Chapter 4 - Group Homework

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4 - Group Homework Chapter 4 - Group Homework Name___________________________________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as 1) A) mass times weight. B) mass per unit volume. C) weight divided by the planet's radius. D) weight per square inch. E) size divided by weight. 2) Which of the following are the jovian planets? 2) A) only Jupiter B) Jupiter, Saturn, Uranus, and Neptune only C) Jupiter, Saturn, Uranus, Neptune, and Pluto D) everything past Mars and the asteroid belt E) only Jupiter and Saturn 3) Which planet by itself contains the majority of mass of all the planets? 3) A) Jupiter B) Uranus C) the Earth D) Venus E) Saturn 4) Planetary orbits 4) A) are highly inclined to the ecliptic. B) are almost circular, with low eccentricities. C) have the Sun at their exact center. D) are evenly spaced throughout the solar system. E) are spaced more closely together as they get further from the Sun. 5) Based on its orbit, which planet behaves the least like the others? 5) A) Pluto B) Mars C) Venus D) Uranus E) Mercury 6) Which of the following is not icy in composition? 6) A) Kuiper Belt Objects B) comet nuclei C) the polar cap of Mars D) most jovian satellites E) asteroids 7) What is true about solar system densities? 7) A) The asteroids all have about the same density. B) Planetary density increases with increasing distance from the Sun. C) In differentiated bodies, the denser materials lie near their surfaces. D) The denser planets lie closer to the Sun. E) Saturn has the same density as water. 8) The jovian planets 8) A) have satellite systems with less than 4 moons. B) are all much more dense than any of the terrestrial planets. C) all lie less than 5 AU from the Sun. D) all spin slower than the Earth. E) all have rings around their equators. 1 9) The largest asteroid, and probably the only one to be a spherical "world" is 9) A) Vesta. B) Ceres. C) Gaspra. D) Ida. E) Eros. 10) How much advance warning did we have of the close approach of asteroid 2002 MN in June 10) 2002? A) None; it was found three days after its closest approach. B) four hours C) three days D) several weeks E) six years 11) The Kuiper Belt is found where in the solar system? 11) A) beyond the orbit of Neptune B) among the orbits of the terrestrial planets C) between the orbits of Jupiter and Uranus D) sixty degrees ahead or behind Jupiter E) between the orbits of Mars and Jupiter 12) The tail of a comet always points 12) A) toward Earth and never varies. B) away from the Sun and disappears at perihelion. C) away from the Sun and becomes longest and brightest at perihelion. D) in the direction of the comet's motion. E) toward the Sun and disappears at perihelion. 13) The Oort Cloud is believed to be 13) A) a flattened belt of cometary nuclei just beyond the orbit of Neptune. B) the great nebula found just below the belt stars of Orion. C) a spherical cloud of cometary nuclei far beyond the Kuiper Belt. D) the circular disk of gas around the Sun's equator from which the planets formed. E) a grouping of asteroids and meteoroids between the orbits of Mars and Jupiter. 14) Which of the following does not fall into the category of interplanetary debris? 14) A) Kuiper Belt bodies B) meteoroids C) Trojan asteroids D) comets E) rings around the jovian planets. 15) Which of the following have an icy composition? 15) A) the surface of Mars B) most asteroids C) meteorites and most asteroids D) meteoroids E) comets 16) The Trojan asteroids are found 16) A) sixty degrees ahead or behind Jupiter, sharing its orbit about the Sun. B) orbiting around the Kuiper Belt body Hector. C) closer on average to the Sun than is the Earth. D) with the others, between Mars and Jupiter; their red color gives them their name. E) beyond Neptune, with orbits similar to Pluto's. 2 17) The most distant objects in our solar system are 17) A) short period comets. B) in the Kuiper Belt. C) the Trojan asteroids. D) the jovians. E) in the Oort Cloud. 18) The first spacecraft to land on the surface of an asteroid was named 18) A) NEAR. B) Giotto. C) Contour. D) Stardust. E) Galileo. 19) Which statement about asteroids is not true? 19) A) Some have satellites of their own. B) Earthgrazers can cross not only our orbit, but even those of Venus and Mercury. C) Most stay between the orbits of Mars and Jupiter. D) They vary considerably in composition, reflectivity, and size. E) Their images become blurry due to outgassing as the Sun heats them up. 20) The most detailed look we've had of an asteroid comes from 20) A) ground based optical images. B) ground based radar images. C) high-altitude UV spectroscopy. D) spacecraft sent to an asteroid. E) Earth orbital X-ray images. 21) Before it arrived in orbit about Eros, the NEAR spacecraft visited 21) A) Venus. B) the Moon. C) the asteroid Mithilde. D) the asteroid Gaspra. E) Mars. 22) Relative to the comet, the direction of the ion tail tells us 22) A) the velocity of the comet. B) where the comet came from. C) the direction of the Sun. D) the direction the comet is traveling. E) where the ecliptic is. 23) Meteor showers are 23) A) usually annual events, as the orbits again intersect. B) caused by the Earth passing near the orbit of an Earthgrazing asteroid. C) caused by the Earth passing near the orbit of an old short-period comet. D) Both A and B are correct. E) Both A and C are correct. 24) Meteorites are important because 24) A) they contain pristine material from the solar nebula. B) some come from the Moon and Mars, as well as the asteroid belt. C) large ones may cause mass extinctions. D) All of the above are true. E) None of the above are true. 3 25) A meteor is 25) A) an irregularly shaped body, mostly found orbiting between Mars and Jupiter. B) a streak of light in the atmosphere. C) a chunk of space debris that has struck the ground. D) an icy body with a long tail extending from it. E) a chunk of space debris orbiting the Earth. 26) A meteorite is 26) A) a chunk of space debris that has struck the ground. B) a chunk of space debris orbiting the Earth. C) a streak of light in the atmosphere. D) an irregularly shaped body, mostly found orbiting between Mars and Jupiter. E) an icy body with a long tail extending from it. 27) Long-period comets are believed to originally come from 27) A) the Oort cloud. B) the satellite system of Jupiter. C) the interstellar medium. D) the asteroid belt. E) the Kuiper belt. 28) Objects in the Kuiper belt 28) A) lie beyond the orbit of Neptune, and close to the ecliptic. B) are in random orbits at all inclinations to the ecliptic. C) are the sources of long-period comets. D) are dense, like the iron meteorites. E) lie beyond the orbit of Neptune and perpendicular to the ecliptic. 29) Which of these bodies are most likely to break up over time? 29) A) Trojan asteroids B) jovian satellites C) comet nuclei D) Kuiper Belt bodies E) asteroids in the main belt 30) The Manicouagan reservoir near Quebec is an example of 30) A) a micrometeorite impact. B) a volcanic event. C) a large meteorite impact. D) Earth's interaction with a comet's dust tail. E) cometary debris. 31) The nucleus of a comet is typically 31) A) a few kilometers in size, and very low in density. B) very durable, made of iron. C) a few meters in diameter. D) located between the orbits of Mars and Jupiter. E) a few hundred kilometers across, and bright, shiny white from its ices. 4 32) Before it arrived in orbit about Jupiter, the Galileo spacecraft flew past 32) A) the asteroid Gaspra. B) Comet Halley. C) Mars. D) Saturn. E) the asteroid Ceres. 33) If a comet's ion tail is pointing perpendicular to its direction of travel, the comet is 33) A) moving away from the Sun. B) close to or at aphelion. C) close to or at perihelion. D) moving closer to the Sun. E) A comet's tail never points perpendicular to its motion. 34) As the solar nebula contracts, it 34) A) flattens out into the ecliptic plane around the Sun's poles. B) spins faster due to conservation of angular momentum. C) reverses its direction of rotation. D) loses angular momentum. E) cools due to condensation. 35) In terms of composition 35) A) the jovian planets are made only of ice, and the terrestrials only of rock. B) all planets condensed from the same nebula, and have similar compositions. C) the terrestrials are more like the Sun, since they formed close to it. D) the jovian planets are more like the Sun than are the terrestrials. E) the Sun is unique, made of nothing but hydrogen and helium. 36) According to the Solar Nebula theory, planets 36) A) should be a common result of star formation. B) should be randomly oriented to their star's equator. C) should be extremely rare. D) should orbit perpendicular to their star's equator.
Recommended publications
  • Thesis Yaxuedong Feb20141.Pdf
    ABSTRACT The Water Vapor and Dust Plumes of Enceladus by Yaxue Dong Enceladus is the most active moon of Saturn. Its south polar plume, composed mostly of water vapor and ice grains, is one of the groundbreaking discoveries made by the Cassini spacecraft. During Cassini’s E2, E3, E5 and E7 encounters with Enceladus, the Ion and Neutral Mass Spectrometer (INMS) measured high neutral water vapor densities up to ~109 cm-3 (Waite et al., 2006; Teolis et al., 2010; Dong et al., 2011). We have constructed a physical model for the expected water vapor density in the plumes, based on supersonic radial outflow from one or more of the surface vents. We apply this model to possible surface sources of water vapor associated with the dust jets (Spitale and Porco, 2007; Hansen et al., 2008). Our model fits well with the E3, E5, and E7 INMS data. The fit is optimized by the 28 outflow velocity of ~ 550 – 750 m/s and the total source rate of ~ 1.5 − 3.5×10 H2O molecules/s (~ 450 – 1050 kg/s). The dust (ice grain) plumes of Enceladus have been observed by multiple Cassini instruments. We propose a composite ice grain size distribution covering a continuous size range from nanometer to micrometers, by combining the CAPS (Cassini Plasma Spectrometer), CDA (Cosmic Dust Analyzer), and RPWS (Radio and Plasma Wave Science) data (Hill et al., 2012; Kempf et al., 2008; Ye et al., 2012, 2013). We also study the grain charging process using the RPWS-LP (Langmuir Probe) data (Morooka et al., 2011).
    [Show full text]
  • Argonaut #2 2019 Cover.Indd 1 1/23/20 1:18 PM the Argonaut Journal of the San Francisco Historical Society Publisher and Editor-In-Chief Charles A
    1/23/20 1:18 PM Winter 2020 Winter Volume 30 No. 2 Volume JOURNAL OF THE SAN FRANCISCO HISTORICAL SOCIETY VOL. 30 NO. 2 Argonaut #2_2019_cover.indd 1 THE ARGONAUT Journal of the San Francisco Historical Society PUBLISHER AND EDITOR-IN-CHIEF Charles A. Fracchia EDITOR Lana Costantini PHOTO AND COPY EDITOR Lorri Ungaretti GRapHIC DESIGNER Romney Lange PUBLIcatIONS COMMIttEE Hudson Bell Lee Bruno Lana Costantini Charles Fracchia John Freeman Chris O’Sullivan David Parry Ken Sproul Lorri Ungaretti BOARD OF DIREctORS John Briscoe, President Tom Owens, 1st Vice President Mike Fitzgerald, 2nd Vice President Kevin Pursglove, Secretary Jack Lapidos,Treasurer Rodger Birt Edith L. Piness, Ph.D. Mary Duffy Darlene Plumtree Nolte Noah Griffin Chris O’Sullivan Richard S. E. Johns David Parry Brent Johnson Christopher Patz Robyn Lipsky Ken Sproul Bruce M. Lubarsky Paul J. Su James Marchetti John Tregenza Talbot Moore Diana Whitehead Charles A. Fracchia, Founder & President Emeritus of SFHS EXECUTIVE DIREctOR Lana Costantini The Argonaut is published by the San Francisco Historical Society, P.O. Box 420470, San Francisco, CA 94142-0470. Changes of address should be sent to the above address. Or, for more information call us at 415.537.1105. TABLE OF CONTENTS A SECOND TUNNEL FOR THE SUNSET by Vincent Ring .....................................................................................................................................6 THE LAST BASTION OF SAN FRANCISCO’S CALIFORNIOS: The Mission Dolores Settlement, 1834–1848 by Hudson Bell .....................................................................................................................................22 A TENDERLOIN DISTRIct HISTORY The Pioneers of St. Ann’s Valley: 1847–1860 by Peter M. Field ..................................................................................................................................42 Cover photo: On October 21, 1928, the Sunset Tunnel opened for the first time.
    [Show full text]
  • Science Fiction Stories with Good Astronomy & Physics
    Science Fiction Stories with Good Astronomy & Physics: A Topical Index Compiled by Andrew Fraknoi (U. of San Francisco, Fromm Institute) Version 7 (2019) © copyright 2019 by Andrew Fraknoi. All rights reserved. Permission to use for any non-profit educational purpose, such as distribution in a classroom, is hereby granted. For any other use, please contact the author. (e-mail: fraknoi {at} fhda {dot} edu) This is a selective list of some short stories and novels that use reasonably accurate science and can be used for teaching or reinforcing astronomy or physics concepts. The titles of short stories are given in quotation marks; only short stories that have been published in book form or are available free on the Web are included. While one book source is given for each short story, note that some of the stories can be found in other collections as well. (See the Internet Speculative Fiction Database, cited at the end, for an easy way to find all the places a particular story has been published.) The author welcomes suggestions for additions to this list, especially if your favorite story with good science is left out. Gregory Benford Octavia Butler Geoff Landis J. Craig Wheeler TOPICS COVERED: Anti-matter Light & Radiation Solar System Archaeoastronomy Mars Space Flight Asteroids Mercury Space Travel Astronomers Meteorites Star Clusters Black Holes Moon Stars Comets Neptune Sun Cosmology Neutrinos Supernovae Dark Matter Neutron Stars Telescopes Exoplanets Physics, Particle Thermodynamics Galaxies Pluto Time Galaxy, The Quantum Mechanics Uranus Gravitational Lenses Quasars Venus Impacts Relativity, Special Interstellar Matter Saturn (and its Moons) Story Collections Jupiter (and its Moons) Science (in general) Life Elsewhere SETI Useful Websites 1 Anti-matter Davies, Paul Fireball.
    [Show full text]
  • Characterization of Low-Energy Orbits for the Exploration of Enceladus
    EPSC Abstracts Vol. 13, EPSC-DPS2019-414-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Characterization of low-energy orbits for the exploration of Enceladus Dr. Francisco Salazar (1), Dr. Elena Fantino (1) and Dr. Elisa Maria Alessi (2) (1) Aerospace Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates (2) Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche (IFAC-CNR), Sesto Fiorentino, Italy ([email protected], [email protected], [email protected]) Abstract 2. Methodology This investigation proposes a set of orbits in the The dynamical model employed is the Circular Re- Saturn-Enceladus system in the Circular Restricted stricted Three-Body Problem (CR3BP), with Saturn Three-Body Problem and analyses their performance and Enceladus as primaries. Halo orbits, a specific set for the exploration of the south polar region of the of periodic Libration Point Orbits (LPOs), around the moon, where several gas ejecta are observed. Parame- Lagrange points L1 and L2 of the system are consid- ters that are essential in the design of an in situ obser- ered, owing to their significant out-of-plane motion. vational programme, such as orbital periods, distance The stable and unstable hyperbolic invariant manifolds ranges from the surface, orbital inclinations, speeds in (HIMs) of these orbits (see Figure 1) are used to design the synodic and the moon-centered inertial reference homoclinic and heteroclinic transfers. In a homoclinic frames, surface latitude coverage and times of over- loop, the probe leaves the Halo orbit by its unstable flight are determined and discussed.
    [Show full text]
  • General Assembly Distr.: General 7 January 2005
    United Nations A/AC.105/839 General Assembly Distr.: General 7 January 2005 Original: English Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Forty-second session Vienna, 21 February-4 March 2004 Item 10 of the provisional agenda∗ Near-Earth objects Information on research in the field of near-Earth objects carried out by international organizations and other entities Note by the Secretariat Contents Page I. Introduction ................................................................... 2 II. Replies received from international organizations and other entities ..................... 2 European Space Agency ......................................................... 2 The Spaceguard Foundation ...................................................... 17 __________________ ∗ A/AC.105/C.1/L.277. V.05-80067 (E) 010205 020205 *0580067* A/AC.105/839 I. Introduction In accordance with the agreement reached at the forty-first session of the Scientific and Technical Subcommittee (A/AC.105/823, annex II, para. 18) and endorsed by the Committee on the Peaceful Uses of Outer Space at its forty-seventh session (A/59/20, para. 140), the Secretariat invited international organizations, regional bodies and other entities active in the field of near-Earth object (NEO) research to submit reports on their activities relating to near-Earth object research for consideration by the Subcommittee. The present document contains reports received by 17 December 2004. II. Replies received from international organizations and other entities European Space Agency Overview of activities of the European Space Agency in the field of near-Earth object research: hazard mitigation Summary 1. Near-Earth objects (NEOs) pose a global threat. There exists overwhelming evidence showing that impacts of large objects with dimensions in the order of kilometres (km) have had catastrophic consequences in the past.
    [Show full text]
  • Michael W. Busch Updated June 27, 2019 Contact Information
    Curriculum Vitae: Michael W. Busch Updated June 27, 2019 Contact Information Email: [email protected] Telephone: 1-612-269-9998 Mailing Address: SETI Institute 189 Bernardo Ave, Suite 200 Mountain View, CA 94043 USA Academic & Employment History BS Physics & Astrophysics, University of Minnesota, awarded May 2005. PhD Planetary Science, Caltech, defended April 5, 2010. JPL Planetary Science Summer School, July 2006. Hertz Foundation Graduate Fellow, September 2007 to June 2010. Postdoctoral Researcher, University of California Los Angeles, August 2010 – August 2011. Jansky Fellow, National Radio Astronomy Observatory, August 2011 – August 2014. Visiting Scholar, University of Colorado Boulder, July – August 2012. Research Scientist, SETI Institute, August 2013 – present. Current Funding Sources: NASA Near Earth Object Observations. Research Interests: • Shapes, spin states, trajectories, internal structures, and histories of asteroids. • Identifying and characterizing targets for both robotic and human spacecraft missions. • Ruling out potential future asteroid-Earth impacts. • Radio and radar astronomy techniques. Selected Recent Papers: Marshall, S.E., and 24 colleagues, including Busch, M.W., 2019. Shape modeling of potentially hazardous asteroid (85989) 1999 JD6 from radar and lightcurve data, Icarus submitted. Reddy, V., and 69 colleagues, including Busch, M.W., 2019. Near-Earth asteroid 2012 TC4 campaign: results from global planetary defense exercise, Icarus 326, 133-150. Brozović, M., and 16 colleagues, including Busch, M.W., 2018. Goldstone and Arecibo radar observations of (99942) Apophis in 2012-2013, Icarus 300, 115-128. Brozović, M., and 19 colleagues, including Busch, M.W., 2017. Goldstone radar evidence for short-axis mode non-principal axis rotation of near-Earth asteroid (214869) 2007 PA8. Icarus 286, 314-329.
    [Show full text]
  • MHMP 2014 UPDATE PART 3 I D Natural Geological Hazards
    I. Natural Hazards D. Geological Hazards The following outline summarizes the significant geological hazards covered in this section: 1. Ground Movement a. Earthquakes b. Subsidence 2. Celestial Impacts Although some states recognize “landslides” as an additional hazard, Michigan’s geology and history tends to make it more prone to land subsidence instead. Michigan’s two main vulnerabilities to ground movement are therefore identified in the sections on earthquakes and subsidence hazards. Erosion is not in itself typically considered an emergency event, except in cases involving encroachment into shoreline developments near a river or lake, and these have been dealt with in the Hydrological Hazards section of this plan. A new section of this plan, celestial impacts, deals not only with the impact of physical objects on property, but also with the effects of solar storms on our modern infrastructure. It will be seen that the systemic technological impacts of this hazard involve greater expected risks than the more well-known impacts of a meteoritic type. Although meteorite impacts are quite easy to understand and visualize, and do have a small potential to be catastrophic, it is the seemingly abstract and mostly invisible effect of “space weather” that has the greatest probability of causing widespread disruption and harm in the near future. Overlap Between Geological Hazards and Other Sections of the Hazard Analysis The most serious Michigan earthquakes would be expected to damage some of the utilities infrastructure in the southern part of the state, and could contribute to the occurrence of an energy emergency. Some flooding could result from broken water mains.
    [Show full text]
  • 9:00 Pm SFAA ANNUAL AWARDS and MEMBERSHIP DINNER MARIPOSA HUNTER’S POINT YACHT CLUB 405 Terry A
    Vol. 64, No. 1 – January2016 FRIDAY, JANUARY 22, 2015 - 5:00 pm – 9:00 pm SFAA ANNUAL AWARDS AND MEMBERSHIP DINNER MARIPOSA HUNTER’S POINT YACHT CLUB 405 Terry A. Francois Boulevard San Francisco Directions: http://www.yelp.com/map/mariposa-hunters-point-yacht-club-san-francisco Dear Members, our Annual January get-together will be Friday, January 22nd, 2016 from 5:00 to 9:00 at the Mariposa, Hunter's Point Yacht Club. There are many things to celebrate in this fun atmosphere, with tacos served by El Tonayense, salads & more, along with a full cash bar. All members are invited and SFAA will be paying for food. Non-members are welcome at a cost of $25. Telescopes will be set up on the patio, which provides beautiful views of the bay. We will be celebrating a year when we have made a successful transition to the Presidio, have continued the success of the sharing and viewing we have on Mt Tam, expanded and strengthened our City Star Parties and volunteered at many schools. Our Yosemite trip was very successful and the opportunity to tour Lick Observatory will not be soon forgotten. We will also be welcoming new members to our board and commending those whose work and commitment, our club could not function without. We look forward to enjoying the evening with all those who enjoy the night sky with the San Francisco Amateur Astronomers. There is plenty of parking, as well as easy access from the KT line and the 22 bus. Please RSVP at [email protected] Anil Chopra 2016 SAN FRANCISCO AMATEUR ASTRONOMERS GENERAL ELECTION The following members have been elected to serve as San Francisco Amateur Astronomers’ Officers and Directors for calendar year 2016.
    [Show full text]
  • Discover NASA
    SPACE SCIENCE INSTITUTE NEWSLETTER WINTER 2016 W Space Science Institute Newsletter THE CARINA NEBULA IMAGE CREDIT: NASA, ESA/ STSCI IN THIS ISSUE NCIL News… Big News in Astronomy Conference Highlights: Clouds Over Martian DPS, AGU and AAS Low Latitudes! By Dr. Karly Pitman, Executive Director Submitted by Dr. Todd Clancy – SSI NC While the rest of the world is Over the past two slowing down around the holidays, decades, the our scientists kick into high gear in importance of the winter months submitting grant clouds in Mars’ proposals, judging others’ proposals atmosphere has at review panels, and traveling to been established present results at national and through new More on Page 6… international conferences. This year, observations and Cassini Completes Final Close conference season kicked off with the modeling. A Enceladus Flyby! American Astronomical Society’s variety of cloud Division for Planetary Sciences forms reflects the (DPS) held Nov. 8-13, 2015 at the variety in Gaylord National Resort and saturation Figure 1. CRISM color Convention Center in National conditions (e.g. limb image of CO2 Harbor, MD. More on Page 10 atmospheric clouds – credit page 3. temperatures) and dynamical forcing ranging from local to global conditions. This range of behaviors spans narrow vertical pipes of uplift that force high altitude More on Page 2… perihelion (nearest to the Sun) cloud trails in the warm orbital phase of the Covering science news around Mars atmosphere, to the global low Boulder! latitude gird of the aphelion (farthest More on Page 5… from the Sun) cloud belt in the cold orbital phase of the Mars atmosphere.
    [Show full text]
  • A R T O F R E S I L I E N
    Art of Resilience NEO _Aster_2090-2092___2019-04-10-00-53-37-75 TITLE NEO_2034_2019-04-10-00-55-51-305 (NEO: Near Earth Object) APPROACH Visualizations of Big Data - data art as an emerging form of science communication: Superforecasting: The Art and Science of Prediction; visualizing the risk posed by potential Earth impacts. WHAT Photographic 3D render from an artscience datavisualization dealing with the prediction of potential asteroid impacts on Earth. TECHNIQUE Custom predictive software and code made in openFrameworks in C++ (see addendum) to generate an accurate datavisualization and predictions of bolide events based on data from NASA and KAGGLE. The computation of Earth impact probabilities for near- Earth objects is a complex process requiring sophisticated mathematical techniques. PROCESS The datavisualizations resulted in svg. and obj. files which allows 3D model export, 3D printing and lasercutting techniques. For the Art of Resilience a photographic 3D render was selected by the artist for this exhibition. ART OF RESILIENCE On the 18th of december 2018 an asteroid some ten metres across detonated with an explosive energy ten times greater than the bomb dropped on Hiroshima. The shock wave shattered windows of almost 7200 buildings. Nearly 1500 people were injured. Although astronomers have managed to locate 93% of the extremely dangerous asteroids, nobody saw it coming. Can art contribute to save the Earth from future threats the means of super forecasting and increase our resilience in regards to potential future asteroid impacts? ARTISTIC STATEMENT Artists often channel the future; seeing patterns before they form and putting them in their work, so that later, in hindsight, the work explodes like a time bomb.
    [Show full text]
  • 5873 Abstract the Lunar Problem Is the Barrier of the Future Time Of
    The Lunar Problem is The Barrier of The Future Time of The Earth Eduardo S. Guimaraes Intellectual, Writer, and Inventor [email protected] Abstract 1. This article "The lunar problem is the barrier of the future time of the Earth" is a logical and rational analysis of the formation of the nuclear universe with galaxies, stars, the Sun star, the system of planets and the moons, and arrives at new original and inedited conclusions. 2. The Big Bang of the primitive universe is a sequence programmed by the nature of thermonuclear super explosions in sidereal space. 3. These thermonuclear super explosions swept nuclear sidereal space generating the large mass islands of galaxies like the Milky Way. 4. The Milky Way was the first generation of the hyper-bubbles of the mixture of nuclear masses, which are: geological nuclear mass of attraction of gravity; geological nuclear mass of orbital attraction; geological nuclear mass of orbital repulsion. 5. Because of nuclear hyper tremors, the nucleus of the Milky Way generated the second generation of the super bubbles that were repulsed from the galaxy's nucleus by the action of the geological nuclear mass of orbital repulsion, and then the super bubbles became in the many billions of celestial stars that make up the galactic disc. 6. Because of the hyper tremors, the nucleus of these billions of stars, including the Sun, generated the third generation of super bubbles and large bubbles that were repulsed from the nuclei of the stars by the action of the geological nuclear mass of orbital repulsion, and then the super bubbles and large bubbles have become the sequence of planets, which makes up the orbital disk of the solar system.
    [Show full text]
  • The Scientific Context for Exploration of the Moon
    Committee on the Scientific Context for Exploration of the Moon Space Studies Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NASW-010001 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-10919-2 International Standard Book Number-10: 0-309-10919-1 Cover: Design by Penny E. Margolskee. All images courtesy of the National Aeronautics and Space Administration. Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap. edu. Copyright 2007 by the National Academy of Sciences. All rights reserved.
    [Show full text]