Setting Geologico Del Volcanismo En Los Andes
Total Page:16
File Type:pdf, Size:1020Kb
Revista geológica de Chile - <b>Active Andean volcanism</b>: <b>its g... http://www.scielo.cl/scielo.php?pid=S0716-02082004000200001&script... Revista geológica de Chile ISSN 0716-0208 versión impresa Rev. geol. Chile v.31 n.2 Santiago dic. 2004 Como citar este artículo Revista Geológica de Chile, Vol. 31, No. 2, p. 161-206, 11 Figs., December 2004. REVIEW PAPER Active Andean volcanism: its geologic and tectonic setting Charles R. Stern Department of Geological Sciences, University of Colorado, Boulder, Colorado, 80309-0399 U.S.A. [email protected] ABSTRACT The Andean volcanic arc includes over 200 potentially active Quaternary volcanoes, and at least 12 giant caldera/ignimbrite systems, occurring in four separate segments referred to as the Northern, Central, Southern and Austral Volcanic Zones. Volcanism results from subduction of the Nazca and Antarctic oceanic plates below South America. Active volcanoes occur where the angle of subduction is relatively steep (>25°), and active arc segments are separated by regions below which subduction angle decreases and becomes relatively flat (< 10°) at depths >100 km. Segments of low angle subduction formed beginning in the Miocene in association with subduction of buoyant oceanic plateaus and ridges, and current segmentation of subduction geometry and active Andean volcanic zones is clearly a transient feature related to Neogene tectonics. A genetic relation between subduction and volcanism is confirmed by geochemical studies indicating that generation of Andean magmas is initiated by dehydration and/or melting of subducting oceanic lithosphere and interaction of these slab-derived fluids/melts with the overlying mantle wedge. Continental crust is incorporated into Andean magmas by a combination of both subduction of crust into the subarc mantle and assimilation of crust into mantle-derived magmas. Variations in the rate of subduction erosion and subduction of continental crust significantly affect not only Andean magma chemistry, but also the along-strike intraplate mechanical coupling in the subduction zone and the dynamics of mountain building in the Andes. Crustal components are most significant in magmas erupted in the Central Volcanic Zone, where the crust is extremely thick (>70 km) and estimated rates of subduction erosion of the continental margin, possibly equivalent to as much as 4% of the volume of subducting oceanic crust, are also greatest due to the hyper-arid 1 de 68 19-05-2007 14:44 Revista geológica de Chile - <b>Active Andean volcanism</b>: <b>its g... http://www.scielo.cl/scielo.php?pid=S0716-02082004000200001&script... climate conditions and low sediment supply to the trench. Obvious hazards associated with Andean volcanoes include lava and pyroclastic flows, lahars, debris flows resulting from sector collapse, and tephra falls. More than 25,000 people have been killed by the >600 eruptions of these volcanoes catalogued since the year 1532, most of these by lahars generated during the eruption of Nevado del Ruiz, Colombia, in 1985. Despite the fact that >20 million people live within < 100 km of an active Andean volcano, mostly in low-lying areas in the intermontane valleys of Colombia and Ecuador and the Central Valley of south-central Chile, only <25 of these volcanoes are continuously monitored for signs of activity. Key words: South America, Andes, volcanoes, Magma genesis, Volcanic hazards. RESUMEN Volcanismo andino activo: marco geológico y tectónico. El arco volcánico andino incluye más de 200 estratovolcanes y, al menos, 12 sistemas de calderas gigantes potencialmente activos, dispuestos en cuatro segmentos separados de la cadena andina conocidos como Zonas Volcánicas Norte, Central, Sur y Austral, y cuya actividad es producto de la subducción de las placas oceanicas Nazca y Antártica bajo la placa sudamericana. Los cuatro segmentos con volcanismo activo ocurren en zonas donde el ángulo de subducción es relativamente inclinado (25°), y entre ellos existen regiones donde el ángulo de subducción es relativamente plano (< 10°) a profundidades >100 km y el volcanismo está ausente. Las zonas de bajo ángulo de subducción habrían comenzado a formarse durante el Mioceno debido a la subducción de plateaus y dorsales oceánicas, indicando que la actual segmentación de la zona de subducción y el volcanismo andino es un rasgo transitorio relacionado a la actividad tectónica neógena. La relación genética entre subducción y volcanismo ha sido confirmada por estudios geoquímicos que indican que la actividad magmática se inicia por la deshidratación y/o fusión de la litosfera oceánica subductada y la interacción de los fluidos liberados con el manto astenosférico que la sobreyace. Componentes derivados de la corteza continental son también incorporados en los magmas andinos a través de la erosión por subducción del margen continental y/o asimilación de material cortical en los magmas derivados del manto. Las variaciones en la tasa de erosión por subducción y subducción de corteza continental afectan en forma significativa no sólo la química de los magmas andinos, sino también el acomplamiento mecánico de intraplaca en la zona de subducción y la dinámica orogénica a lo largo de los Andes. Componentes corticales son más significativos en los magmas extruidos en la Zona Volcánica Central donde la corteza es extremadamente gruesa (>70 km) y las tasas de erosión por subducción del margen continental alcanzan, posiblemente, a consumir un volumen de rocas equivalente hasta un 4% del volumen de la corteza oceánica subductada, son también muy elevadas debido a las condiciones climáticas hiperáridas y el bajo aporte de sedimentos a la fosa. Lavas, flujos piroclásticos, lahares, flujos de detritos producto de colapso sectorial de estratovolcanes, y la caída de tefra son algunos de los peligros y riesgos más importantes asociados al volcanismo andino. Desde el año 1532 más de 25.000 personas han muerto como consecuencia de >600 erupciones con registro histórico. La mayor parte de estas muertes ocurrió en 1985 durante la erupción de los Nevados del Ruiz en Colombia. A pesar de que más de 20 millones de personas viven a menos de 100 km de distancia de un volcán activo en los Andes, principalmente en los valles interandinos de Colombia y Ecuador y el Valle Central del centro-sur de Chile, en la actualidad, menos de 25 volcanes están siendo monitoreados para determinar los riesgos potenciales asociados a la actividad volcánica andina. Palabras claves: Sud américa, Andes, Volcanes, Génesis de magma, Riesgos volcánicos 2 de 68 19-05-2007 14:44 Revista geológica de Chile - <b>Active Andean volcanism</b>: <b>its g... http://www.scielo.cl/scielo.php?pid=S0716-02082004000200001&script... INTRODUCTION Andean volcanoes are a natural laboratory for the study of volcanic hazard assessment and risk management, the generation of magmas in association with subduction of oceanic plates below continental lithosphere, and the geochemical evolution of continental crust. 'Volcanoes of the World' (Simkin and Siebert, 1994) lists 60 historically active and another 118 Recently (Holocene) active Andean volcanoes, for a total of 178 among 1,511 volcanoes worldwide. These occur in Colombia, Ecuador, Perú, Bolivia, Argentina and Chile, in a discontinuous segmented belt extending from Cerro Bravo volcano (5°N) in the north to Cook Island volcano (55°S) in the south (Fig. 1). However, this list does not include many 'potentially active' Quaternary volcanic centers and large silicic caldera/ignimbrite systems, nor numerous small cones, domes or lava flows forming minor, often monogenetic centers, which occur both within and along the eastern flank of the Andes. 3 de 68 19-05-2007 14:44 Revista geológica de Chile - <b>Active Andean volcanism</b>: <b>its g... http://www.scielo.cl/scielo.php?pid=S0716-02082004000200001&script... FIG. 1. Schematic map of South America and the Pacific oceanic plates, modified from Ramos and Alemán (2000), showing the four volcanically active segments in the Andes (Figs. 2-4, 7), subduction geometry as indicated by depth in kilometers to the Benioff zone (Engdahl et al., 1995, 1998), oceanic ridges (Gutscher, 2002), ages of the oceanic plates close to the Perú-Chile trench, and convergence rates and directions along the length of the Andes (Norambuena et al., 1998; Angermann et al., 1999). Details concerning the morpho-structural segmentation of the Andes can be found in Kley et al. (1999), and basement ages inRamos and Alemán (2000) and Loewy 4 de 68 19-05-2007 14:44 Revista geológica de Chile - <b>Active Andean volcanism</b>: <b>its g... http://www.scielo.cl/scielo.php?pid=S0716-02082004000200001&script... et al. (2004). 'Volcanoes of the World' catalogues 575 eruptions produced by the 60 historically active centers between the years 1532 (Cotopaxi, Ecuador) and 1993. The 2004 IAVCEI general assembly in Pucón, Chile, will take place at the foot of the Villarrica volcano, historically one of the most active volcanoes in the Andes, with 59 reported episodes of activity since 1558 (Moreno et al., 1994a; Petit-Breuilh, 1994). Lahars produced by eruptions of Villarrica in 1948-1949, 1963-1964, and 1971-1972 together killed more than 75 people, and others are still missing. Villarrica has had 14 explosive post-glacial eruptions generating pyroclastic flows, two of which also produced calderas (Clavero and Moreno, 1994). Since the most recent eruption in 1984-85 (Fuentealba, 1984) the summit cone has contained an active lava lake (Witter et al., 2004; Witter and Delmelle,