Thesis Yaxuedong Feb20141.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
ABSTRACT The Water Vapor and Dust Plumes of Enceladus by Yaxue Dong Enceladus is the most active moon of Saturn. Its south polar plume, composed mostly of water vapor and ice grains, is one of the groundbreaking discoveries made by the Cassini spacecraft. During Cassini’s E2, E3, E5 and E7 encounters with Enceladus, the Ion and Neutral Mass Spectrometer (INMS) measured high neutral water vapor densities up to ~109 cm-3 (Waite et al., 2006; Teolis et al., 2010; Dong et al., 2011). We have constructed a physical model for the expected water vapor density in the plumes, based on supersonic radial outflow from one or more of the surface vents. We apply this model to possible surface sources of water vapor associated with the dust jets (Spitale and Porco, 2007; Hansen et al., 2008). Our model fits well with the E3, E5, and E7 INMS data. The fit is optimized by the 28 outflow velocity of ~ 550 – 750 m/s and the total source rate of ~ 1.5 − 3.5×10 H2O molecules/s (~ 450 – 1050 kg/s). The dust (ice grain) plumes of Enceladus have been observed by multiple Cassini instruments. We propose a composite ice grain size distribution covering a continuous size range from nanometer to micrometers, by combining the CAPS (Cassini Plasma Spectrometer), CDA (Cosmic Dust Analyzer), and RPWS (Radio and Plasma Wave Science) data (Hill et al., 2012; Kempf et al., 2008; Ye et al., 2012, 2013). We also study the grain charging process using the RPWS-LP (Langmuir Probe) data (Morooka et al., 2011). Based on these results, we found the grains ~ 2 - 20 nm to be dominant in both charge density and number density, the total grain mass density to be ~ 1 - 10 times that of the water vapor, and the mass loading rate to be ~100 kg/s. The grain motion implies a transition from ion-like motion to neutral-like motion as the grain size increases from ~nm to ~µm. The grains carry a total current of ~105A at Enceladus, which may be dominant or at least comparable to the ion pick-up and Birkeland current system in accounting for the magnetic perturbations observed near Enceladus. Acknowledgments First of all, I would like to express my sincerest and deepest gratitude to my advisor Prof. Tom Hill, for teaching me new knowledge, guiding me in my research, and inspiring me with new ideas. He was always patient with me and encouraged me to carry on whenever I felt frustrated. He has been the most supportive and helpful advisor I could expect. From him I have learned to think independently and work with both determination and patience, which I will benefit from in my whole life. I would also like to express my special appreciation to the committee members Prof. Pat Reiff and Prof. Stephen Semmes, for reviewing my thesis and for the questions and comments during my defense. My PhD research was supported by the Cassini Plasma Spectrometer (CAPS) project through NASA JPL contracts 1243218, 1356497, and 1405851 with the Southwest Research Institute. I am especially grateful to Dr. Ben Teolis and Dr. Mark Perry of the Cassini Ion and Neutral Mass Spectrometer (INMS) team, and also to Dr. Hunter Waite, the PI of CAPS and INMS. This thesis could not be accomplished without their help and guidance. My sincere gratitude also goes to Dr. Dave Young, the former PI of CAPS, for his support in my work. I am very thankful to Dr. Todd Smith, Dr. Gethyn Lewis, Dr. Michiko Morooka, and Dr. Sheng-Yi Ye, for sharing the data and for all the useful discussions. I owe much gratitude to my advisor’s former student Yi Chen for training me with the CAPS data system selflessly in his spare time after his graduation. I would also like to v thank my friends and colleagues Jian Yang, Chunming Zhu, and Liheng Zheng for helping me rehearse for my defense. I owe everything to my parents Ping Zhao and Yang Dong, who have loved me and supported me unconditionally in my whole life. Thanks to all my friends who have always been there for me. At last, I dedicate this thesis to my dear grandfather Shaoshu Dong, an educator and a poet, who is 82 years old and never stopped learning. I wish him all the best. vi Table of Contents 1. Introduction ..................................................................................................................... 1! 1.1. The Saturn system .................................................................................................... 1! 1.1.1. Saturn ................................................................................................................ 1! 1.1.2. Moons and rings ................................................................................................ 2! 1.2. Saturn’s Magnetosphere .......................................................................................... 3! 1.2.1. The structures of Saturn’s magnetosphere ........................................................ 4! 1.2.2. The dynamics of Saturn’s magnetosphere ........................................................ 6! 1.3. The Cassini Spacecraft ........................................................................................... 10! 1.3.1. The Cassini mission ........................................................................................ 10! 1.3.2. Instruments ...................................................................................................... 11! 1.4. Enceladus ............................................................................................................... 16! 1.4.1. The dust plumes .............................................................................................. 18! 1.4.2. The water vapor plumes .................................................................................. 21! 1.4.3. Interaction with Saturn’s magnetosphere ........................................................ 22! 2. The water vapor plumes of Enceladus .......................................................................... 30! 2.1. Cassini observations and previous modeling ......................................................... 30! 2.2. Model description .................................................................................................. 33! 2.2.1. Single-source model ........................................................................................ 33! 2.2.2. Multiple-source model .................................................................................... 38! 2.3. Data-model Comparison ........................................................................................ 40! 2.3.1. E2 INMS-data-model comparison .................................................................. 40! 2.3.2. E3 and E5 INMS-data-model comparison ...................................................... 43! vii 2.3.3. E7 INMS-data-model comparison .................................................................. 49! 2.3.4. Comparison with UVIS observations ............................................................. 57! 2.4. Source rate ............................................................................................................. 59! 2.5. Conclusions and discussion ................................................................................... 61! 2.5.1. Summary ......................................................................................................... 61! 2.5.2. Estimate of error bars ...................................................................................... 62! 2.5.3. Source locations and variability ...................................................................... 65! 2.5.4. Comparison with plasma production and outward transport rate ................... 67! 3. The dust plumes of Enceladus ...................................................................................... 68! 3.1. Cassini measurements of the densities in the plume .............................................. 68! 3.2. Charging of the ice grains ...................................................................................... 77! 3.2.1. Interaction with ambient plasma ..................................................................... 77! 3.2.2. Surface potential ............................................................................................. 79! 3.2.3. Charging time .................................................................................................. 81! 3.2.4. Charge per grain .............................................................................................. 85! 3.3. Size distributions .................................................................................................... 87! 3.3.1. Cassini observations ........................................................................................ 87! 3.3.2. A composite size distribution .......................................................................... 91! 3.3.3. Fitting with Cassini data ................................................................................. 92! 3.3.4. The number, charge and mass densities ........................................................ 101! 3.4. Conclusions and discussion ................................................................................. 106! 3.4.1. Summary ....................................................................................................... 106! 3.4.2. Interaction between the ice grains ................................................................. 107! viii 3.4.3. Comparison between ice grain and spacecraft charging ............................... 110! 4. Dynamics of the ice grains from the Enceladus