Microrna Profiling in Murine Liver After Partial Hepatectomy

Total Page:16

File Type:pdf, Size:1020Kb

Microrna Profiling in Murine Liver After Partial Hepatectomy INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 29: 747-755, 2012 MicroRNA profiling in murine liver after partial hepatectomy IOANNIS CHAVELES1, APOSTOLOS ZARAVINOS2, IOANNIS G. HABEOS3, DIMITRIOS D. KARAVIAS1, IOANNIS MAROULIS1, DEMETRIOS A. SPANDIDOS2 and DIONISIOS KARAVIAS1 1Surgical Department, Medical School, University of Patras, 26504 Patras; 2Laboratory of Virology, Medical School, University of Crete, 71110 Heraklion, Crete; 3Medical Department, Medical School, University of Patras, 26504 Patras, Greece Received January 9, 2012; Accepted February 3, 2012 DOI: 10.3892/ijmm.2012.902 Abstract. Liver is uniquely capable to repair itself after injury. early up-regulation of mmu-miR-21 during the process of liver Multiple molecular and biochemical processes initiated after regeneration suggests a regulatory role in liver regeneration partial hepatectomy, lead to proliferation of all cells within the in vivo. liver. MicroRNAs (miRNAs) are a class of highly abundant non-coding RNA molecules that cause post-transcriptional Introduction gene repression and are involved in several biological processes including cell cycle regulation and differentiation. In this study, Partial hepatectomy (PH) represents the most commonly used we examined the expression levels of miRNAs in liver tissue model for the study of liver regeneration. It is a very complex and received from control mice (L0) and compared them with the well-orchestrated phenomenon that is carried out by the partici- corresponding levels in liver tissue 12 h after liver regeneration pation of all mature liver cell types. The extent of hepatocyte induced by 2/3 partial hepatectomy (L12). MiRNA expression proliferation is directly proportional to the amount of resected was investigated using microRNA profiling. Further qPCR liver tissue and 2/3 partial hepatectomy (2/3 PH) leads to a analysis was used for validation of the differentially expressed highly synchronized hepatocyte cell-cycle entry and progres- miRNAs at an early stage of liver regeneration, induced by sion. The first phase, known as the ‘priming phase’, occurs in 2/3 partial hepatectomy. TargetScan and Gene Ontology (GO) the first hours after PH and poises the hepatocytes to enter the analyses were performed in order to identify the possible G1 phase and to become receptive to growth factors. The second miRNA target genes and their ontology, respectively. A subset phase corresponds to an increased metabolic demand imposed of miRNAs was found to be differentially expressed during on the remnant liver. During this phase, among other metabolic liver regeneration. Mmu-miR-21 and mmu-miR-30b* showed changes, transient hypoglycemia is suggested to induce systemic the higher levels of up-regulation in liver tissue from the hepa- lipolysis followed by a lipid droplets accumulation in the hepa- tectomized mice at the end of the experiment (L12) compared tocytes. Between 36-42 h after 2/3 PH, most hepatocytes are to the sham operated mice (L0). Mmu-miR-21 up-regulation in the S phase of the cell cycle. The remnant liver lobes will was further confirmed by qPCR. In situ hybridization (ISH) compensate for lost tissue and recover the initial liver mass in revealed that mmu-miR-21 exhibited the higher levels of expres- less than 2 weeks. The last and much less studied step is the sion at 12 h post hepatectomy. On the contrary, mmu-miR-34c*, termination of liver regeneration. A large number of genes are mmu-miR-144, mmu-miR-207, mmu-miR-207, mmu-miR-451, involved in liver regeneration, but the essential circuitry required mmu-miR-582-3p and mmu-miR-290-5p exhibited <0.5 down- for the process may be categorized into 3 networks: cytokine, regulation in liver tissue after partial hepatectomy in L12 vs. L0 growth factor and metabolic. mice. The results from microarray and qPCR analyses were in MicroRNAs (miRNAs) are short regulatory RNAs of good agreement. In conclusion, our results provide important approximately 22 nucleotides in length (1). They bind to the information regarding the differentially expressed miRNAs in 3'-untranslated region (3'UTR) of target mRNA based on murine liver tissue before and after partial hepatectomy. The sequence complementarity and result in the degradation or suppression of translation of the target miRNA (2). Nevertheless, new findings reveal a new mode of action of miRNAs by which they may regulate gene expression, by binding not only to regions confined to the 3'UTR, but to the complete sequence Correspondence to: Dr Ioannis G. Habeos, Department of Internal (promoter, 5'UTR, CDS and 3'UTR) of a gene (3-5). It is thought Medicine, Medical School, University of Patras, 26504 Patras, that more than 30% of human genes are post-transcriptionally Greece regulated by miRNAs (6,7). There has been growing interest E-mail: [email protected] in understanding the specific role of miRNAs in regulating cellular processes, such as cell growth, proliferation, apoptosis, Key words: liver regeneration, mmu-miR-21, microRNA profiling, qPCR, in situ hybridization stress response and metabolism (8-10). There are previous studies implicating miRNAs in the regeneration of zebrafish fins (11), regeneration in planarian worms (12) and wound healing (13). Mice with hepatocyte- 748 CHAVELES et al: MicroRNA IMPLICATION IN MURINE LIVER REGENERATION specific inactivation of DGCR8, which is required for miRNA image analysis was carried out using the ImaGene 8.0 software biogenesis, have also been generated. They develop normally (BioDiscovery, Inc., El Segundo, CA). after adulthood but their hepatocytes fail to transit into the S phase after PH (7). In a recent study miR-21 was found to Microarray data filtering, background correction and normali- be up-regulated during the proliferative phase of liver regenera- zation. Filtering was performed based on the signal intensity. tion. MiR-21 has been shown to target Pellino-1 and inhibit the Spots with no signal above the background (flags 1 and 2) were NF-κB signalling (14). detected and removed. Background correction was performed Since recent studies have identified miRNAs as important to remove non-biological contributions (‘background’) to the regulators of gene expression, modulating critical cellular measured signal, by subtracting the median global background functions of hepatocytes, such as proliferation, apoptosis, lipid from the median local background from the signal intensity. metabolism and liver regeneration, we aimed to identify the A threshold of 1.5 (L12 vs. L0) was set as the cut-off value. differentially expressed miRNAs during an early phase of liver Normalization was performed using the Lowess regression regeneration. To this effect, the expression of liver miRNAs algorithm, in order to remove certain systematic biases from was investigated using miRNA profiling and qPCR, in total microarray data, such as dye effects or intensity dependence. RNA extracted from murine liver tissue 12 h after 2/3 PH. The positive effect from normalization is illustrated on each slide sheet with an M-A plot before and after normalization Materials and methods (Fig. 1). After normalization the spots appeared symmetrically scattered around the horizontal line (M=0). Normalized data Mice, PH and RNA isolation. Twenty male wild-type mice were extracted, pre-processed and sorted with Microsoft Excel®. C57BL6J (8 weeks old) fed a standard diet were used for the liver regeneration experiment. Mice were housed in the Slide quality check using spike-in controls. Spike-in co-efficient animal facility of the University of Patras Medical School in of variation (CV) values were calculated between 48 replicates temperature-, light- and humidity-controlled rooms with a 12-h for each of the spike-in controls on each slide. CVs did not light/dark cycle. All animal procedures were approved by the exceed 30%, thus reflecting lack of spatial effects on the array Institutional Review Board of the University of Patras Medical (smear across the slide) or misplacement of the grid for anno- School and were in accordance with EC Directive 86/609/EEC. tating the spots. A 2/3 PH was performed on 10 mice according to a previously published standardized protocol (15) whereby the median and Clustering. We clustered the miRNAs between the L0 and left lobes of the liver were removed and another 10 sham-oper- L12 murine livers, using hierarchical clustering (HCL) and ated mice were used as the control group. The liver was allowed k-means clustering, as previously reported (16,17). to regenerate and mice were sacrificed 12 h after operation. Liver samples were collected from the sham-operated mice (L0) Gene Expression Omnibus (GEO) accession numbers. and the hepatectomized mice at the end of the experiment (L12). Array data were deposited at the GEO (National Center for Biotechnology Information) with accession numbers Liver tissue RNA extraction. Liver tissue was excised from mice GSM862374 through GSM862375 (GSE35128). and was immediately submerged in RNAlater solution (Ambion, Foster City, CA). For miRNA profiling, total RNA was isolated Reverse transcription (RT) and qPCR validation. The miRNA from pooled livers from the L0 and L12 mice, whereas for qPCR in the total RNA sample was converted to cDNA by reverse experimentation, total RNA was prepared from individual liver transcription using the miRCURY LNA miRNA PCR system samples, using the TRIzol® reagent (Invitrogen, Carlsbad, CA) First-strand cDNA synthesis kit and a miRNA-specific primer. as the manufacturer instructed. The quality of the
Recommended publications
  • A Family of Signal-Responsive E3 Ubiquitin Ligases Mediating TLR Signaling and T-Cell Tolerance
    Cellular & Molecular Immunology (2012) 9, 113–122 ß 2012 CSI and USTC. All rights reserved 1672-7681/12 $32.00 www.nature.com/cmi REVIEW Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance Wei Jin1, Mikyoung Chang2 and Shao-Cong Sun2 E3 ubiquitin ligases play a crucial role in regulating immune receptor signaling and modulating immune homeostasis and activation. One emerging family of such E3s is the Pelle-interacting (Peli) proteins, characterized by the presence of a cryptic forkhead-associated domain involved in substrate binding and an atypical RING domain mediating formation of both lysine (K) 63- and K48-linked polyubiquitin chains. A well-recognized function of Peli family members is participation in the signal transduction mediated by Toll-like receptors (TLRs) and IL-1 receptor. Recent gene targeting studies have provided important insights into the in vivo functions of Peli1 in the regulation of TLR signaling and inflammation. These studies have also extended the biological functions of Peli1 to the regulation of T-cell tolerance. Consistent with its immunoregulatory functions, Peli1 responds to different immune stimuli for its gene expression and catalytic activation. In this review, we discuss the recent progress, as well as the historical perspectives in the regulation and biological functions of Peli. Cellular & Molecular Immunology (2012) 9, 113–122; doi:10.1038/cmi.2011.60; published online 6 February 2012 Keywords: Peli; Pellino; ubiquitination; NF-kB; TLR; T-cell tolerance
    [Show full text]
  • Cotranscriptional Splicing Efficiency Differs Dramatically Between Drosophila and Mouse
    Downloaded from rnajournal.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse YEVGENIA L. KHODOR,1 JEROME S. MENET, MICHAEL TOLAN, and MICHAEL ROSBASH2 Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA ABSTRACT Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. We recently showed that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, we analyze a recently generated, high-throughput sequencing data set of mouse liver nascent RNA, originally studied for circadian transcriptional regulation. Cotranscriptional splicing is approximately twofold less efficient in mouse liver than in Drosophila, i.e., nascent intron levels relative to exon levels are ~0.55 in mouse versus 0.25 in the fly. An additional difference between species is that only mouse cotranscriptional splicing is optimal when 59-exon length is between 50 and 500 bp, and intron length does not correlate with splicing efficiency, consistent with exon definition. A similar analysis of intron and exon length dependence in the fly is more consistent with intron definition. Contrasted with these differences are many similarities between the two systems: Alternatively annotated introns are less efficiently spliced cotranscriptionally than constitutive introns, and introns of single-intron genes are less efficiently spliced than introns from multi-intron genes. The most striking common feature is intron position: Cotranscrip- tional splicing is much more efficient when introns are far from the 39 ends of their genes.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Supplementary Table S1. List of Differentially Expressed
    Supplementary table S1. List of differentially expressed transcripts (FDR adjusted p‐value < 0.05 and −1.4 ≤ FC ≥1.4). 1 ID Symbol Entrez Gene Name Adj. p‐Value Log2 FC 214895_s_at ADAM10 ADAM metallopeptidase domain 10 3,11E‐05 −1,400 205997_at ADAM28 ADAM metallopeptidase domain 28 6,57E‐05 −1,400 220606_s_at ADPRM ADP‐ribose/CDP‐alcohol diphosphatase, manganese dependent 6,50E‐06 −1,430 217410_at AGRN agrin 2,34E‐10 1,420 212980_at AHSA2P activator of HSP90 ATPase homolog 2, pseudogene 6,44E‐06 −1,920 219672_at AHSP alpha hemoglobin stabilizing protein 7,27E‐05 2,330 aminoacyl tRNA synthetase complex interacting multifunctional 202541_at AIMP1 4,91E‐06 −1,830 protein 1 210269_s_at AKAP17A A‐kinase anchoring protein 17A 2,64E‐10 −1,560 211560_s_at ALAS2 5ʹ‐aminolevulinate synthase 2 4,28E‐06 3,560 212224_at ALDH1A1 aldehyde dehydrogenase 1 family member A1 8,93E‐04 −1,400 205583_s_at ALG13 ALG13 UDP‐N‐acetylglucosaminyltransferase subunit 9,50E‐07 −1,430 207206_s_at ALOX12 arachidonate 12‐lipoxygenase, 12S type 4,76E‐05 1,630 AMY1C (includes 208498_s_at amylase alpha 1C 3,83E‐05 −1,700 others) 201043_s_at ANP32A acidic nuclear phosphoprotein 32 family member A 5,61E‐09 −1,760 202888_s_at ANPEP alanyl aminopeptidase, membrane 7,40E‐04 −1,600 221013_s_at APOL2 apolipoprotein L2 6,57E‐11 1,600 219094_at ARMC8 armadillo repeat containing 8 3,47E‐08 −1,710 207798_s_at ATXN2L ataxin 2 like 2,16E‐07 −1,410 215990_s_at BCL6 BCL6 transcription repressor 1,74E‐07 −1,700 200776_s_at BZW1 basic leucine zipper and W2 domains 1 1,09E‐06 −1,570 222309_at
    [Show full text]
  • Quantitative Trait Loci Mapping of Macrophage Atherogenic Phenotypes
    QUANTITATIVE TRAIT LOCI MAPPING OF MACROPHAGE ATHEROGENIC PHENOTYPES BRIAN RITCHEY Bachelor of Science Biochemistry John Carroll University May 2009 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY December 2017 We hereby approve this thesis/dissertation for Brian Ritchey Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies by ______________________________ Date: _________ Dissertation Chairperson, Johnathan D. Smith, PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, David J. Anderson, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Baochuan Guo, PhD Department of Chemistry, Cleveland State University ______________________________ Date: _________ Dissertation Committee member, Stanley L. Hazen, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Renliang Zhang, MD PhD Department of Cellular and Molecular Medicine, Cleveland Clinic ______________________________ Date: _________ Dissertation Committee member, Aimin Zhou, PhD Department of Chemistry, Cleveland State University Date of Defense: October 23, 2017 DEDICATION I dedicate this work to my entire family. In particular, my brother Greg Ritchey, and most especially my father Dr. Michael Ritchey, without whose support none of this work would be possible. I am forever grateful to you for your devotion to me and our family. You are an eternal inspiration that will fuel me for the remainder of my life. I am extraordinarily lucky to have grown up in the family I did, which I will never forget.
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • PP1-Associated Signaling and − B/AP-1 Κ Inhibition of NF- Tolerance
    Downloaded from http://www.jimmunol.org/ by guest on October 3, 2021 is online at: average * and − B/AP-1 κ The Journal of Immunology published online 26 February 2014 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2014/02/26/jimmun ol.1301610 Identification of Two Forms of TNF Tolerance in Human Monocytes: Differential Inhibition of NF- PP1-Associated Signaling Johannes Günther, Nico Vogt, Katharina Hampel, Rolf Bikker, Sharon Page, Benjamin Müller, Judith Kandemir, Michael Kracht, Oliver Dittrich-Breiholz, René Huber and Korbinian Brand J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2014/02/26/jimmunol.130161 0.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 3, 2021. Published February 26, 2014, doi:10.4049/jimmunol.1301610 The Journal of Immunology Identification of Two Forms of TNF Tolerance in Human Monocytes: Differential Inhibition of NF-kB/AP-1– and PP1-Associated Signaling Johannes Gunther,*€ ,1 Nico Vogt,*,1 Katharina Hampel,*,1 Rolf Bikker,* Sharon Page,* Benjamin Muller,*€ Judith Kandemir,* Michael Kracht,† Oliver Dittrich-Breiholz,‡ Rene´ Huber,* and Korbinian Brand* The molecular basis of TNF tolerance is poorly understood.
    [Show full text]
  • Integrated Bioinformatics Analysis Reveals Novel Key Biomarkers and Potential Candidate Small Molecule Drugs in Gestational Diabetes Mellitus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434569; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus Basavaraj Vastrad1, Chanabasayya Vastrad*2, Anandkumar Tengli3 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. 3. Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434569; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Gestational diabetes mellitus (GDM) is one of the metabolic diseases during pregnancy. The identification of the central molecular mechanisms liable for the disease pathogenesis might lead to the advancement of new therapeutic options. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non GDM samples were analyzed with limma package. Gene ontology (GO) and REACTOME enrichment analysis were performed using ToppGene. Then we constructed the protein-protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed.
    [Show full text]
  • Epigenetic Silencing Mediated Through Activated PI3K/AKT Signaling in Breast Cancer
    SUPPLEMENTARY: Epigenetic Silencing Mediated Through Activated PI3K/AKT Signaling in Breast Cancer Tao Zuo, Ta-Ming Liu, Xun Lan, Yu-I Weng, Rulong Shen, Fei Gu, Yi-Wen Huang, Sandya Liyanarachchi, Daniel E. Deatherage, Pei-Yin Hsu, Cenny Taslim, Bhuvaneswari Ramaswamy, Charles L. Shapiro, Huey-Jen L. Lin, Alfred S. L. Cheng, Victor X. Jin, and Tim H.-M. Huang 1 Table of Content: 1. Fig. S1. Elevated AKT1 kinase activity in myrAKT1- transfected MCF10A cells. ---------------------------------------------------------------------------------------------------- page 4 2. Fig. S2. Genome-wide view of H3K27me3 in mammary epithelial cells. ---------------------------------------------------------------------------------------------------- page 5 3. Fig. S3. Biological functions of PI3K/AKT- downstream genes. ----------------- page 6 4. Fig. S4. Genomic maps of 40 genes. ------------------------------------------------- page 8 5. Fig. S5. Comparing DNA methylation levels of four CpG islands measured by meDIP-qPCR and MassARRAY.------------------------------------------------------- page 11 6. Fig. S6. Validation of DNA methylation by MBDCap-seq.----------------------- page 13 7. Table S1. Summary of H3K27me3 ChIP-seq data ------------------------------ page 14 8. Table S2. Distribution of H3K27me3 in MCF10A genome ---------------------- page 14 9. Table S3. Genes (n=488) enriched with H3K27me3 and downregulated by PI3K/AKT- signaling ---------------------------------------------------------------------- page 15 10. Table S4. Genes (n=1005) enriched
    [Show full text]
  • Homozygosity Mapping Reveals Null Mutations in FAM161A As a Cause of Autosomal-Recessive Retinitis Pigmentosa
    REPORT Homozygosity Mapping Reveals Null Mutations in FAM161A as a Cause of Autosomal-Recessive Retinitis Pigmentosa Dikla Bandah-Rozenfeld,1 Liliana Mizrahi-Meissonnier,1 Chen Farhy,2 Alexey Obolensky,1 Itay Chowers,1 Jacob Pe’er,1 Saul Merin,3 Tamar Ben-Yosef,4 Ruth Ashery-Padan,2 Eyal Banin,1,* and Dror Sharon1,* Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 45 genes. Using homozygosity mapping, we identified a ~4 Mb homozygous region on chromosome 2p15 in patients with autosomal-recessive RP (arRP). This region partially overlaps with RP28, a previously identified arRP locus. Sequence analysis of 12 candidate genes revealed three null mutations in FAM161A in 20 families. RT-PCR analysis in 21 human tissues revealed high levels of FAM161A expression in the retina and lower levels in the brain and testis. In the human retina, we identified two alternatively spliced transcripts with an intact open reading frame, the major one lacking a highly conserved exon. During mouse embryonic development, low levels of Fam161a tran- scripts were detected throughout the optic cup. After birth, Fam161a expression was elevated and confined to the photoreceptor layer. FAM161A encodes a protein of unknown function that is moderately conserved in mammals. Clinical manifestations of patients with FAM161A mutations varied but were largely within the spectrum associated with arRP. On funduscopy, pallor of the optic discs and attenuation of blood vessels were common, but bone-spicule-like pigmentation was often mild or lacking. Most patients had nonrecord- able electroretinographic responses and constriction of visual fields upon diagnosis.
    [Show full text]
  • Epigenetic Study of Plasma Circulating DNA in Prostate Cancer
    Epigenetic Study of Plasma Circulating DNA in Prostate Cancer by Andrew Kwan A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Pharmacology and Toxicology University of Toronto © Copyright by Andrew Kwan (2015) Epigenetic Study of Plasma Circulating DNA in Prostate Cancer Andrew Kwan Master of Science Graduate Department of Pharmacology and Toxicology University of Toronto 2015 Abstract Malignant cells exhibit epigenetic differences compared to normal cells, which can also be detected in the cell-free circulating DNA (cirDNA) of bodily fluids. DNA modification studies in cirDNA may lead to the development of non-invasive cancer biomarkers. This thesis investigates plasma cirDNA modifications of prostate cancer patients, benign prostate hyperplasia patients, and men without any known prostate disease. A modification-sensitive restriction enzyme approach was used to enrich the modified DNA fractions, which were interrogated on CpG island- and Affymetrix tiling microarrays. Our initial discovery screen identified a number of differentially modified genes and non-coding loci between PCa patients and controls; a subset of candidate loci were verified using bisulfite pyrosequencing. We applied machine-learning techniques to develop a multi-locus biomarker set, which exhibited promising predictive performance in distinguishing cancer patients from unaffected controls. Our results suggest that epigenomics of cirDNA is a promising source for diagnostic non-invasive biomarkers of solid tumors. ii Acknowledgments I would like to start by expressing my gratitude to my supervisor, Dr. Arturas Petronis, for giving me the opportunity to work under his mentorship and guidance for the past few years. It is under his tutelage that I have grown both as a person and a scientist.
    [Show full text]
  • The Glomerular Transcriptome and a Predicted Protein–Protein Interaction Network
    BASIC RESEARCH www.jasn.org The Glomerular Transcriptome and a Predicted Protein–Protein Interaction Network Liqun He,* Ying Sun,* Minoru Takemoto,* Jenny Norlin,* Karl Tryggvason,* Tore Samuelsson,† and Christer Betsholtz*‡ *Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, and ‡Department of Medicine, Karolinska Institutet, Stockholm, and †Department of Medical Biochemistry, Go¨teborg University, Go¨teborg, Sweden ABSTRACT To increase our understanding of the molecular composition of the kidney glomerulus, we performed a meta-analysis of available glomerular transcriptional profiles made from mouse and man using five different methodologies. We generated a combined catalogue of glomerulus-enriched genes that emerged from these different sources and then used this to construct a predicted protein–protein interaction network in the glomerulus (GlomNet). The combined glomerulus-enriched gene catalogue provides the most comprehensive picture of the molecular composition of the glomerulus currently available, and GlomNet contributes an integrative systems biology approach to the understanding of glomerular signaling networks that operate during development, function, and disease. J Am Soc Nephrol 19: 260–268, 2008. doi: 10.1681/ASN.2007050588 Many kidney diseases and, importantly, approxi- nins have been shown to be mutated in Alport syn- mately two thirds of all cases of ESRD originate with drome and Pierson congenital nephrotic syndromes, glomerular disease. Most cases of glomerular disease respectively.11,12 Genetic studies in mice have further are caused by systemic disorders (e.g., diabetes, hyper- revealed genes and proteins of importance for glomer- tension, lupus, obesity) for which the molecular ulus development and function, such as podoca- pathogeneses of the glomerular complications are un- lyxin,13 CD2AP,14 NEPH1,15 FAT1,16 forkhead box known.
    [Show full text]