Identification and Description of Distinct B Chromosomes in Cyphocharax Modestus (Characiformes, Curimatidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Family-Curimatidae-Overview-PDF
FAMILY Curimatidae Gill, 1858 - toothless characins [=Curimatinae, Potamorhinini, Curimatopsini, Curimatellini, Apolinarellini] GENUS Curimata Bosc, 1817 - toothless characins [=Acuticurimata, Allenina, Bitricarinata, Bondia, Bondichthys, Camposella, Camposichthys, Curimata W, Curimatus, Lambepiedra, Peltapleura, Semitapicis, Stupens] Species Curimata acutirostris Vari & Reis, 1995 - Araguaia curimata Species Curimata aspera Günther, 1868 - Huallaga curimata [=simulatus] Species Curimata cerasina Vari, 1984 - cerasina toothless characin Species Curimata cisandina (Allen, in Eigenmann & Allen, 1942) - Bronco curimata [=alleni] Species Curimata cyprinoides (Linnaeus, 1766) - bocachico [=copei, curimata W, curimata B, edentulus, immaculatus, planirostris, schomburgkii] Species Curimata incompta Vari, 1984 - Rio Meta curimata Species Curimata inornata Vari, 1989 - Tocantins curimata Species Curimata knerii (Steindachner, 1876) - Kner's curimata Species Curimata macrops (Eigenmann & Eigenmann, 1889) - Rio Poti curimata Species Curimata mivartii Steindachner, 1878 - Mivart's curimata Species Curimata ocellata (Eigenmann & Eigenmann, 1889) - Rio Xingu curimata [=semitaeniatus] Species Curimata roseni Vari, 1989 - Rosen's curimata Species Curimata vittata (Kner, 1858) - Rio Guapore curimata [=murieli, roncador] GENUS Curimatella Eigenmann & Eigenmann, 1889 - toothless characins [=Apolinarella, Lepipinna, Walbaunina] Species Curimatella alburnus (Müller & Troschel, 1844) - Amucu characin [=lineatus] Species Curimatella dorsalis (Eigenmann & Eigenmann, -
Appendix 1. (Online Supplementary Material) Species, Gliding Strategies
Appendix 1. (Online Supplementary Material) Species, gliding strategies, species distributions, geographic range sizes, habitat, and egg buoyancy characteristics used for concentrated changes tests. Species Gliding strategy Species distribution (reference #) Geographic range size Habitat (reference #) Egg buoyancy (reference #) Cheilopogon abei (Parin, 1996) 4 wings Indian, Indo-Pacific (1) 2 or more ocean basins meroepipelagic (1) Buoyant (2) Cheilopogon atrisignis (Jenkins, 1903) 4 wings Indian, Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon cyanopterus (Valenciennes, 1847) 4 wings Atlantic, Indo-Pacific (2) 2 or more ocean basins meroepipelgic (3) Non-Buoyant (5) Cheilopogon dorsomacula (Fowler, 1944) 4 wings Pacific (1) within 1 ocean basin holoepipelagic (1) Buoyant (2) Cheilopogon exsiliens (Linnaeus, 1771) 4 wings Atlantic (2) within 1 ocean basin holoepipelagic (3) Buoyant (2,5) Cheilopogon furcatus (Mitchill, 1815) 4 wings Atlantic, Indian, Pacific (6) 2 or more ocean basins holoepipelagic (3) Non-Buoyant (5) Cheilopogon melanurus (Valenciennes, 1847) 4 wings Atlantic (7) within 1 ocean basin meroepipelagic (7) Non-Buoyant (5,8) Cheilopogon pinnatibarbatus (californicus) (Cooper, 1863) 4 wings eastern tropical Pacific (9) within 1 ocean basin meroepipelgic (3) Non-Buoyant (10) Cheilopogon spilonotopterus (Bleeker, 1865) 4 wings Indian and Pacific (1) 2 or more ocean basins meroepipelgic (3) Buoyant (4) Cheilopogon xenopterus (Gilbert, 1890) 4 wings eastern tropical Pacific (11) within 1 ocean basin -
Belonidae Bonaparte 1832 Needlefishes
ISSN 1545-150X California Academy of Sciences A N N O T A T E D C H E C K L I S T S O F F I S H E S Number 16 September 2003 Family Belonidae Bonaparte 1832 needlefishes By Bruce B. Collette National Marine Fisheries Service Systematics Laboratory National Museum of Natural History, Washington, DC 20560–0153, U.S.A. email: [email protected] Needlefishes are a relatively small family of beloniform fishes (Rosen and Parenti 1981 [ref. 5538], Collette et al. 1984 [ref. 11422]) that differ from other members of the order in having both the upper and the lower jaws extended into long beaks filled with sharp teeth (except in the neotenic Belonion), the third pair of upper pharyngeal bones separate, scales on the body relatively small, and no finlets following the dorsal and anal fins. The nostrils lie in a pit anterior to the eyes. There are no spines in the fins. The dorsal fin, with 11–43 rays, and anal fin, with 12–39 rays, are posterior in position; the pelvic fins, with 6 soft rays, are located in an abdominal position; and the pectoral fins are short, with 5–15 rays. The lateral line runs down from the pectoral fin origin and then along the ventral margin of the body. The scales are small, cycloid, and easily detached. Precaudal vertebrae number 33–65, caudal vertebrae 19–41, and total verte- brae 52–97. Some freshwater needlefishes reach only 6 or 7 cm (2.5 or 2.75 in) in total length while some marine species may attain 2 m (6.5 ft). -
Structure of Tropical River Food Webs Revealed by Stable Isotope Ratios
OIKOS 96: 46–55, 2002 Structure of tropical river food webs revealed by stable isotope ratios David B. Jepsen and Kirk O. Winemiller Jepsen, D. B. and Winemiller, K. O. 2002. Structure of tropical river food webs revealed by stable isotope ratios. – Oikos 96: 46–55. Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relation- ships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish d15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Niche Enlargement As a Consequence of Co-Existence
Niche enlargement as a consequence of co-existence: a case study Mazzoni, R.a*, Marques, PS.a, Rezende, CF.a,c and Iglesias-Rios, R.b aDepartamento de Ecologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro – UERJ, Rua São Francisco Xavier, 524, CEP 20550-013, Rio de Janeiro, RJ, Brazil bDepartamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro – UFRJ, CP 68020, Rio de Janeiro, RJ, Brazil cDepartamento de Biologia, Universidade Federal do Ceará – UFC, CEP 60455-970, Fortaleza, CE, Brazil *e-mail: [email protected] Received March 22, 2011 – Accepted July 04, 2011 – Distributed May 31, 2012 (With 4 figures) Abstract Spatio-temporal changes in the diet, niche breadth and niche overlap of two species of Characidium from three different sites along a Neotropical coastal stream were studied during a dry and rainy season. Seasonal changes were restricted to the occurrence of plant items in the stomach contents. The relative importance of food items in the diet of both species varied across sites, but Diptera, Ephemeroptera, Simuliidae, Trichoptera and Coleoptera larvae were always the main prey items. Contrary to the expected pattern, values of the niche breadth were higher at the site where Characidium species co-existed and niche overlapped at this site indicated 52% (p = 0.52) of feeding overlap. Keywords: neotropical characidae, coastal stream, close related species. Ampliação do nicho como consequência da co-existência: um estudo de caso Resumo Variações espaço-temporal na dieta, na amplitude e na sobreposição de nicho foram estudadas para duas espécies de Characidium de três localidades distintas de um riacho costeiro da região Neotropical, considerando-se as estações seca e chuvosa. -
A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their -
ERSS-Corydoras Carlae
Corydoras carlae Ecological Risk Screening Summary U.S. Fish & Wildlife Service, August 2017 Revised, September 2017 Web Version, 11/30/2017 Photo: G. Ramsay. Licensed under Creative Commons, BY-NC. Available: http://www.fishbase.se/photos/UploadedBy.php?autoctr=12484&win=uploaded. (September 2017). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2017): “South America: Lower Iguazu River basin.” 1 Status in the United States This species has not been reported as introduced or established in the United States. Means of Introductions in the United States This species has not been reported as introduced or established in the United States. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2017): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Siluriformes Family Callichthyidae Subfamily Corydoradinae Genus Corydoras Species Corydoras carlae Nijssen and Isbrücker, 1983” “Current Standing: valid” Size, Weight, and Age Range From Froese and Pauly (2017): “Max length : 5.4 cm SL male/unsexed; [Tencatt et al. 2014]” Environment From Froese and Pauly (2017): “Freshwater; demersal; pH range: 6.0 - 8.0; dH range: 2 - 25.” From Seriously Fish (2017): “Such habitats in Argentina [as where C. carlae has been found] are typically subject to significant seasonal variations in water volume, flow, turbidity, chemistry and temperature.” 2 Climate/Range From Froese and Pauly (2017): “Subtropical; 22°C - 26°C [Riehl and Baensch 1996], preferred ?” Distribution Outside the United States Native From Froese and Pauly (2017): “South America: Lower Iguazu River basin.” Introduced No introductions of this species have been reported. -
Food Ecology of Hassar Affinis (Actinopterygii: Doradidae)
Research, Society and Development, v. 10, n. 8, e10110816973, 2021 (CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i8.16973 Food ecology of Hassar affinis (Actinopterygii: Doradidae) in two lakes of a wet zone of international importance in Northeast Brazil Ecologia alimentar de Hassar affinis (Actinopterygii: Doradidae) em dois lagos de uma zona úmida de importância internacional no Nordeste do Brasil Ecología alimentaria de Hassar affinis (Actinopterygii: Doradidae) en dos lagos de una zona húmeda de importancia internacional en el Noreste de Brasil Received: 06/08/2021 | Reviewed: 06/16/2021 | Accept: 06/21/2021 | Published: 07/07/2021 Maria Fabiene de Sousa Barros ORCID https://orcid.org/0000-0003-4280-443X Universidade Estadual do Maranhão, Brazil E-mail: [email protected] Zafira da Silva de Almeida ORCID https://orcid.org/0000-0002-8295-5040 Universidade Estadual do Maranhão, Brazil E-mail: [email protected] Marina Bezerra Figueiredo ORCID http://orcid.org/0000-0001-7485-8593 Universidade Estadual do Maranhão, Brazil E-mail: [email protected] Jorge Luiz Silva Nunes ORCID https://orcid.org/0000-0001-6223-1785 Universidade Estadual do Maranhão, Brazil E-mail: [email protected] Raimunda Nonata Fortes Carvalho Neta ORCID http://orcid.org/0000-0002-3519-5237 Universidade Estadual do Maranhão, Brazil E-mail: [email protected] Abstract The study aimed to describe the aspects of trophic ecology and feeding strategy of the Hassar affinis species in two lakes in the Baixada Maranhense region a wetland of international ecological interest (Site Ramsar). Individuals were collected monthly for one year. -
Reproductive Characteristics of Characid Fish Species (Teleostei
Reproductive characteristics of characid fish species (Teleostei... 469 Reproductive characteristics of characid fish species (Teleostei, Characiformes) and their relationship with body size and phylogeny Marco A. Azevedo Setor de Ictiologia, Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Rua Dr. Salvador França, 1427, 90690-000 Porto Alegre, RS, Brazil. ([email protected]) ABSTRACT. In this study, I investigated the reproductive biology of fish species from the family Characidae of the order Characiformes. I also investigated the relationship between reproductive biology and body weight and interpreted this relationship in a phylogenetic context. The results of the present study contribute to the understanding of the evolution of the reproductive strategies present in the species of this family. Most larger characid species and other characiforms exhibit a reproductive pattern that is generally characterized by a short seasonal reproductive period that lasts one to three months, between September and April. This is accompanied by total spawning, an extremely high fecundity, and, in many species, a reproductive migration. Many species with lower fecundity exhibit some form of parental care. Although reduction in body size may represent an adaptive advantage, it may also require evolutionary responses to new biological problems that arise. In terms of reproduction, smaller species have a tendency to reduce the number of oocytes that they produce. Many small characids have a reproductive pattern similar to that of larger characiforms. On the other hand they may also exhibit a range of modifications that possibly relate to the decrease in body size and the consequent reduction in fecundity. -
Population and Feeding Structure of Steindachnerina Notonota Miranda
Acta Limnologica Brasiliensia, 2011, vol. 23, no. 3, p. 233-244 http://dx.doi.org/10.1590/S2179-975X2012005000003 Population and feeding structure of Steindachnerina notonota Miranda-Ribeiro, 1937 (Actinopterygii, Characiformes, Curimatidae) in Taperoá II dam, semi-arid region of Paraíba, Brazil Estrutura populacional e alimentar de Steindachnerina notonota Miranda Ribeiro, 1937 (Actinopterygii, Characiformes, Curimatidae) no Açude Taperoá II, na região do semi-árido da Paraíba, Brasil Ana Karla Araujo Montenegro1, Jane Enisa Ribeiro Torelli3, Maria Cristina Crispim3 and Ana Maria Alves Medeiros2 1, 2Programa de Pós-Graduação em Ciências Biológicas, Laboratório de Ecologia Aquática, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba – UFPB, Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil e-mail: [email protected]; [email protected] 3Laboratório de Ecologia Aquática, Departamento de Sistêmica e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba – UFPB, Cidade Universitária, Campus I, CEP 58059-900, João Pessoa, PB, Brazil e-mail: [email protected]; [email protected] e-mail: [email protected] Abstract: Aim: The present study investigated population structure, weight-length relationships, sex ratio and associations between feeding activity and reproductive period, diet and alimentary regime of Steindachnerina notonota at Taperoá II dam, semi-arid region of Paraíba State. Methods: The region has the lowest pluviometric rates of Brazil. Fishes were collected during six sampling periods (October and December/2005, and March, June, August and October of 2006) encompassing two dry periods, and one rainy period. Cast, seine and gill nets were used to collect the individuals. -
Serrasalmus Rhombeus) Ecological Risk Screening Summary
Redeye Piranha (Serrasalmus rhombeus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2012 Revised, August 2018 Web Version, 9/11/2020 Organism Type: Fish Overall Risk Assessment Category: Uncertain Photo: J. O. Birindelli. Licensed under Creative Commons BY-NC. Available: http://eol.org/data_objects/26104614. (August 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “South America: Amazon and Orinoco River basins, north and eastern Guiana Shield rivers, and northeastern Brazilian coastal rivers [Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname, Venezuela].” Froese and Pauly (2018) also list Uruguay among the countries where S. rhombeus is native. 1 Status in the United States From Nico and Loftus (2020): “Status: Failed and/or eradicated in Florida. A locally established population south Florida was exterminated in 1977.” “This species was stocked in Florida in an isolated sinkhole pool at Monkey Jungle, a tourist attraction in the Miami area of Dade County in 1963 or 1964. Those fish reproduced and sustained the population for 13 or 14 years until all were killed with rotenone or removed alive by state personnel in September 1977 (Shafland and Foote 1979; identified as Serrasalmus humeralis) (museum specimen). Two specimens were taken from an abandoned swimming pool in South Miami, Dade County (Courtenay et al. 1974). A single fish was taken from a pond in Gainesville, Alachua County in 1985 (museum specimen).” [See Remarks regarding species identity.] This species is currently in trade in the United States. For example: From AquaScapeOnline (2018): “Baby Black Piranha Peru .75"-1" (Serrasalmus Rhombeus [sic]) […] Special 10 for 150.00 Our Price: $25.00” “Black Piranha 4.5" Peru (Serrasalmus Rhombeus [sic]) […] Our Price: $100.00” “Black Piranha 14"-15" Peru (Serrasalmus Rhombeus [sic]) […] Our Price: $1,000.00” Possession or importation of fish of the genus Serrasalmus, or fish known as “piranha” in general, is banned or regulated in many States.