gang Yao, Department of Biological Engineering ACKNOWLEDGEMENTS On the way to acquiring my master degree, many friends, professors, faculty and laboratory specialists gave me a thousand hands toward the completion of my academic research. First of all, I would like to thank Dr. Fu-hung Hsieh and Senior Research Specialist Harold Huff, who supported and offered me the most when conducting the experiment. I would like to thank Dr. Andrew Clarke and Dr. Gang Yao being my committee members and gave suggestion and help during my study. I would like to have a further thank to Dr. Mark Ellersieck for his statistical assistance. I am thankful and appreciate Carla Roberts and Starsha Ferguson help on editing and proofreading my thesis. I especially would like to thank my parents and friends whose encouragement and advice helped me stay the course during my two-years of graduate studies dedicated to attaining the Master of Science degree.
    [Show full text]
  • Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang
    International Journal of Molecular Sciences Review Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang Il-Sup Kim 1 , Cher-Won Hwang 2,*, Woong-Suk Yang 3,* and Cheorl-Ho Kim 4,5,* 1 Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea; [email protected] 2 Global Leadership School, Handong Global University, Pohang 37554, Korea 3 Nodaji Co., Ltd., Pohang 37927, Korea 4 Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Korea 5 Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea * Correspondence: [email protected] (C.-W.H.); [email protected] (W.-S.Y.); [email protected] (C.-H.K.) Abstract: Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against Citation: Kim, I.-S.; Hwang, C.-W.; pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on Yang, W.-S.; Kim, C.-H. Current Perspectives on the Physiological improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation Activities of Fermented process of CGJ results in the production of enzymes and various physiologically active substances Soybean-Derived Cheonggukjang.
    [Show full text]
  • Physicochemical Properties of Soy- and Pea-Based Imitation Sausage Patties ______
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Missouri: MOspace PHYSICOCHEMICAL PROPERTIES OF SOY- AND PEA-BASED IMITATION SAUSAGE PATTIES ______________________________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _____________________________________________________ by CHIH-YING LIN Dr. Fu-hung Hsieh, Thesis Supervisor MAY 2014 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled PHYSICOCHEMICAL PROPERTIES OF SOY- AND PEA-BASED IMITATION SAUSAGE PATTIES presented by Chih-ying Lin a candidate for the degree of Master Science, and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Fu-hung Hsieh, Department of Biological Engineering & Food Science Dr. Andrew Clarke, Department of Food Science Dr. Gang Yao, Department of Biological Engineering ACKNOWLEDGEMENTS On the way to acquiring my master degree, many friends, professors, faculty and laboratory specialists gave me a thousand hands toward the completion of my academic research. First of all, I would like to thank Dr. Fu-hung Hsieh and Senior Research Specialist Harold Huff, who supported and offered me the most when conducting the experiment. I would like to thank Dr. Andrew Clarke and Dr. Gang Yao being my committee members and gave suggestion and help during my study. I would like to have a further thank to Dr. Mark Ellersieck for his statistical assistance. I am thankful and appreciate Carla Roberts and Starsha Ferguson help on editing and proofreading my thesis.
    [Show full text]
  • 19. Advanced Food Technology of Soybean and Other Legumes in Japan
    209 19. ADVANCED FOOD TECHNOLOGY OF SOYBEAN AND OTHER LEGUMES IN JAPAN Kyoko SAIO* Tokuji WATANABE** Ancient Chinese literatures reveal that soybeans were extensively cultivated and highly evaluated as food resource. It is true that the legumes including soybean have been quite familiar for centuries to the people in the Orient, and therefore, many food items derived from them are still very popular in their eating habits. In Japan, a large amount of soybeans and other legumes are consumed tradi­ tionally after reasonable processing. Recent amount of consumption of soybean and other legumes for these traditional food in Japan are shown in Table 1. Soybeans consumed for these products depend more heavily upon import from Table 1. Amounts of soybean and other legumes consumed for the traditional foods. Production Food (1000 metric ton) Whole soybean products Tofu and Fried-tofu 29.5 Miso 169 Natto 47 Kori-tofu (dried or frozen Tofu) 34 Shoyu (dried or frozen Tofu) 15 Kinako 12 Others 70 Total 642 Defatted soybean products Shoyu 154 Tofu and Fried-tofu 77 Miso 8 Others 45 Total 284 Other legume products Ann (bean paste) 240 Cooked bean 42 Toasted bean 21 Amanatto (sweeb) 12 Others 33 Total 349 * Senior Research Officer National Food Research Institute, Shiohama 1-4-12, Koto-ku, Tokyo, Japan. ** Director, the sa.me Institute 210 Table 1. (cont.) --·--·--·,.- - •··--,.~·····----,_---c•--- ··--·--•- ·-.,..a ·- ! . Production Food (1000 metric tonn) Peanut products Toasted peanut Confectionary use including 56 Peanut butter 48 Total 104 the U.S. and China than domestic production, and peanuts are also imported from China, Indonesia and Holland.
    [Show full text]
  • Effect of Soybean Varieties on the Yield and Quality of Toful
    Effect of Soybean Varieties on the Yield and Quality of Tofu l H. L. WANG, E. W. SWAIN, and W. F. KWOLEK, Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604; and W. R. FEHR, Department of Agronomy, Iowa State University, Ames, IA 500 II ABSTRACT Cereal Chern. 60(3):245-248 Tofu was made on a laboratory scale from five U.S. and five Japanese high protein content also produced tofu with a higher ratio ofprotein to oil soybean varieties grown under the same environmental conditions. With than did varieties with smaller amounts of protein. The yield of tofu was one exception, all the tofu samples had a bland taste. fine texture, and positively correlated with protein recovery during processing. but not with creamy white color. Weber variety with a black hilum yielded tofu with a the protein content of the beans. The hardness of tofu varied according to less attractive color. Differences observed among the 10 varieties were not \vater content. Conditions in processing tofu greatly affect yield and quality. attributable to the country of origin. Protein contents of soybeans and the Varietal differences affected the composition and color of tofu. Varieties resultant tofu (dry basis) were positively correlated. Soybean varieties with that have a light hilum and high protein content are preferred. Tofu, a traditional oriental soybean food composed principally tofu producers, western consumers prefer tofu with a firm, chewy of protein and oil. is growing rapidly in popularity in the West. texture. According to data from the Soyfoods Center (Shurtleff 1982).
    [Show full text]
  • Soybean, Nutrition and Health
    Chapter 20 Soybean, Nutrition and Health Sherif M. Hassan Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54545 1. Introduction Soybean (Glycine max L.) is a species of legume native to East Asia, widely grown for its edi‐ ble bean which has several uses. This chapter will focuses on soybean nutrition and soy food products, and describe the main bioactive compounds in the soybean and their effects on human and animal health. 2. Soybean and nutrition Soybean is recognized as an oil seed containing several useful nutrients including pro‐ tein, carbohydrate, vitamins, and minerals. Dry soybean contain 36% protein, 19% oil, 35% carbohydrate (17% of which dietary fiber), 5% minerals and several other compo‐ nents including vitamins [1]. Tables 1 and 2 show the different nutrients content of soy‐ bean and its by-products [2] Soybean protein is one of the least expensive sources of dietary protein [3]. Soybean protein is considered to be a good substituent for animal protein [4], and their nutritional profile ex‐ cept sulfur amino acids (methionine and cysteine) is almost similar to that of animal protein because soybean proteins contain most of the essential amino acids required for animal and human nutrition. Researches on rats indicated that the biological value of soy protein is sim‐ ilar to many animal proteins such as casein if enriched with the sulfur-containing amino acid methionine [5]. According to the standard for measuring protein quality, Protein Di‐ gestibility Corrected Amino Acid Score, soybean protein has a biological value of 74, whole soybeans 96, soybean milk 91, and eggs 97[6].
    [Show full text]