WO 2015/161078 Al 22 October 2015 (22.10.2015) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2015/161078 Al 22 October 2015 (22.10.2015) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/161078 Al 22 October 2015 (22.10.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every GOIN 30/02 (2006.01) G OIN 33/74 (2006.01) kind of national protection available): AE, AG, AL, AM, G01N 33/48 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 15/026 174 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 16 April 2015 (16.04.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/981,087 17 April 2014 (17.04.2014) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: THE REGENTS OF THE UNIVERSITY TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, OF CALIFORNIA [US/US]; Office of Technology Tran s TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, fer, 1111 Franklin St., 12th Floor, Oakland, California DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, 94607 (US). LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (72) Inventor: GAIKWAD, Nilesh W.; The Regents of the GW, KM, ML, MR, NE, SN, TD, TG). University of California, 1111 Franklin St., 12th Floor, Oakland, California 94607 (US). Published: (74) Agents: HAO, Joe C. et al.; Kilpatrick Townsend and — with international search report (Art. 21(3)) Stockton LLP, Two Embarcadero Center, Eighth Floor, San Francisco, California 94 111 (US). (54) Title: METHODS FOR COMPREHENSIVE PROFILING OF STEROID METABOLOME (57) Abstract: The present invention provides a method for quantitating at least 100 steroids in a biological sample using ultra-per- © formance liquid chromatography-tandem mass spectrometry. The present invention also provides a method for detecting an imbal - o ance in steroid metabolism or the presence of cancer in an individual. METHODS FOR COMPREHENSIVE PROFILING OF STEROID METABOLOME CROSS-REFERENCES TO RELATED APPLICATIONS [0001] This application claims priority to U.S. Provisional Application No. 61/981,087, filed April 17, 2014, the disclosure of which is herein incorporated by reference in its entirety for all purposes. STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT [0002] This invention was made with Government support under Grant No. CA-DNTR- 2 04- , awarded by The United States Department of Agriculture. The Government has certain rights in this i e ion. BACKGROUND OF THE INVENTION [0003] Steroids, such as androgens, corticosteroids, estrogens and progestogens control many physiological processes in humans including reproduction, secondary sexual characteristics, maturation, gene expression, cardiovascular health and neurological functions (Gniber et al, N. Engl. J. Med., 2002, 346: 340-352). In addition, steroids, especially estrogens, are implicated in the development and/or progression of ma y diseases, such as breast cancer (demons and Goss, N. Engl J Med., 2001, 344:276-285), ovarian cancer (Bulun et al, J Steroid iochem Mol Biol, 2007,106: 81-96), prostate cancer (Carruba G. Ann. N.Y. Acad. Set., 2006, 1089, 201-217), endometrial cancer (Shang Y., Nat. Rev. Cancer, 2010, 6:360-368), osteoporosis (Khosla S., J. Clin. Endocrinol. Metabol, 2010, 95:3569- 3577), neurodegenerative diseases (Chakraborti et al., Rev. Neurosciences, 2010, 18: 395- 416), cardiovascular disease (Bechlioulis et al., Curr. Vascular Pharmacol., 2010, 8 : 249- 258) and obesity (Mayes and Watson, Obesity Rev., 2004, 5:197-2169). [ΘΘ04] There is a clear association between cumulative exposure of exogenous and endogenous estrogens and the risk of breast and other cancers (Persson I., J. Steroid. Biochem. Mol. Biol, 2000, 74, 357-364). Furthermore, epidemiologic studies have indicated that breast cancer risk is higher in women with early menarche and late menopause, who have longer exposure to estrogens. Estrogen-replacement therapy has also been implicated as a risk factor for breast cancer in postmenopausal women (Feigelson and Henderson, Carcinogenesis, 1996, , 2279-2284) Obese postmenopausal women have higher serum concentrations of estrogen and are at risk of breast cancer(Simpson and Brown, Exp. Rev. Endocrinol. Metabol, 201 1, 6, 383-395; Cieary and Grossmann, Endocrinology, 2009 6:2537-2542). [0005] Evidence suggests that oxidative metabolism of estrogens plays a significant role in the carcinogenicity, which are oxidized to the 2-QH and 4-OH catechol estrogens by the phase I enzymes {see, FIG. 1). 4-hydroxyestrone was found to be carcinogenic in the male Syrian golden hamster kidney tumor model, whereas 2-hydroxylated metabolites were not (Liehr et al, J. Steroid Biochem., 1986, 24:353-356; Li and Li, Fed. Pro , 1987, 46: 1858- 1863). Similarly, Newbold and Liehr have shown that 4-hydroxyestradiol induced uterine tumors in 66% of CD-I mice, whereas mice treated with 2-hydroxyestradiol or E2 had much lower incidence of uterine tumor (Newbold and Liehr, Cancer Res., 2000, 60:235-237). Oxidative enzymes, metal ions, and in some cases molecular oxygen can catalyze the oxidation of catechols to reactive o-quinones, which can cause damage within cells by alkyiation of cellular nucleophiles (proteins, DNA) (Yager and Davidson, N. Engl. J Med., 2006, 354:270-282). In an earlier study, it was shown that in healthy women the urinary levels of methoxy-estrogens and thiol conjugates of catechol estrogen are high and the level of estrogen-DNA adduces are low. in contrast, women with breast cancer had lower levels of estrogen metabolites and conjugates and higher levels of estrogen-DNA adducts (Gaikwad et al, t J Cancer, 2008, 122:1949-1957; Gaikwad et al, Breast Cancer: Basic & Clin. Res., 2009, 3:1-8). Taken together, the findings indicate that comprehensive analysis of steroid and steroid metaboiite levels in individuals may be useful for diagnosing disease, such as cancer, neurodegenerative disease {e.g., Alzheimer's disease and Parkinson's disease), cardiovascular disease and obesity. [0006] The most widely used techniques for measuring steroids include radioimmunoassay (Andrew, Best Pract. Res. Clin. Endocrinol. Metab., 2001, 15: 1-16), gas chromatography- mass spectrometry (GC-MS) (Hoffmann et al., Steroids, 2010, 75:1067-1074; Sadanalaa et al., Mass Spectrometry Letters, 2012, 3:4-9), and liquid chromatography-mass spectrometry (LC-MS) (Hauser et al, Chromatogr. B, 2008, 862:100-1 12). Immunoassay-based methods are simple and sensitive, but are subject to problematic issues such as lack of reproducibility, cross-reactivity, limited dynamic range, and matrix effects. Immunoassay also cannot analyze multiple steroids in a single assay (Andrew, Best Pract. Res. Clin. Endocrinol. Metab., 2001, 15:1-16; Wudy et al, Pediatr. Res., 1995, 38, 76-80; Tate and Ward, Clin. Biochem. Rev., 2004, 25, 105-120). GC-MS and LC-MS methods have large dynamic range and can measure multiple steroids simultaneously. GC-MS has been used extensively, but steroid measurements from biological samples require elaborate and tedious sample preparation procedures. For instance, prior to GC-MS analysis, steroid derivatization is required to increase the volatility and thermal stability of the molecules and to improve chromatographic separation and detection (Sadanalaa et al., Mass Spectrometry Letters, 2012, 3:4-9; Zhou et al., Environ. Sci. (China), 2007, 19: 879-884). LC-MS has been shown to be useful in determining steroid levels in the biological samples. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) are routinely used in qualitative and quantitative analysis of steroids. For instance, LC-ESI-MS methods were used to quantitate 28 steroids in animal tissue (Flores-Valverde and Hill, Anal. Chem., 2008, 80, 8771-8779) and 24 steroid hormones in human urine in a single 50 min LC-ESI-MS ran (Weidong et al., Anal. Chem., 2012, 84: 10245-10251). LC-APCI-MS methods were used to measure the levels of 7 endogenous adrenal steroids in human serum (Carvalho et al., Chromatogr. B, 2008, 872:154-161), 16 estrogen derivatives in rat hepatocytes, 4 catechol estrogens in rat brains (Mitamura et al, Analyst. 2000, 125:81 1-814) and human urine (Xu et al, J Chromatogr B, 2002, 780: 15-330), and 34 anabolic steroids in bovine muscle (Vanhaecke et al, Analytica Chimica Acta, 201 1,700, 70-77). In addition, LC-atmospheric pressure photo ionization (APPI)-MS methods have been use to measure the levels of non-polar steroids in biological samples (Hintikkaa et al, J. Chromatogr. A , 2010, 1217: 8290-8297). As such, there remains a need for a method to comprehensively and globally profile the steroid metabolome (e.g., over 00 steroids and metabolites thereof) in a sample from an individual in a single quantitative assay. The present invention satisfies this need and provides related advantages as well. BRIEF SUMMARY OF THE INVENTION [0007] In one aspect, the present invention provides a method for profiling a steroid metabolome in a biological sample. The method comprises (a) extracting at least 100 steroids from the biological sample using liquid-liquid extraction (LLE) to form a steroid extract, wherein the at least 100 steroids in the steroid extract are not derivatized; and (b) detecting the presence and/or level of the at least 00 steroids in the steroid extract using ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS).
Recommended publications
  • Original Article 4-Hydroxy Estrogen Metabolite, Causing Genomic
    Am J Transl Res 2019;11(8):4992-5007 www.ajtr.org /ISSN:1943-8141/AJTR0096694 Original Article 4-Hydroxy estrogen metabolite, causing genomic instability by attenuating the function of spindle-assembly checkpoint, can serve as a biomarker for breast cancer Suyu Miao1,2*, Fengming Yang1*, Ying Wang2*, Chuchu Shao1, David T Zava3, Qiang Ding2, Yuenian Eric Shi1 1Department of Oncology, 2Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; 3ZRT Laboratory, Beaverton 97003, USA. *Equal contributors. Received May 8, 2019; Accepted July 17, 2019; Epub August 15, 2019; Published August 30, 2019 Abstract: Sex hormone metabolism is altered during mammary gland tumorigenesis, and different metabolites may have different effects on mammary epithelial cells. This study aimed to evaluate associations between urinary sexual metabolite levels and breast cancer risk among premenopausal women of Mainland China. The molecular metabolism of the cancer-related metabolites was also explored based on the clinical data. The sex hormone me- tabolites in the urine samples of patients with breast cancer versus normal healthy women were analyzed com- prehensively. Among many alterations of sex hormone metabolisms, 4-hydroxy estrogen (4-OH-E) metabolite was found to be significantly increased in the urine samples of patients with breast cancer compared with the normal healthy controls. This was the most important risk factor for breast cancer. Several experiments were conducted in vitro and in vivo to probe this mechanism. 4-Hydroxyestradiol (4-OH-E2) was found to induce malignant transforma- tion of breast cells and tumorigenesis in nude mice. At the molecular level, 4-OH-E2 compromised the function of spindle-assembly checkpoint and rendered resistance to the anti-microtubule drug.
    [Show full text]
  • Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex
    Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex by Beryl Yik Ting Chung A Thesis presented to The University of Guelph In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences and Neuroscience Guelph, Ontario, Canada © Beryl Yik Ting Chung, April, 2018 ABSTRACT NICOTINIC SIGNALLING AND NEUROSTEROID MODULATION IN PRINCIPAL NEURONS OF THE HIPPOCAMPAL FORMATION AND PREFRONTAL CORTEX Beryl Yik Ting Chung Advisor: University of Guelph, 2018 Dr. Craig D.C. Bailey Nicotinic signalling plays an important role in coordinating the response of neuronal networks in many brain regions. During pre- and postnatal circuit formation, neurotransmission mediated by nicotinic acetylcholine receptors (nAChRs) influences neuronal survival and regulates neuronal excitability, synaptic transmission, and synaptic plasticity. Nicotinic signalling is also necessary for the proper function of the hippocampal formation (HF) and prefrontal cortex (PFC), which are anatomically and functionally connected and facilitate higher-order cognitive functions. The decline or dysfunction in nicotinic signalling and nAChR function has been observed in various neurological disorders, and the disruption or alteration of nicotinic signalling in the HF and/or PFC can impair learning and memory. While the location and functional role of the α4β2* nAChR isoform has been well characterized in the medial portion of the PFC, this is not well-established in the HF. What is the role of α4β2* nAChRs in excitatory principal neurons of the HF during early development? Growing evidence suggests that the progesterone metabolite allopregnanolone (ALLO) plays a role in mediating the proper function of the HF and the PFC, and that it may also inhibit nAChR function.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • Evaluation of Deficiency of 21 -Hydroxylation in Patients with Congenital Adrenal Hyperplasia 0
    Arch Dis Child: first published as 10.1136/adc.43.230.410 on 1 August 1968. Downloaded from Arch. Dis. Childh., 1968, 43, 410. Evaluation of Deficiency of 21 -hydroxylation in Patients with Congenital Adrenal Hyperplasia 0. M. GALAL, B. T. RUDD, and N. M. DRAYER From the Institute of Child Health, University of Birmingham Congenital adrenal hyperplasia can manifest therapy in these 13 children started within the first 3 itself in a variety of clinical and biochemical weeks of life. abnormalities (Bongiovanni and Root, 1963). The In addition to the 18 patients with congenital adrenal salt-losing tendency in some of these patients can hyperplasia, 3 children with shortness of stature and 3 with early signs of puberty were given ACTH to be due to the absence of specific enzymes: dehydro- investigate their adrenal function. None of these genases or hydroxylases (Bongiovanni and Root, patients had received steroids and all had normal free 1963; Ulick et al., 1964; Visser and Cost, 1964). cortisol and 17-hydroxycorticosteroid urinary excretion In addition to the impaired production of certain rates. The age and sex of the patients in the 3 groups steroids, antagonism by steroids or other compounds and details of the steroid therapy are listed in Table I. could, theoretically, account for the salt-losing tendency (Neher, Meystre, and Wettstein, 1959; ACTH test. Twenty-four hour urine collections Jacobs et al., 1961). were obtained before and during ACTH stimulation. The purpose ofthis study was to discover whether, ACTH gel (Organon) was given intramuscularly at a copyright. despite the continuation of steroid therapy, stimula- dose of 20 I.U.
    [Show full text]
  • Steroid Profiling in Urine of Intact Glucuronidated and Sulfated
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Ghent University Academic Bibliography Journal of Chromatography A 1624 (2020) 461231 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Steroid profiling in urine of intact glucuronidated and sulfated steroids using liquid chromatography-mass spectrometry ∗ Laurie De Wilde , Kris Roels, Pieter Van Renterghem, Peter Van Eenoo, Koen Deventer 1 Doping Control Laboratory (DoCoLab), Ghent University (UGent), Department Diagnostic Sciences, Technologiepark 30B, B-9052 Zwijnaarde, Belgium a r t i c l e i n f o a b s t r a c t Article history: Detection of endogenous anabolic androgenic steroids (EAAS) misuse is a major challenge in doping con- Received 26 November 2019 trol analysis. Currently, a number of endogenous steroids, which constitute the steroid profile, are quanti- Revised 6 May 2020 fied using gas chromatography (GC). With this methodology, only the sum of the free and glucuronidated Accepted 10 May 2020 steroids is measured together. A dilute-and-shoot LC-MS method, which is compliant with the quality Available online 23 May 2020 requirements for measuring EAAS established by the World Anti-Doping Agency (WADA), was devel- Keywords: oped and validated containing glucuronidated and sulfated steroids in order to gain some extra infor- Doping mation and to expand the existing steroid profile. The developed method is, to the best of our knowl- Urine edge, the first method to combine both steroid glucuronides and sulfates, which is compliant with the Steroid profile quality standards of the technical document on EAAS, established by WADA.
    [Show full text]
  • Test Report Comprehensive Hormone Insights™
    698814 COMPREHENSIVE HORMONE INSIGHTS™ TEST REPORT Dr. Maximus, N.D. E: [email protected] Date of Collection: P: 403-241-4500 Time of Collection: F: 403-241-4501 Date of Receipt: www.rmalab.com Reported On: CHI Accession: 698814 Healthcare Professional Patient Age: Dr. Maximus, N.D. Date of Birth: Gender: Male F: Relevant Medications Biometrics Curcumin Height (in) : 73 Weight (lb) : 180 BMI : 24 Waist (in) : 35 Hip (in) : 41 CHI Accession: 698814 SUMMARY HMUS01 How to read the graphs LEGEND: 50 66 Sex Steroid Hormones 50 66 Middle third of 33 33 84 reference population Hormone Start of 83 100 80 100 highest 16 Percentile Precursors 16 Percentile third of Sum of Androgens Sum of Estrogens 50 66 reference 0 0 population (T, DHT, α+β androstanediol) Listed in Interp Guide 33 84 End of 100 16 lowest Percentile00 50 66 50 66 third of 33 33 84 reference 0 population Patient’s percentile rank 81 100 95 100 compared to reference 16 Percentile 16 Percentile population (see summary) DHEA + Metabolites Sum of Progesterone Metabolites 0 (DHEA + A + E) 0 α+β Pregnanediol Cortisol Melatonin Oxidative Stress Free Cortisol Profile (ng/mg) 100 50 66 50 66 33 84 33 84 80 64 100 0 100 16 Percentile 16 Percentile 60 6-sulfatoxy 8-Hydroxy-2- 0 Melatonin 0 deoxyguanosine 40 (Overnight) (Overnight) 20 6-sulfatoxymelatonin provides 8-hydroxy-2-deoxyguanosine is Cortisol/Creatinine (ng/mg) insight into melatonin levels. a marker of oxidative stress 0 Morning Dinner Bedtime A B C 50 66 Free cortisol Cortisol Metabolites 33 84 profile is used to provides a general Testosterone Cortisol assess diurnal assessment of 16 100 cortisol rhythm adrenal cortisol 16 Percentile Cortisol production Cortisol Metabolites 0 (α+β THF + THE) Testosterone Cortisol/Testosterone provides insight into relative catabolic (cortisol) and anabolic (testosterone) states.
    [Show full text]
  • Human DHEA ELISA Kit (ARG80949)
    Product datasheet [email protected] ARG80949 Package: 96 wells Human DHEA ELISA Kit Store at: 4°C Summary Product Description ARG80949 DHEA ELISA Kit is an Enzyme Immunoassay kit for the quantification of DHEA in human serum and plasma (EDTA). Tested Reactivity Hu Tested Application ELISA Target Name DHEA Sensitivity 0.07 ng/ml Sample Type Serum and plasma (EDTA). Standard Range 0.3 - 30 ng/ml Sample Volume 25 μl Application Instructions Assay Time 1 h (RT/shaker), 30 min (dark) Properties Form 96 well Storage instruction Store the kit at 2-8°C. Keep microplate wells sealed in a dry bag with desiccants. Do not expose test reagents to heat, sun or strong light during storage and usage. Please refer to the product user manual for detail temperatures of the components. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Background Dehydroepiandrosterone (DHEA; androstenolone; 3b-hydroxy-5-androsten-17-one) is a C19 steroid produced in the adrenal cortex and, to a lesser extent, gonads. DHEA serves as a precursor in testosterone and estrogen synthesis. Due to the presence of a 17-oxo (rather than hydroxyl) group, DHEA has relatively weak androgenic activity, which has been estimated at ~10% that of testosterone. However in neonates, peripubertal children and in adult women, circulating DHEA levels may be several- fold higher than testosterone concentrations, and rapid peripheral tissue conversion to more potent androgens (androstenedione and testosterone) and estrogens may occur. Moreover, DHEA has relatively low affinity for sex-hormone binding globulin. These factors may enhance the physiologic biopotency of DHEA.
    [Show full text]
  • Endocrinology Test List Endocrinology Test List
    For Endocrinologists Endocrinology Test List Endocrinology Test List Extensive Capabilities Managing patients with endocrine disorders is complex. Having access to the right test for the right patient is key. With a legacy of expertise in endocrine laboratory diagnostics, Quest Diagnostics offers an extensive menu of laboratory tests across the spectrum of endocrine disorders. This test list highlights the extensive menu of laboratory diagnostic tests we offer, including highly specialized tests and those performed using highly specific and sensitive mass spectrometry detection. It is conveniently organized by glandular function or common endocrine disorder, making it easy for you to identify the tests you need to care for the patients you treat. Comprehensive Care Quest Diagnostics Nichols Institute has been pioneering state-of-the-art endocrine testing for over four decades. Our commitment to innovative diagnostics and our dedication to quality and service means we deliver solutions that enable you to make informed clinical decisions for comprehensive patient management. We strive to remain at the forefront of innovation in endocrine testing so you can deliver the highest level of patient care. Abbreviations and Footnotes NDM, neonatal diabetes mellitus; MODY, maturity-onset diabetes of the young; CH, congenital hyperinsulinism; MSUD, maple syrup urine disease; IHH, idiopathic hypogonadotropic hypogonadism; BBS, Bardet-Biedl syndrome; OI, osteogenesis imperfecta; PKD, polycystic kidney disease; OPPG, osteoporosis-pseudoglioma syndrome; CPHD, combined pituitary hormone deficiency; GHD, growth hormone deficiency. The tests highlighted in green are performed using highly specific and sensitive mass spectrometry detection. Panels that include a test(s) performed using mass spectrometry are highlighted in yellow. For tests highlighted in blue, refer to the Athena Diagnostics website (athenadiagnostics.com/content/test-catalog) for test information.
    [Show full text]
  • Comprehensive Urinary Hormone Assessments
    ENDOCRINOLOGY Complete Hormones – Analytes Comprehensive Urinary Hormone Assessments Urinary Pregesterones Urinary Glucocorticoids Urinary Androgens Urinary Estrogens Pregnanediol Cortisol, Free Testosterone Estrone Pregnanetriol Total 17-Hydroxy-corticosteroids Dehydroepiandrosterone (DHEA) Estradiol allo-Tetrahydrocortisol, a-THF Total 17-Ketosteroids Estriol Tetrahydrodeoxycortisol Androsterone 2-Hydroxyestrone Tetrahydrocortisol, THF Etiocholanolone 2-Methoxyestrone Tetrahydrocortisone, THE 11-Keto-androsterone 4-Hydroxyestrone 17-Hydroxysteriods, Total 11-Keto-etiocholanolone 4-Methoxyestrone Pregnanetriol 11-Hydroxy-androsterone 16α-Hydroxyestrone 11-Hydroxy-etiocholanolone 2-Hydroxy-estrone:16α-Hydroxyestrone ratio 2-Methoxyestrone:2-Hydroxyestrone ratio CLINICIAN INFORMATION 4-Methoxyestrone:4-Hydroxyestrone ratio ADVANCING THE CLINICAL UTILITY OF URINARY HORMONE ASSESSMENT Specimen Requirements Complete Hormones™ is Genova’s most comprehensive • 120 ml aliquot, refrigerated until shipped, urinary hormone profile, and is designed to assist with the from either First Morning Urine or 24-Hour clinical management of hormone-related symptoms. This profile Collection Why Use Complete Hormones? assesses parent hormones and their metabolites as well as key metabolic pathways, and provides insight into the contribution Hormone testing is an effective tool for assessing Related Profiles: that sex hormones may have in patients presenting with and managing patients with hormone- related symptoms. This profile supports: • Male Hormonal Health™
    [Show full text]
  • Progesterone 7K77 49-3265/R3 B7K770 Read Highlighted Changes Revised April, 2010 Progesterone
    en system Progesterone 7K77 49-3265/R3 B7K770 Read Highlighted Changes Revised April, 2010 Progesterone Customer Service: Contact your local representative or find country specific contact information on www.abbottdiagnostics.com Package insert instructions must be carefully followed. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert. Key to symbols used List Number Calibrator (1,2) In Vitro Diagnostic Medical Control Low, Medium, High Device (L, M, H) Lot Number Reagent Lot Expiration Date Reaction Vessels Serial Number Sample Cups Septum Store at 2-8°C Replacement Caps Consult instructions for use Warning: May cause an allergic reaction Contains sodium azide. Contact Manufacturer with acids liberates very toxic gas. See REAGENTS section for a full explanation of symbols used in reagent component naming. 1 NAME REAGENTS ARCHITECT Progesterone Reagent Kit, 100 Tests INTENDED USE NOTE: Some kit sizes are not available in all countries or for use on all ARCHITECT i Systems. Please contact your local distributor. The ARCHITECT Progesterone assay is a Chemiluminescent Microparticle Immunoassay (CMIA) for the quantitative determination of progesterone in ARCHITECT Progesterone Reagent Kit (7K77) human serum and plasma. • 1 or 4 Bottle(s) (6.6 mL) Anti-fluorescein (mouse, monoclonal) fluorescein progesterone complex coated Microparticles SUMMARY AND EXPLANATION OF TEST in TRIS buffer with protein (bovine and murine) and surfactant Progesterone is produced primarily by the corpus luteum of the ovary stabilizers. Concentration: 0.1% solids. Preservatives: sodium azide in normally menstruating women and to a lesser extent by the adrenal and ProClin. cortex.1 At approximately the 6th week of pregnancy, the placenta 2-5 • 1 or 4 Bottle(s) (17.0 mL) Anti-progesterone (sheep, becomes the major producer of progesterone.
    [Show full text]
  • Labeling and Synthesis of Estrogens and Their Metabolites
    Labeling and Synthesis of Estrogens and Their Metabolites Paula Kiuru University of Helsinki Faculty of Science Department of Chemistry Laboratory of Organic Chemistry P.O. Box 55, 00014 University of Helsinki, Finland ACADEMIC DISSERTATION To be presented with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium A110 of the Department of Chemistry, A. I. Virtasen Aukio 1, Helsinki, on June 18th, 2005 at 12 o'clock noon Helsinki 2005 ISBN 952-91-8812-9 (paperback) ISBN 952-10-2507-7 (PDF) Helsinki 2005 Valopaino Oy. 1 ABSTRACT 3 ACKNOWLEDGMENTS 4 LIST OF ORIGINAL PUBLICATIONS 5 LIST OF ABBREVIATIONS 6 1. INTRODUCTION 7 1.1 Nomenclature of estrogens 8 1.2 Estrogen biosynthesis 10 1.3 Estrogen metabolism and cancer 10 1.3.1 Estrogen metabolism 11 1.3.2 Ratio of 2-hydroxylation and 16α-hydroxylation 12 1.3.3 4-Hydroxyestrogens and cancer 12 1.3.4 2-Methoxyestradiol 13 1.4 Structural and quantitative analysis of estrogens 13 1.4.1 Structural elucidation 13 1.4.2 Analytical techniques 15 1.4.2.1 GC/MS 16 1.4.2.2 LC/MS 17 1.4.2.3 Immunoassays 18 1.4.3 Deuterium labeled internal standards for GC/MS and LC/MS 19 1.4.4 Isotopic purity 20 1.5 Labeling of estrogens with isotopes of hydrogen 20 1.5.1 Deuterium-labeling 21 1.5.1.1 Mineral acid catalysts 21 1.5.1.2 CF3COOD as deuterating reagent 22 1.5.1.3 Base-catalyzed deuterations 24 1.5.1.4 Transition metal-catalyzed deuterations 25 1.5.1.5 Deuteration without catalyst 27 1.5.1.6 Halogen-deuterium exchange 27 1.5.1.7 Multistep labelings 28 1.5.1.8 Summary of deuterations 30 1.5.2 Enhancement of deuteration 30 1.5.2.1 Microwave irradiation 30 1.5.2.2 Ultrasound 31 1.5.3 Tritium labeling 32 1.6 Deuteration estrogen fatty acid esters 34 1.7 Synthesis of 2-methoxyestradiol 35 1.7.1 Halogenation 35 1.7.2 Nitration of estrogens 37 1.7.3 Formylation 38 1.7.4 Fries rearrangement 39 1.7.5 Other syntheses of 2-methoxyestradiol 39 1.7.6 Synthesis of 4-methoxyestrone 40 1.8 Synthesis of 2- and 4-hydroxyestrogens 41 2.
    [Show full text]
  • Normal Steroid Levels in Racehorses (Print) Page 1 of 2
    The Horse | Normal Steroid Levels in Racehorses (print) Page 1 of 2 Normal Steroid Levels in Racehorses by: Christy West February 28 2010 Article # 15889 Steroid usage in racehorses has received a good deal of attention in the media, perhaps reaching a peak during the 2009 Triple Crown season when Big Brown won the Kentucky Derby and Preakness on the legally administered steroid stanozolol, then flopped in the Belmont without it. While no one could ever prove the steroid helped the horse win or that his loss was associated with being steroid-free, the situation added significant fuel to the fire of medication regulation in racehorses. One of the tough aspects of regulating substances that are naturally produced in the horse's body, such as many steroids, is that before you can decide how high a level of the substance constitutes an administered medication or abuse, you have to find out how much horses produce normally. At the 2009 American Association of Equine Practitioners (AAEP) Convention held Dec. 5-9 in Las Vegas, Nev., one presenter discussed a study that sought to answer that question for anabolic androgenic steroids (hormones that stimulate masculine physical characteristics) in young Thoroughbreds. Currently there are four anabolic androgenic steroids commonly used therapeutically in racehorses: Stanozolol, nandrolone, testosterone, and boldenone, said presenter Benjamin C. Moeller, BS, a graduate student at the K.L. Maddy Equine Analytical Chemistry Laboratory at the University of California, Davis. In collaboration with veterinarians at Rood & Riddle Equine Hospital and Hagyard Equine Medical Institute (both in Lexington, Ky.), and Craig Van Balen (private practitioner in Lexington), 142 un-medicated Thoroughbred colts and 62 fillies in training at Central Kentucky farms, from five to 24 months of age, were blood tested monthly for 13 months.
    [Show full text]