Computer Science: the Emergence of a Discipline
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Learning Theory: New Models and Algorithms
Computational Learning Theory: New Models and Algorithms by Robert Hal Sloan S.M. EECS, Massachusetts Institute of Technology (1986) B.S. Mathematics, Yale University (1983) Submitted to the Department- of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1989 @ Robert Hal Sloan, 1989. All rights reserved The author hereby grants to MIT permission to reproduce and to distribute copies of this thesis document in whole or in part. Signature of Author Department of Electrical Engineering and Computer Science May 23, 1989 Certified by Ronald L. Rivest Professor of Computer Science Thesis Supervisor Accepted by Arthur C. Smith Chairman, Departmental Committee on Graduate Students Abstract In the past several years, there has been a surge of interest in computational learning theory-the formal (as opposed to empirical) study of learning algorithms. One major cause for this interest was the model of probably approximately correct learning, or pac learning, introduced by Valiant in 1984. This thesis begins by presenting a new learning algorithm for a particular problem within that model: learning submodules of the free Z-module Zk. We prove that this algorithm achieves probable approximate correctness, and indeed, that it is within a log log factor of optimal in a related, but more stringent model of learning, on-line mistake bounded learning. We then proceed to examine the influence of noisy data on pac learning algorithms in general. Previously it has been shown that it is possible to tolerate large amounts of random classification noise, but only a very small amount of a very malicious sort of noise. -
Security Analysis of Cryptographically Controlled Access to XML Documents
Security Analysis of Cryptographically Controlled Access to XML Documents ¤ Mart´in Abadi Bogdan Warinschi Computer Science Department Computer Science Department University of California at Santa Cruz Stanford University [email protected] [email protected] ABSTRACT ments [4, 5, 7, 8, 14, 19, 23]. This line of research has led to Some promising recent schemes for XML access control em- e±cient and elegant publication techniques that avoid data ploy encryption for implementing security policies on pub- duplication by relying on cryptography. For instance, us- lished data, avoiding data duplication. In this paper we ing those techniques, medical records may be published as study one such scheme, due to Miklau and Suciu. That XML documents, with parts encrypted in such a way that scheme was introduced with some intuitive explanations and only the appropriate users (physicians, nurses, researchers, goals, but without precise de¯nitions and guarantees for the administrators, and patients) can see their contents. use of cryptography (speci¯cally, symmetric encryption and The work of Miklau and Suciu [19] is a crisp, compelling secret sharing). We bridge this gap in the present work. We example of this line of research. They develop a policy query analyze the scheme in the context of the rigorous models language for specifying ¯ne-grained access policies on XML of modern cryptography. We obtain formal results in sim- documents and a logical model based on the concept of \pro- ple, symbolic terms close to the vocabulary of Miklau and tection". They also show how to translate consistent poli- Suciu. We also obtain more detailed computational results cies into protections, and how to implement protections by that establish security against probabilistic polynomial-time XML encryption [10]. -
ITERATIVE ALGOR ITHMS for GLOBAL FLOW ANALYSIS By
ITERATIVE ALGOR ITHMS FOR GLOBAL FLOW ANALYSIS bY Robert Endre Tarjan STAN-CS-76-547 MARCH 1976 COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UN IVERS ITY Iterative Algorithms for Global Flow Analysis * Robert Endre Tarjan f Computer Science Department Stanford University Stanford, California 94305 February 1976 Abstract. This paper studies iterative methods for the global flow analysis of computer programs. We define a hierarchy of global flow problem classes, each solvable by an appropriate generalization of the "node listing" method of Kennedy. We show that each of these generalized methods is optimum, among all iterative algorithms, for solving problems within its class. We give lower bounds on the time required by iterative algorithms for each of the problem classes. Keywords: computational complexity, flow graph reducibility, global flow analysis, graph theory, iterative algorithm, lower time bound, node listing. * f Research partially supported by National Science Foundation grant MM 75-22870. 1 t 1. Introduction. A problem extensively studied in recent years [2,3,5,7,8,9,12,13,14, 15,2'7,28,29,30] is that of globally analyzing cmputer programs; that is, collecting information which is distributed throughout a computer program, generally for the purpose of optimizing the program. Roughly speaking, * global flow analysis requires the determination, for each program block f , of a property known to hold on entry to the block, independent of the path taken to reach the block. * A widely used amroach to global flow analysis is to model the set of possible properties by a semi-lattice (we desire the 'lmaximumtl property for each block), to model the control structure of the program by a directed graph with one vertex for each program block, and to specify, for each branch from block to block, the function by which that branch transforms the set of properties. -
Toward a Mathematical Semantics for Computer Languages
(! 1 J TOWARD A MATHEMATICAL SEMANTICS FOR COMPUTER LANGUAGES by Dana Scott and - Christopher Strachey Oxford University Computing Laboratory Programming Research Group-Library 8-11 Keble Road Oxford OX, 3QD Oxford (0865) 54141 Oxford University Computing Laboratory Programming Research Group tI. cr• "';' """, ":.\ ' OXFORD UNIVERSITY COMPUTING LABORATORY PROGRAMMING RESEARCH GROUP ~ 4S BANBURY ROAD \LJ OXFORD ~ .. 4 OCT 1971 ~In (UY'Y L TOWARD A ~ATHEMATICAL SEMANTICS FOR COMPUTER LANGUAGES by Dana Scott Princeton University and Christopher Strachey Oxford University Technical Monograph PRG-6 August 1971 Oxford University Computing Laboratory. Programming Research Group, 45 Banbury Road, Oxford. ~ 1971 Dana Scott and Christopher Strachey Department of Philosophy, Oxford University Computing Laboratory. 1879 lIall, Programming Research Group. Princeton University, 45 Banbury Road. Princeton. New Jersey 08540. Oxford OX2 6PE. This pape r is also to appear in Fl'(.'ceedinBs 0;- the .';y-,;;;o:illT:: on ComputeT's and AutoJ7'ata. lo-licroloo'ave Research Institute Symposia Series Volume 21. Polytechnic Institute of Brooklyn. and appears as a Technical Monograph by special aJ"rangement ...·ith the publishers. RefeJ"~nces in the Ii terature should be:- made to the _"!'OL·,-,',~;r:gs, as the texts are identical and the Symposia Sl?ries is gcaerally available in libraries. ABSTRACT Compilers for high-level languages aTe generally constructed to give the complete translation of the programs into machme language. As machines merely juggle bit patterns, the concepts of the original language may be lost or at least obscured during this passage. The purpose of a mathematical semantics is to give a correct and meaningful correspondence between programs and mathematical entities in a way that is entirely independent of an implementation. -
Why Mathematical Proof?
Why Mathematical Proof? Dana S. Scott, FBA, FNAS University Professor Emeritus Carnegie Mellon University Visiting Scholar University of California, Berkeley NOTICE! The author has plagiarized text and graphics from innumerable publications and sites, and he has failed to record attributions! But, as this lecture is intended as an entertainment and is not intended for publication, he regards such copying, therefore, as “fair use”. Keep this quiet, and do please forgive him. A Timeline for Geometry Some Greek Geometers Thales of Miletus (ca. 624 – 548 BC). Pythagoras of Samos (ca. 580 – 500 BC). Plato (428 – 347 BC). Archytas (428 – 347 BC). Theaetetus (ca. 417 – 369 BC). Eudoxus of Cnidus (ca. 408 – 347 BC). Aristotle (384 – 322 BC). Euclid (ca. 325 – ca. 265 BC). Archimedes of Syracuse (ca. 287 – ca. 212 BC). Apollonius of Perga (ca. 262 – ca. 190 BC). Claudius Ptolemaeus (Ptolemy)(ca. 90 AD – ca. 168 AD). Diophantus of Alexandria (ca. 200 – 298 AD). Pappus of Alexandria (ca. 290 – ca. 350 AD). Proclus Lycaeus (412 – 485 AD). There is no Royal Road to Geometry Euclid of Alexandria ca. 325 — ca. 265 BC Euclid taught at Alexandria in the time of Ptolemy I Soter, who reigned over Egypt from 323 to 285 BC. He authored the most successful textbook ever produced — and put his sources into obscurity! Moreover, he made us struggle with proofs ever since. Why Has Euclidean Geometry Been So Successful? • Our naive feeling for space is Euclidean. • Its methods have been very useful. • Euclid also shows us a mysterious connection between (visual) intuition and proof. The Pythagorean Theorem Euclid's Elements: Proposition 47 of Book 1 The Pythagorean Theorem Generalized If it holds for one Three triple, Similar it holds Figures for all. -
The Origins of Structural Operational Semantics
The Origins of Structural Operational Semantics Gordon D. Plotkin Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland I am delighted to see my Aarhus notes [59] on SOS, Structural Operational Semantics, published as part of this special issue. The notes already contain some historical remarks, but the reader may be interested to know more of the personal intellectual context in which they arose. I must straightaway admit that at this distance in time I do not claim total accuracy or completeness: what I write should rather be considered as a reconstruction, based on (possibly faulty) memory, papers, old notes and consultations with colleagues. As a postgraduate I learnt the untyped λ-calculus from Rod Burstall. I was further deeply impressed by the work of Peter Landin on the semantics of pro- gramming languages [34–37] which includes his abstract SECD machine. One should also single out John McCarthy’s contributions [45–48], which include his 1962 introduction of abstract syntax, an essential tool, then and since, for all approaches to the semantics of programming languages. The IBM Vienna school [42, 41] were interested in specifying real programming languages, and, in particular, worked on an abstract interpreting machine for PL/I using VDL, their Vienna Definition Language; they were influenced by the ideas of McCarthy, Landin and Elgot [18]. I remember attending a seminar at Edinburgh where the intricacies of their PL/I abstract machine were explained. The states of these machines are tuples of various kinds of complex trees and there is also a stack of environments; the transition rules involve much tree traversal to access syntactical control points, handle jumps, and to manage concurrency. -
Actor Model of Computation
Published in ArXiv http://arxiv.org/abs/1008.1459 Actor Model of Computation Carl Hewitt http://carlhewitt.info This paper is dedicated to Alonzo Church and Dana Scott. The Actor model is a mathematical theory that treats “Actors” as the universal primitives of concurrent digital computation. The model has been used both as a framework for a theoretical understanding of concurrency, and as the theoretical basis for several practical implementations of concurrent systems. Unlike previous models of computation, the Actor model was inspired by physical laws. It was also influenced by the programming languages Lisp, Simula 67 and Smalltalk-72, as well as ideas for Petri Nets, capability-based systems and packet switching. The advent of massive concurrency through client- cloud computing and many-core computer architectures has galvanized interest in the Actor model. An Actor is a computational entity that, in response to a message it receives, can concurrently: send a finite number of messages to other Actors; create a finite number of new Actors; designate the behavior to be used for the next message it receives. There is no assumed order to the above actions and they could be carried out concurrently. In addition two messages sent concurrently can arrive in either order. Decoupling the sender from communications sent was a fundamental advance of the Actor model enabling asynchronous communication and control structures as patterns of passing messages. November 7, 2010 Page 1 of 25 Contents Introduction ............................................................ 3 Fundamental concepts ............................................ 3 Illustrations ............................................................ 3 Modularity thru Direct communication and asynchrony ............................................................. 3 Indeterminacy and Quasi-commutativity ............... 4 Locality and Security ............................................ -
The Discoveries of Continuations
LISP AND SYMBOLIC COMPUTATION: An InternationM JournM, 6, 233-248, 1993 @ 1993 Kluwer Academic Publishers - Manufactured in The Nett~eriands The Discoveries of Continuations JOHN C. REYNOLDS ( [email protected] ) School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213-3890 Keywords: Semantics, Continuation, Continuation-Passing Style Abstract. We give a brief account of the discoveries of continuations and related con- cepts by A. van Vv'ijngaarden, A. W. Mazurkiewicz, F. L. Morris, C. P. Wadsworth. J. H. Morris, M. J. Fischer, and S. K. Abdali. In the early history of continuations, basic concepts were independently discovered an extraordinary number of times. This was due less to poor communication among computer scientists than to the rich variety of set- tings in which continuations were found useful: They underlie a method of program transformation (into continuation-passing style), a style of def- initionM interpreter (defining one language by an interpreter written in another language), and a style of denotational semantics (in the sense of Scott and Strachey). In each of these settings, by representing "the mean- ing of the rest of the program" as a function or procedure, continnations provide an elegant description of a variety of language constructs, including call by value and goto statements. 1. The Background In the early 1960%, the appearance of Algol 60 [32, 33] inspired a fi~rment of research on the implementation and formal definition of programming languages. Several aspects of this research were critical precursors of the discovery of continuations. The ability in Algol 60 to jump out of blocks, or even procedure bod- ies, forced implementors to realize that the representation of a label must include a reference to an environment. -
Michael Oser Rabin Automata, Logic and Randomness in Computation
Michael Oser Rabin Automata, Logic and Randomness in Computation Luca Aceto ICE-TCS, School of Computer Science, Reykjavik University Pearls of Computation, 6 November 2015 \One plus one equals zero. We have to get used to this fact of life." (Rabin in a course session dated 30/10/1997) Thanks to Pino Persiano for sharing some anecdotes with me. Luca Aceto The Work of Michael O. Rabin 1 / 16 Michael Rabin's accolades Selected awards and honours Turing Award (1976) Harvey Prize (1980) Israel Prize for Computer Science (1995) Paris Kanellakis Award (2003) Emet Prize for Computer Science (2004) Tel Aviv University Dan David Prize Michael O. Rabin (2010) Dijkstra Prize (2015) \1970 in computer science is not classical; it's sort of ancient. Classical is 1990." (Rabin in a course session dated 17/11/1998) Luca Aceto The Work of Michael O. Rabin 2 / 16 Michael Rabin's work: through the prize citations ACM Turing Award 1976 (joint with Dana Scott) For their joint paper \Finite Automata and Their Decision Problems," which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. ACM Paris Kanellakis Award 2003 (joint with Gary Miller, Robert Solovay, and Volker Strassen) For \their contributions to realizing the practical uses of cryptography and for demonstrating the power of algorithms that make random choices", through work which \led to two probabilistic primality tests, known as the Solovay-Strassen test and the Miller-Rabin test". ACM/EATCS Dijkstra Prize 2015 (joint with Michael Ben-Or) For papers that started the field of fault-tolerant randomized distributed algorithms. -
A Memorable Trip Abhisekh Sankaran Research Scholar, IIT Bombay
A Memorable Trip Abhisekh Sankaran Research Scholar, IIT Bombay It was my first trip to the US. It had not yet sunk in that I had been chosen by ACM India as one of two Ph.D. students from India to attend the big ACM Turing Centenary Celebration in San Francisco until I saw the familiar face of Stephen Cook enter a room in the hotel a short distance from mine; later, Moshe Vardi recognized me from his trip to IITB during FSTTCS, 2011. I recognized Nitin Saurabh from IMSc Chennai, the other student chosen by ACM-India; 11 ACM SIG©s had sponsored students and there were about 75 from all over the world. Registration started at 8am on 15th June, along with breakfast. Collecting my ©Student Scholar© badge and stuffing in some food, I entered a large hall with several hundred seats, a brightly lit podium with a large screen in the middle flanked by two others. The program began with a video giving a brief biography of Alan Turing from his boyhood to the dynamic young man who was to change the world forever. There were inaugural speeches by John White, CEO of ACM, and Vint Cerf, the 2004 Turing Award winner and incoming ACM President. The MC for the event, Paul Saffo, took over and the panel discussions and speeches commenced. A live Twitter feed made it possible for people in the audience and elsewhere to post questions/comments which were actually taken up in the discussions. Of the many sessions that took place in the next two days, I will describe three that I found most interesting. -
A Brief Scientific Biography of Robin Milner
A Brief Scientific Biography of Robin Milner Gordon Plotkin, Colin Stirling & Mads Tofte Robin Milner was born in 1934 to John Theodore Milner and Muriel Emily Milner. His father was an infantry officer and at one time commanded the Worcestershire Regiment. During the second world war the family led a nomadic existence in Scotland and Wales while his father was posted to different parts of the British Isles. In 1942 Robin went to Selwyn House, a boarding Preparatory School which is normally based in Broadstairs, Kent but was evacuated to Wales until the end of the war in 1945. In 1947 Robin won a scholarship to Eton College, a public school whose fees were a long way beyond the family’s means; fortunately scholars only paid what they could afford. While there he learned how to stay awake all night solving mathematics problems. (Scholars who specialised in maths were expected to score 100% on the weekly set of problems, which were tough.) In 1952 he won a major scholarship to King’s College, Cambridge, sitting the exam in the Examinations Hall which is 100 yards from his present office. However, before going to Cambridge he did two years’ national military service in the Royal Engineers, gaining a commission as a second lieutenant (which relieved his father, who rightly suspected that Robin might not be cut out to be an army officer). By the time he went to Cambridge in 1954 Robin had forgotten a lot of mathematics; but nevertheless he gained a first-class degree after two years (by omitting Part I of the Tripos). -
Second International Computer Programming Education Conference
Second International Computer Programming Education Conference ICPEC 2021, May 27–28, 2021, University of Minho, Braga, Portugal Edited by Pedro Rangel Henriques Filipe Portela Ricardo Queirós Alberto Simões OA S I c s – Vo l . 91 – ICPEC 2021 www.dagstuhl.de/oasics Editors Pedro Rangel Henriques Universidade do Minho, Portugal [email protected] Filipe Portela Universidade do Minho, Portugal [email protected] Ricardo Queirós Politécnico do Porto, Portugal [email protected] Alberto Simões Politécnico do Cávado e Ave, Portugal [email protected] ACM Classifcation 2012 Applied computing → Education ISBN 978-3-95977-194-8 Published online and open access by Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern, Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-194-8. Publication date July, 2021 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografe; detailed bibliographic data are available in the Internet at https://portal.dnb.de. License This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0): https://creativecommons.org/licenses/by/4.0/legalcode. In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work under the following conditions, without impairing or restricting the authors’ moral rights: Attribution: The work must be attributed to its authors. The copyright is retained by the corresponding authors. Digital Object Identifer: 10.4230/OASIcs.ICPEC.2021.0 ISBN 978-3-95977-194-8 ISSN 1868-8969 https://www.dagstuhl.de/oasics 0:iii OASIcs – OpenAccess Series in Informatics OASIcs is a series of high-quality conference proceedings across all felds in informatics.