Transient Electrical Coupling Regulates Formation of Neuronal Networks

Total Page:16

File Type:pdf, Size:1020Kb

Transient Electrical Coupling Regulates Formation of Neuronal Networks BRAIN RESEARCH 1129 (2007) 63– 71 available at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Transient electrical coupling regulates formation of neuronal networks Theresa M. Szaboa, Mark J. Zoranb,⁎ aDominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA bDepartment of Biology, Texas A&M University, MS 3258, Department of Biology, 231 BSBW, College Station, TX 77843-3258, USA ARTICLE INFO ABSTRACT Article history: Electrical synapses are abundant before and during developmental windows of intense Accepted 25 September 2006 chemical synapse formation, and might therefore contribute to the establishment of Available online 6 December 2006 neuronal networks. Transient electrical coupling develops and is then eliminated between regenerating Helisoma motoneurons 110 and 19 during a period of 48–72 h in vivo and in vitro Keywords: following nerve injury. An inverse relationship exists between electrical coupling and Electrical synapse chemical synaptic transmission at these synapses, such that the decline in electrical coupling Chemical synapse is coincident with the emergence of cholinergic synaptic transmission. In this study, we have Helisoma generated two- and three-cell neuronal networks to test whether predicted synaptogenic Synaptogenesis, network capabilities were affected by previous synaptic interactions. Electrophysiological analyses Synapse formation demonstrated that synapses formed in three-cell neuronal networks were not those predicted based on synaptogenic outcomes in two-cell networks. Thus, new electrical and chemical synapse formation within a neuronal network is dependent on existing connectivity of that network. In addition, new contacts formed with established networks have little impact on these existing connections. These results suggest that network- dependent mechanisms, particularly those mediated by gap junctional coupling, regulate synapse formation within simple neural networks. © 2006 Elsevier B.V. All rights reserved. 1. Introduction contacting cells (Kandler and Katz, 1998). In many mammalian brain regions, electrical synapses are abundant before periods Electrical coupling is widespread in invertebrate nervous of chemical synapse formation and then decline in number as systems as well as in the developing mammalian brain. the extent of chemical neurotransmission increases (Bennett Neurons functionally coupled by electrical synapses possess and Zukin, 2004). The appearance of this gap junctional coordinated patterns of spontaneous activity and changes in communication, and the resulting synchronization of neuro- intracellular calcium concentration (Yuste et al., 1992). Some nal activities, is thought to be important for the development of these patterned activities are due to the presence of gap of neuronal assemblies (Kandler and Katz, 1995) and matura- junctions, i.e., membrane channels that provide a conduit for tion of neuronal networks (Allen and Warner, 1991; Walton the passage of electrical current (charged ions) and small and Navarrete, 1991; Roerig and Feller, 2000; Peinado, 2001; cytoplasmic messengers, such as IP3 and cAMP, between Personius et al., 2001; Montoro and Yuste, 2004). For example, ⁎ Corresponding author. Fax: +1 979 845 2891. E-mail addresses: [email protected] (T.M. Szabo), [email protected] (M.J. Zoran). 0006-8993/$ – see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.brainres.2006.09.112 64 BRAIN RESEARCH 1129 (2007) 63– 71 dye coupling between magnocellular neurons of the rat 2004) also occurred in neurite-bearing networks. Cells were hypothalamus increases in vivo during postnatal weeks 1 plated in each possible two-cell configuration, as 19–19, 19–110 and 2 and then decreases during a period of intense chemical and 110–110 partners, and were then incubated for 1 or 5 days synapse formation at postnatal weeks 3 and 4 (Arumugam of contact. Neurite extension in these cultures was elaborate et al., 2005). Chronic block of NMDA receptors significantly and although all somata were initially plated in contact, in reduces uncoupling among these hypothalamic neurons, some cases neuritic fascicles formed between somata sepa- demonstrating that chemical synaptic signaling can regulate rated during process outgrowth (Figs. 1A and B). the developmental uncoupling of gap junctions. Similarly, in spinal motoneurons, NMDA signaling mediates gap junction 2.1. Electrical and chemical neurotransmission in two-cell uncoupling (Mentis et al., 2002). A rapid developmental neuronal networks transition from gap junction-coupled to NMDA receptor- mediated synaptic transmission is also thought to function Electrical connections formed in a manner similar to that seen in cortical network formation (Dupont et al., 2006). previously in vivo (Szabo et al., 2004). After 24 h of cell–cell A sequential progression from electrical coupling to contact, 19–19 and 19–110 pairs possessed coupling coeffi- chemical synaptic transmission exists at regenerating cients (ECCs) of 0.32±0.06 (n=29) and 0.33±0.06 (n=32), res- synapses in the snail, Helisoma, both in vivo and in vitro.At pectively. Two-cell 110–110 networks had an ECC of 0.11±0.05 a period of transition from electrical to chemical commu- (n=6). Following 5 days of contact, 19–19 and 110–110 pairs nication, the two types of synaptic transmission appear to had strong electrical connections (Fig. 1C) while 19–110 pairs be inversely related; i.e., gap junctional coupling is sustained exhibited a reduction in coupling over this same period. Thus, when cholinergic neurotransmission is blocked with tubo- curare and chemical synaptic transmission is increased when electrical coupling is reduced (Szabo et al., 2004). While many examples of the temporal progression from electrical to chemical neurotransmission have been reported (Kandler and Katz, 1998; Szabo et al., 2004; Arumugam et al., 2005; Dupont et al., 2006) and underlying mechanisms have been proposed (Arumugam et al., 2005; Neunuebel and Zoran, 2005), much is still unknown about the influence of these interactions on the formation of neuronal networks. To directly address this question, we have used the defined synapses formed between identified Helisoma neurons in vitro to determine if the process of transient electrical coupling affects subsequent synapse formation in three-cell neuronal networks. Transient electrical synaptic connections develop between Helisoma motoneurons 110 and 19, forming and then disap- pearing over a 48- to 72-h period (Szabo et al., 2004; Neunuebel and Zoran, 2005). The decline in electrical coupling is coincident with the emergence of unidirectional cholinergic synaptic transmission between presynaptic neuron 110 and postsynaptic neuron 19. In the current study, we have generated two- and three-cell neuronal networks to deter- Fig. 1 – Formation of electrical synaptic connections between mine (1) whether new synaptic contacts impact extant neurons paired in outgrowth-permissive conditions. network connectivity, and (2) whether the formation of new (A) Neurons were plated in contacting pairs for 5 days on connections is affected by a neuron's prior synaptic connec- PLL-coated dishes, which promoted adherence to the dish tivity. Our results demonstrate that electrical and chemical surface and outgrowth of processes. After 5 days of synapses form in three-cell networks in a manner not outgrowth, neurons 19 (larger soma) and 110 exhibited predicted from two-cell networks, suggesting that gap junc- extensive neuritic processes. (B) Although neurons were tional coupling and uncoupling plays an important role in plated with contacting somata, in some pairs somata moved regulating neuronal network formation in a cell-specific apart as a large fascicle of processes developed between the manner. two cell bodies. (C) Electrical coupling coefficients (ECCs) were determined as the ratio of postsynaptic to presynaptic voltage changes. ECC values (normalized mean±SEM) for 2. Results 19–19, 110–110, and 19–110 pairs, with 5-day ECC values normalized to 1-day values (19–19: 1-day ECC=0.32±0.06, Buccal neurons 19 and 110 were cultured in conditions n=29 vs. 5-day ECC=0.32±0.07, n=28; NSD (no significant permitting neurite outgrowth, which assured contact among difference). 110–110: 1-day ECC=0.11±0.05, n=6 vs. 5-day neurons of two- and three-cell networks. We first determined ECC=0.15±0.05, n=6; NSD. 19–110: 1-day ECC=0.33±0.06, whether the sequence of synaptogenic events previously n=32 vs. 5-day ECC=0.20±0.05, n=19; *, p<0.05, Student's observed in these neurons lacking neurites (Szabo et al., t-test). BRAIN RESEARCH 1129 (2007) 63– 71 65 electrical connections were maintained or strengthened at significantly in strength (Fig. 2A). A negative correlation homotypic contacts, while heterotypic connections exhibited between these two modes of synaptic communication was significant uncoupling. In addition, by day 5 of contact, an observed for these 110–19 synapses (Fig. 2B). increasing percentage of 110–19 pairs possessed chemical connectivity and PSPs of greater amplitude (Fig. 2A). Choli- 2.2. Formation of three-cell networks nergic synaptic transmission between presynaptic 110 and postsynaptic 19 was present in 50% of cell pairs at day 2 (n=8) Having described the temporal sequence of synapse forma- and 86% of pairs at day 4 (n=7). Chemical neurotransmission tion in two-cell configurations, we tested whether the was not detected in 19–19 (day 2, n=17;
Recommended publications
  • Electrical Synapses Are Drivers of Neural Plasticity Through Passage of Small Molecules
    Electrical Synapses are Drivers of Neural Plasticity Through Passage of Small Molecules Lisa Voelker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Jihong Bai, Chair Linda Buck Cecilia Moens Program Authorized to Offer Degree: Molecular and Cellular Biology ©Copyright 2019 Lisa Voelker 2 University of Washington Abstract Electrical Synapses are Drivers of Neural Plasticity through Passage of Small Molecules Lisa Voelker Chair of the Supervisory Committee: Jihong Bai Department of Biochemistry In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize 3 to different regions of the nerve ring, indicating that they are not present in the same synapses.
    [Show full text]
  • Nervous Tissue
    Nervous Tissue Prof.Prof. ZhouZhou LiLi Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology Organization:Organization: neuronsneurons (nerve(nerve cells)cells) neuroglialneuroglial cellscells Function:Function: Ⅰ Neurons 1.1. structurestructure ofof neuronneuron somasoma neuriteneurite a.a. dendritedendrite b.b. axonaxon 1.11.1 somasoma (1)(1) nucleusnucleus LocatedLocated inin thethe centercenter ofof soma,soma, largelarge andand palepale--stainingstaining nucleusnucleus ProminentProminent nucleolusnucleolus (2)(2) cytoplasmcytoplasm (perikaryon)(perikaryon) a.a. NisslNissl bodybody b.b. neurofibrilneurofibril NisslNissl’’ss bodiesbodies LM:LM: basophilicbasophilic massmass oror granulesgranules Nissl’s Body (TEM) EMEM:: RERRER,, freefree RbRb FunctionFunction:: producingproducing thethe proteinprotein ofof neuronneuron structurestructure andand enzymeenzyme producingproducing thethe neurotransmitterneurotransmitter NeurofibrilNeurofibril thethe structurestructure LM:LM: EM:EM: NeurofilamentNeurofilament micmicrotubulerotubule FunctionFunction cytoskeleton,cytoskeleton, toto participateparticipate inin substancesubstance transporttransport LipofuscinLipofuscin (3)(3) CellCell membranemembrane excitableexcitable membranemembrane ,, receivingreceiving stimutation,stimutation, fromingfroming andand conductingconducting nervenerve impulesimpules neurite: 1.2 Dendrite dendritic spine spine apparatus Function: 1.3 Axon axon hillock, axon terminal, axolemma Axoplasm: microfilament, microtubules, neurofilament, mitochondria,
    [Show full text]
  • Electrical Synapses and Their Functional Interactions with Chemical Synapses
    REVIEWS Electrical synapses and their functional interactions with chemical synapses Alberto E. Pereda Abstract | Brain function relies on the ability of neurons to communicate with each other. Interneuronal communication primarily takes place at synapses, where information from one neuron is rapidly conveyed to a second neuron. There are two main modalities of synaptic transmission: chemical and electrical. Far from functioning independently and serving unrelated functions, mounting evidence indicates that these two modalities of synaptic transmission closely interact, both during development and in the adult brain. Rather than conceiving synaptic transmission as either chemical or electrical, this article emphasizes the notion that synaptic transmission is both chemical and electrical, and that interactions between these two forms of interneuronal communication might be required for normal brain development and function. Communication between neurons is required for Electrical and chemical synapses are now known to brain function, and the quality of such communica- coexist in most organisms and brain structures, but details tion enables hardwired neural networks to act in a of the properties and distribution of these two modalities of dynamic fashion. Functional interactions between transmission are still emerging. Most research efforts neurons occur at anatomically identifiable cellular have focused on exploring the mechanisms of chemi- regions called synapses. Although the nature of synaptic cal transmission, and considerably less is known transmission has been an area of enormous controversy about those underlying electrical transmission. It was (BOX 1), two main modalities of synaptic transmission — thought that electrical synapses were more abundant namely, chemical and electrical — are now recognized. At in invertebrates and cold-blooded vertebrates than chemical synapses, information is transferred through in mammals.
    [Show full text]
  • Electrical Synaptic Transmission Requires a Postsynaptic Scaffolding Protein
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410696; this version posted December 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. TITLE: Electrical synaptic transmission requires a postsynaptic scaffolding protein Abagael M. Lasseigne1*, Fabio A. Echeverry2*, Sundas Ijaz2*, Jennifer Carlisle Michel1*, E. Anne Martin1, Audrey J. Marsh1, Elisa Trujillo1, Kurt C. Marsden3, Alberto E. Pereda2#, Adam C. Miller1#@ * denotes co-first author # denotes co-corresponding author @ denotes lead contact Affiliations: 1 Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA 2 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA 3 Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA Correspondence: [email protected] [email protected] Keywords: gap junction; connexin; ZO1 ZO-1; synaptic development; electrical coupling 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410696; this version posted December 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. SUMMARY Electrical synaptic transmission relies on neuronal gap junctions containing channels constructed by Connexins. While at chemical synapses neurotransmitter-gated ion channels are critically supported by scaffolding proteins, it is unknown if channels at electrical synapses require similar scaffold support.
    [Show full text]
  • Electrical Synapses in the Mammalian Brain
    24 May 2004 19:3 AR AR217-NE27-15.tex AR217-NE27-15.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.neuro.26.041002.131128 Annu. Rev. Neurosci. 2004. 27:393–418 doi: 10.1146/annurev.neuro.26.041002.131128 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on February 26, 2004 ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN BarryW.Connors1 and Michael A. Long2 1Department of Neuroscience, Brown University, Providence, Rhode Island 02912; email: [email protected] 2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; email: [email protected] Key Words gap junction, electrotonic synapse, electrical coupling, connexin, connexin36 I Abstract Many neurons in the mammalian central nervous system communicate through electrical synapses, defined here as gap junction–mediated connections. Elec- trical synapses are reciprocal pathways for ionic current and small organic molecules. They are often strong enough to mediate close synchronization of subthreshold and spiking activity among clusters of neurons. The most thoroughly studied electrical synapses occur between excitatory projection neurons of the inferior olivary nucleus and between inhibitory interneurons of the neocortex, hippocampus, and thalamus. All these synapses require the gap junction protein connexin36 (Cx36) for robust electri- cal coupling. Cx36 appears to interconnect neurons exclusively, and it is expressed widely along the mammalian neuraxis, implying that there are undiscovered electrical synapses throughout the central nervous system. Some central neurons may be electri- cally coupled by other connexin types or by pannexins, a newly described family of gap junction proteins. Electrical synapses are a ubiquitous yet underappreciated feature of neural circuits in the mammalian brain.
    [Show full text]
  • 11 Introduction to the Nervous System and Nervous Tissue
    11 Introduction to the Nervous System and Nervous Tissue ou can’t turn on the television or radio, much less go online, without seeing some- 11.1 Overview of the Nervous thing to remind you of the nervous system. From advertisements for medications System 381 Yto treat depression and other psychiatric conditions to stories about celebrities and 11.2 Nervous Tissue 384 their battles with illegal drugs, information about the nervous system is everywhere in 11.3 Electrophysiology our popular culture. And there is good reason for this—the nervous system controls our of Neurons 393 perception and experience of the world. In addition, it directs voluntary movement, and 11.4 Neuronal Synapses 406 is the seat of our consciousness, personality, and learning and memory. Along with the 11.5 Neurotransmitters 413 endocrine system, the nervous system regulates many aspects of homeostasis, including 11.6 Functional Groups respiratory rate, blood pressure, body temperature, the sleep/wake cycle, and blood pH. of Neurons 417 In this chapter we introduce the multitasking nervous system and its basic functions and divisions. We then examine the structure and physiology of the main tissue of the nervous system: nervous tissue. As you read, notice that many of the same principles you discovered in the muscle tissue chapter (see Chapter 10) apply here as well. MODULE 11.1 Overview of the Nervous System Learning Outcomes 1. Describe the major functions of the nervous system. 2. Describe the structures and basic functions of each organ of the central and peripheral nervous systems. 3. Explain the major differences between the two functional divisions of the peripheral nervous system.
    [Show full text]
  • Synapse Transmission
    Synapse Transmission There are two types of synapses found in your body: electrical and chemical. Electrical synapses allow the direct passage of ions and signaling molecules from cell to cell. In contrast, chemical synapses do not pass the signal directly from the presynaptic cell to the postsynaptic cell. In a chemical synapse, an action potential in the presynaptic neuron leads to the release of a chemical messenger called aneurotransmitter. The neurotransmitter then diffuses across the synapse and binds to receptors on the postsynaptic cell. Binding of the neurotransmitter leads to the production of an electrical signal in the postsynaptic cell. Why does the body have two types of synapses? Each type of synapse has functional advantages and disadvantages. An electrical synapse passes the signal very quickly, which allows groups of cells to act in unison. A chemical synapse takes much longer to transmit the signal from one cell to the next; however, chemical synapses allow neurons to integrate information from multiple presynaptic neurons, determining whether or not the postsynaptic cell will continue to propagate the signal. Neurons respond differently based on information transmitted by multiple chemical synapses. Let’s take a closer look at the structure and function of each type of synapse. Electrical synapses transmit action potentials via the direct flow of electrical current at gap junctions. Gap junctions are formed when two adjacent cells have transmembrane pores that align. The membranes of the two cells are linked together and the aligned pores form a passage between the cells. Consequently, several types of molecules and ions are allowed to pass between the cells.
    [Show full text]
  • Synaptic Transmission Dr
    Synaptic Transmission Dr. Simge Aykan Department of Physiology Synaptic Transmission • Biological process by which a neuron communicates with a target cell across a synapse • Synapse is an anatomically specialized junction between two neurons, at which the electrical activity in a presynaptic neuron influences the electrical activity of a postsynaptic neuron • Synapse can be between a neuron and a • Neuron • Muscle • Gland cell Synaptic Transmission • The average neuron forms several thousand synaptic connections and receives a similar number • The Purkinje cell of the cerebellum receives up to 100,000 synaptic inputs • 1011 neurons, 1014 (100 trillion!) synapses Synaptic Transmission • Electrical synapse transmission: transfer of electrical signals through gap junctions • Chemical synaptic transmission: release of a neurotransmitter from the pre-synaptic neuron, and neurotransmitter binding to specific post-synaptic receptors Electrical Synapses • Connection through gap junctions • Narrow gap between membranes (3 nm) • Connexin connexon gap junction • Direct ion passage from one neuron to another • Big enough for many small organic molecules to pass through (1-2 nm) • Mostly between dendrites Electrical Synapses • Electrical postsynaptic potential (PSP) induced by ionic current flow (1 mV or less) Electrical Synapses • Advantages • Extremely rapid • Orchestrating the actions of large groups of neurons • Can transmit metabolic signals between cells • Less common in vertebrate nervous system • Require a large area of contact; restricting
    [Show full text]
  • Electrical Synapse Asymmetry Results From, and Masks, Neuronal Heterogeneity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450525; this version posted July 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Full title: Electrical synapse asymmetry results from, and masks, neuronal heterogeneity 2 Short Title: On asymmetry at electrical synapses 3 Authors: Austin Mendoza1 and Julie S. Haas1,* 4 5 Affiliation: 6 1 Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA 7 * Corresponding author 8 Email: [email protected] 9 10 Keywords: electrical synapse, computational model, asymmetry, rectification, gap junction 11 Figures: 7 12 13 14 Data sharing: Code is available at https://github.com/jhaaslab/asymmetry 15 Funding was provided by the NSF (IOS 1557474) bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450525; this version posted July 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 ABSTRACT 17 Electrical synapses couple inhibitory neurons across the brain, underlying a variety of 18 functions that are modifiable by activity. Despite recent advances, many basic functions and 19 contributions of electrical synapses within neural circuitry remain underappreciated. Among 20 these is the source and impact of electrical synapse asymmetry. Using multi-compartmental 21 models of neurons coupled through dendritic electrical synapses, we investigated intrinsic 22 factors that contribute to synaptic asymmetry and that result in modulation of spike time 23 between coupled cells.
    [Show full text]
  • Cellular and Molecular Mechanisms of Synaptic Specificity
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2016 Cellular and Molecular Mechanisms of Synaptic Specificity Getz, Angela Getz, A. (2016). Cellular and Molecular Mechanisms of Synaptic Specificity (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/25237 http://hdl.handle.net/11023/3466 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Cellular and Molecular Mechanisms of Synaptic Specificity by Angela Michelle Getz A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN NEUROSCIENCE CALGARY, ALBERTA NOVEMBER, 2016 © Angela Michelle Getz 2016 Abstract All nervous system functions rely upon the specificity of synapse formation and maturation, and the experience-dependent remodeling of established synapses. Activity- and neurotrophic factor (NTF)-dependent signaling events guide the appropriate expression and localization of various components of pre- and postsynaptic machinery to ensure synaptic network function is matched to the behavioral requirements of an animal. These processes govern the function of the individual synapses formed by any given neuron, although the underlying cellular and molecular mechanisms have not been fully defined. To determine postsynaptic mechanisms of synaptic specificity, I investigated the role of menin, the product of the MEN1 tumor suppressor gene, in promoting cholinergic postsynaptic function in response to NTFs.
    [Show full text]
  • The NEURONS and NEURAL SYSTEM: a 21St CENTURY PARADIGM
    The NEURONS and NEURAL SYSTEM: a 21st CENTURY PARADIGM This material is excerpted from the full β-version of the text. The final printed version will be more concise due to further editing and economical constraints. A Table of Contents and an index are located at the end of this paper. A few citations have yet to be defined and are indicated by “xxx.” James T. Fulton Neural Concepts [email protected] August 1, 2016 Copyright 2011 James T. Fulton 2 Neurons & the Nervous System [xxx consider connexon, connexons instead of conexus, conexuses ] 2 The Functional Configuration of the Basic Neuron 1 Notice: The Coursera organization has recently begun offering free courses claimed to be at the college level. The course entitled “Computational Neuroscience” by two little known instructors, Adrienne Fairhall, Rajesh P. N. Rao2, from the University of Washington is based on the literature repeating endlessly the state of the art in the cytology of the cell and neurons from the first half of the 20th Century–specifically prior to the dawn of semiconductor physics, the discovery of the transistor, and the more recent discovery of the biological transistor. The latter is now in commercial use in organic light emitting device screens in cellphones and even television monitors. The existence of the biological transistor, a three-terminal device, totally deprecates the two terminal device, based on the Hodgkin-Huxley conceptual explanation of their totally empirical experiments, that is the basis of the course. The following material is in no way compatible with that new telecourse (May 2013). No further discussion of the telecourse except to point out that it remains possible to obtain a PhD in computational neuroscience without having demonstrated any detailed knowledge of how the neuron actually works.
    [Show full text]
  • NERVE TISSUE Neuron – Nerve Cell
    Department of Histology and Embryology, P. J. Šafárik University, Medical Faculty, Košice NERVE TISSUE: Sylabus for foreign students Author: doc. MVDr. Iveta Domoráková, PhD. Revised by: prof. MUDr. Eva Mechírová, CSc. NERVE TISSUE FUNCTION: Reception, transmission, processing of nerve stimuli. Coordination of all functional activities in the body: - motor function (body movement) - sensory (rapid response to external stimuli) - visceral, endocrine and exocrine glands - mental functions, memory, emotion A) Anatomically nervous system consists of: 1. CNS (central nervous system) – brain, spinal cord 2. PNS (peripheral nervous system) – peripheral nerves and ganglia B) Functionally nervous system is divided into the: 1. Somatic nervous system (sensory and motor innervation) 2. Autonomic nervous system (involuntary innervation of smooth muscles, glands) C) Microscopic structure of the nerve tissue - two types of cells: 1. Nerve cells – neurons 2. Glial cells (supporting, electrical insulation, metabolic function) Neuron – nerve cell - is the structural and functional unit of the nerve tissue - receives stimuli from other cells - conducts electrical impulses to another cells by their processes - chainlike communication - ten bilion of neurons in humans A. Neurons according the shape: Pyramidal (E) star-shaped (D) pear-shaped (G) oval (B) B. Types of neurons according number of the processes 1. multipolar (D,E,G)) 2. bipolar (A) 3. pseudounipolar (B) 4. unipolar C. Neurons - according the function Motor (efferent) neurons – convey impulses
    [Show full text]