Neurosteroids in Depression: a Review 39

Total Page:16

File Type:pdf, Size:1020Kb

Neurosteroids in Depression: a Review 39 PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/71267 Please be advised that this information was generated on 2021-09-26 and may be subject to change. Frank van Broekhoven Effects of progesterone and allopregnanolone on stress, attention, cognition and mood | Frank van Broekhoven ISBN 978-90-9023655-1 Copyright ©2008 Frank van Broekhoven. The copyright of articles that have already been published has been transferred to the respective journals. No part of this book may be reproduced, in any form, without prior written permission from the author. Niets uit deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt in welke vorm dan ook, zonder voorafgaande schriftelijke toestemming van de auteur. Coverdesign and layout by: Communicatie Kant, Dinxperlo, The Netherlands Printed by: Up2data, Bocholt, Germany The financial support for the printing of this thesis by Eli Lilly Nederland BV, Janssen-Cilag BV, the Department of Psychiatry from the Radboud University Nijmegen Medical Centre, and Karakter, Child and Adolescent Psy- chiatry University Centre, Nijmegen, is gratefully acknowledged. Effects of progesterone and allopregnanolone on stress, attention, cognition and mood Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het College van Decanen in het openbaar te verdedigen op maandag 24 november 2008 om 15.30 uur precies door Frank van Broekhoven geboren op 8 december 1969 te Groenlo Promotores: prof. dr. J.K. Buitelaar prof. dr. T. Bäckström (Umeå Universiteit) Copromotor: dr. R.J. Verkes Manuscriptcommissie: Prof. dr. Y.A. Hekster Prof. dr. J.A. den Boer (Rijksuniversiteit Groningen) Prof. dr. J.A.M. Kremer Effects of progesterone and allopregnanolone on stress, attention, cognition and mood An academic assay in Medical Sciences Doctoral thesis to obtain the degree of doctor from Radboud University Nijmegen on the authority of the Rector Magnificus prof. dr. S.C.J.J. Kortmann, according to the decision of the Council of Deans to be defended in public on Monday, 24 November 2008 at 15.30 hours by Frank van Broekhoven born in Groenlo on 8 december 1969 Doctoral supervisors: prof. dr. J.K. Buitelaar prof. dr. T. Bäckström (Umeå University) Co-supervisor: dr. R.J. Verkes Doctoral Thesis Committee: Prof. dr. Y.A. Hekster Prof. dr. J.A. den Boer (University of Groningen) Prof. dr. J.A.M. Kremer Effects of progesterone and allopregnanolone on stress, attention, cognition and mood | Frank van Broekhoven Contents page chaPter 1 Introduction 9 chaPter 2 Pharmacological characteristics of progesterone and allopregnanolone, steroid nomenclature, and development of neuroactive steroids to drugs 21 chaPter 3 Allopregnanolone and serotonin 33 chaPter 4 Neurosteroids in depression: a review 39 chaPter 5 Effects of PhD examination stress on allopregnanolone and cortisol plasma levels and peripheral benzodiazepine receptor density 59 chaPter 6 Effects of allopregnanolone on sedation in men, and in women on oral contraceptives 67 chaPter 7 Oral progesterone decreases saccadic eye velocity and increases sedation in women 85 chaPter 8 Increased sensitivity to oral progesterone in the luteal phase in healthy women 103 chaPter 9 Progesterone selectively increases amygdala reactivity in women 117 chaPter 10 Discussion 133 chaPter 11 Summary 147 chaPter 12 References 153 samenvatting 181 Publications 187 DankwoorD 193 curriculum vitae 197 Effects of progesterone and allopregnanolone on stress, attention, cognition and mood | Frank van Broekhoven chaPter 1 | INTRODUCTION chaPter 1 | INTRODUCTION chaPter 1 | INTRODUCTION Neuroactive steroids are important for psychiatry. Being metabolites of sex and stress hormones, they are involved in the pathophysiology of menstrual cycle and stress linked psychiatric disorders like the Premenstrual Dysphoric Disorder (PMDD), depression and dementia. Neuroactive steroids influence the excitability of neurons by acting on membrane-bound neurotransmitter receptors. Changes in concentrations of neuroactive steroids or in sensitivity of receptors can cause psychiatric symptoms like negative mood, anxiety and cognitive disor- ders. Most data comes from animal research while human data is mostly limited to the assessment of levels of neuroactive steroids in plasma from psychiatric patients and healthy controls and from postmenopausal women during hormone replacement therapy. The latter model has the advantage that dose response studies have been performed in humans. Definitions Steroid hormones are synthesized in the gonads, adrenal glands and placenta. Some steroid hormones are also synthesised in the brain and are called neurosteroids (Baulieu, 1998). The synthesis of steroids within the brain was first discovered in 1981 when dehydroepiandrosterone-sulphate (DHEAS) was detected in the brain of rats in concentrations much more higher than in plasma and not being influenced by adrenalectomy or adreno- corticotropic hormone (ACTH) administration (i.e. by manipulation peripherally) (Corpechot et al., 1981). When steroid hormones or neurosteroids have effect on the central nervous system (CNS) they are called neuroactive steroids (Paul and Purdy, 1992). Steroid hormones are known to act through intracellular receptors that act as ligand-activated transcrip- tion factors in the regulation of gene expression (genomic way). Neuroactive steroids have effects through membrane-bound receptors such as ligand-gated ion channels (non-genomic way) (McEwen, 1991; Rupprecht, 2003). This a-genomic mechanism of action accounts for rapid steroid effects that occur within milliseconds to seconds. Although neuroactive steroids can act on many different membrane-bound receptors, neuroactive steroids that act on the GABA(A) receptor are among the best studied (Baulieu, 1998). These so called GABA- steroids are defined as 3alpha-hydroxy-5alpha/beta metabolites of endogenous steroid hormones (Rupprecht and Holsboer, 1999). The main endogenous steroid hormones that generate GABA-steroids are stress hormones (cortisol and desoxycorticosterone (DOC)), and sex hormones (progesterone and testosterone). Many of the CNS effects of stress and sex hormones are mediated via the 3alpha-hydroxy-5alpha/beta metabolites while these GABA-steroids themselves do not activate the classical hormonal nuclear receptors of their parent compounds (Backstrom et al., 2003). 11 Chapter 1 | INTRODUCTION GABA, GABA(A) receptor, and GABA-steroids Gamma-amino butyric acid (GABA) is the major inhibitory neurotransmitter in the CNS and activates the GABA(A) receptor. The transmembrane heteropentameric GABA(A) receptor is composed of five subunits that belong to different subunit classes (Rudolph et al., 2001). These subunits form an ion channel through which chloride ions can enter the cell. When chloride ions flow into the neuron the possibility to generate an action potential is inhibited. Opening and closing of the channel is regulated by substances that bind to the GABA(A) receptor such as GABA itself, benzodiazepines, alcohol and GABA-steroids. GABA-steroids enhance the GABA effect on the GABA(A) receptor in a similar way as barbiturates, benzodiazepines and alcohol and are therefore potent positive allosteric modulators of the GABA(A) receptor (Majewska et al., 1986). The concentrations of GABA-steroids in the brain change in parallel with the ovarian and adrenal production. Conditions in which high GABA-steroid production occurs are stress, the luteal phase of the menstrual cycle, preg- nancy, progestagen treatment (oral contraceptive use, hormonal replacement treatment), and steroid treatment. GABA-steroids and GABA(A) receptors interact with each other. The sensitivity of GABA(A) receptors to GABA- steroids depends on the subunit composition of the receptor, with receptors containing the delta-subunit being the most sensitive (Spigelman et al., 2003), and on the phosphorylation state of the receptor (Lambert et al., 2001). Subunit composition differs between brain regions (Gee et al., 1988; Lambert et al., 2001). Vice versa, GABA-steroids influence the subunit composition of the GABA(A) receptor (Follesa et al., 2004); withdrawal of GABA-steroids increase alpha 4 subunit resulting in decreased sensitivity to GABA-steroids (Smith et al., 1998) while exposure to GABA-steroids increase alpha 1 and 2 subunits (Birzniece et al., 2006; Guerra-Araiza et al., 2008). Thus, the interaction between GABA-steroids and GABA(A) receptors is complex. GABA-steroids can induce CNS disorders (Backstrom et al., 2003). These disorders can be divided into menstrual cycle linked disorders (for example negative mood during hormone replacement therapy, PMDD, and catamenial epilepsy, which is a form of epilepsy characterised by increased frequency of epileptic seizures) and acute and chronic stress disorders (for example depression). In addition, GABA-steroids induce symptoms like cognitive disturbances (impaired memory and learning (Johansson et al., 2002)), increased appetite (Chen et al., 1996), and increased risk of substance abuse (Finn et al., 1997). They also induce negative mood symp- toms and aggressiveness (Backstrom et al., 2003; Miczek et al., 2003). Long-term treatment with precursors to GABA-steroids increases
Recommended publications
  • Original Article 4-Hydroxy Estrogen Metabolite, Causing Genomic
    Am J Transl Res 2019;11(8):4992-5007 www.ajtr.org /ISSN:1943-8141/AJTR0096694 Original Article 4-Hydroxy estrogen metabolite, causing genomic instability by attenuating the function of spindle-assembly checkpoint, can serve as a biomarker for breast cancer Suyu Miao1,2*, Fengming Yang1*, Ying Wang2*, Chuchu Shao1, David T Zava3, Qiang Ding2, Yuenian Eric Shi1 1Department of Oncology, 2Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; 3ZRT Laboratory, Beaverton 97003, USA. *Equal contributors. Received May 8, 2019; Accepted July 17, 2019; Epub August 15, 2019; Published August 30, 2019 Abstract: Sex hormone metabolism is altered during mammary gland tumorigenesis, and different metabolites may have different effects on mammary epithelial cells. This study aimed to evaluate associations between urinary sexual metabolite levels and breast cancer risk among premenopausal women of Mainland China. The molecular metabolism of the cancer-related metabolites was also explored based on the clinical data. The sex hormone me- tabolites in the urine samples of patients with breast cancer versus normal healthy women were analyzed com- prehensively. Among many alterations of sex hormone metabolisms, 4-hydroxy estrogen (4-OH-E) metabolite was found to be significantly increased in the urine samples of patients with breast cancer compared with the normal healthy controls. This was the most important risk factor for breast cancer. Several experiments were conducted in vitro and in vivo to probe this mechanism. 4-Hydroxyestradiol (4-OH-E2) was found to induce malignant transforma- tion of breast cells and tumorigenesis in nude mice. At the molecular level, 4-OH-E2 compromised the function of spindle-assembly checkpoint and rendered resistance to the anti-microtubule drug.
    [Show full text]
  • Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex
    Nicotinic Signalling and Neurosteroid Modulation in Principal Neurons of the Hippocampal Formation and Prefrontal Cortex by Beryl Yik Ting Chung A Thesis presented to The University of Guelph In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences and Neuroscience Guelph, Ontario, Canada © Beryl Yik Ting Chung, April, 2018 ABSTRACT NICOTINIC SIGNALLING AND NEUROSTEROID MODULATION IN PRINCIPAL NEURONS OF THE HIPPOCAMPAL FORMATION AND PREFRONTAL CORTEX Beryl Yik Ting Chung Advisor: University of Guelph, 2018 Dr. Craig D.C. Bailey Nicotinic signalling plays an important role in coordinating the response of neuronal networks in many brain regions. During pre- and postnatal circuit formation, neurotransmission mediated by nicotinic acetylcholine receptors (nAChRs) influences neuronal survival and regulates neuronal excitability, synaptic transmission, and synaptic plasticity. Nicotinic signalling is also necessary for the proper function of the hippocampal formation (HF) and prefrontal cortex (PFC), which are anatomically and functionally connected and facilitate higher-order cognitive functions. The decline or dysfunction in nicotinic signalling and nAChR function has been observed in various neurological disorders, and the disruption or alteration of nicotinic signalling in the HF and/or PFC can impair learning and memory. While the location and functional role of the α4β2* nAChR isoform has been well characterized in the medial portion of the PFC, this is not well-established in the HF. What is the role of α4β2* nAChRs in excitatory principal neurons of the HF during early development? Growing evidence suggests that the progesterone metabolite allopregnanolone (ALLO) plays a role in mediating the proper function of the HF and the PFC, and that it may also inhibit nAChR function.
    [Show full text]
  • Excretion Patterns of Fecal Progestagens, Androgen and Estrogens During Pregnancy, Parturition and Postpartum in Okapi (Okapia Johnstoni)
    Journal of Reproduction and Development, Vol. 53, No. 1, 2007 —Research Note— Excretion Patterns of Fecal Progestagens, Androgen and Estrogens During Pregnancy, Parturition and Postpartum in Okapi (Okapia johnstoni) Satoshi KUSUDA1), Koki MORIKAKU2), Ken-ichi KAWADA3), Kenji ISHIWADA4)# and Osamu DOI3) 1)Laboratory of Animal Reproduction, United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, 2)Preservation and Research Center, City of Yokohama, Kanagawa 241-0804, 3)Laboratory of Animal Reproduction, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and 4)Yokohama Zoological Gardens Zoorasia, Kanagawa 241- 0001, Japan #Present: Kanazawa Zoological Gardens of Yokohama, Kanagawa 236-0042, Japan Abstract. The aim of the present study was to establish a simple method to monitor ovarian activity and non-invasively diagnose pregnancy in okapi (Okapia johnstoni). The feces of a female okapi were collected daily or every 3 days for 28 months. Steroids in lyophilized feces were extracted with 80% methanol, and the fecal levels of immunoreactive progestagens (progesterone and pregnanediol- glucuronide), androgen (testosterone), and estrogens (estradiol-17β and estrone) were determined by enzyme immunoassays with commercially available antisera. Using the progesterone profiles, the durations of the luteal phase, follicular phase, and estrous cycle were determined to be 11.1 ± 0.4, 5.3 ± 0.6, and 16.5 ± 0.7 days (n=22), respectively. Fecal levels of immunoreactive progesterone, pregnanediol glucuronide, and testosterone gradually increased from early pregnancy and peaked several months before parturition. More pregnanediol glucuronide was excreted in feces than progesterone during late pregnancy, but not during the estrous cycle. Although the fecal concentrations of immunoreactive estradiol-17β and estrone change a little throughout pregnancy and non-pregnancy, they rose sharply and temporarily on the day following parturition.
    [Show full text]
  • 01 Front.Pdf
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. STUDIES TOWARDS THE DEVELOPMENT OF A MULTI­ PURPOSE HOME SELF-TEST KIT FOR THE DETECTION OF URINARY TETRAHYDROCORTISONE AND TESTOSTERONE METABOLITES A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at Massey University Claire Margaret Nielsen 2003 ii Abstract The development of homogeneous enzyme immunoassays (HEIA) for testosterone glucuronide (TG) and tetrahydrocortisone glucuronide (THEG) in urine are described. The proposed test system is based on the Ovarian Monitor homogeneous immunoassay system, established by J.B Brown and L.F. Blackwell et al. 1 as a simple, laboratory accurate, monitoring device for the measurement of estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) as markers of the fertile phase during a womans menstrual cycle. This information can be used readily by women to identify their cyclical periods of fertility and infertility. The major testosterone metabolite in the urine of males, testosterone p-glucuronide, was synthesised by firstly preparing the glycosyl donor a-bromosugar and conjugating this with testosterone under standard Koenigs-Knorr conditions. 1H nmr studies confirmed that the synthetic steroid glucuronide had the same stereochemistry as the naturally occurring urinary testosterone glucuronide. Testosterone glucuronide and tetrahydrocortisone glucuronide conjugates of hen egg white lysozyme were prepared using the active ester coupling method in good yield. Unreacted lysozyme was successfully removed from the reaction mixture by a combination of cation­ exchange chromatography in 7 M urea and hydrophobic-interaction chromatography.
    [Show full text]
  • Progesterone 7K77 49-3265/R3 B7K770 Read Highlighted Changes Revised April, 2010 Progesterone
    en system Progesterone 7K77 49-3265/R3 B7K770 Read Highlighted Changes Revised April, 2010 Progesterone Customer Service: Contact your local representative or find country specific contact information on www.abbottdiagnostics.com Package insert instructions must be carefully followed. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert. Key to symbols used List Number Calibrator (1,2) In Vitro Diagnostic Medical Control Low, Medium, High Device (L, M, H) Lot Number Reagent Lot Expiration Date Reaction Vessels Serial Number Sample Cups Septum Store at 2-8°C Replacement Caps Consult instructions for use Warning: May cause an allergic reaction Contains sodium azide. Contact Manufacturer with acids liberates very toxic gas. See REAGENTS section for a full explanation of symbols used in reagent component naming. 1 NAME REAGENTS ARCHITECT Progesterone Reagent Kit, 100 Tests INTENDED USE NOTE: Some kit sizes are not available in all countries or for use on all ARCHITECT i Systems. Please contact your local distributor. The ARCHITECT Progesterone assay is a Chemiluminescent Microparticle Immunoassay (CMIA) for the quantitative determination of progesterone in ARCHITECT Progesterone Reagent Kit (7K77) human serum and plasma. • 1 or 4 Bottle(s) (6.6 mL) Anti-fluorescein (mouse, monoclonal) fluorescein progesterone complex coated Microparticles SUMMARY AND EXPLANATION OF TEST in TRIS buffer with protein (bovine and murine) and surfactant Progesterone is produced primarily by the corpus luteum of the ovary stabilizers. Concentration: 0.1% solids. Preservatives: sodium azide in normally menstruating women and to a lesser extent by the adrenal and ProClin. cortex.1 At approximately the 6th week of pregnancy, the placenta 2-5 • 1 or 4 Bottle(s) (17.0 mL) Anti-progesterone (sheep, becomes the major producer of progesterone.
    [Show full text]
  • Center for Studies in Demography and Ecology
    Page 1 K.A. O’Connor Center for Studies in Demography and Ecology Urinary enzyme-immunoassays for population research on reproduction: Estrone conjugates and pregnanediol-3-gluceronide by Kathleen O’Connor University of Washington UNIVERSITY OF WASHINGTON CSDE Working Paper No. 01-11 Page 2 K.A. O’Connor Title: Urinary enzyme-immunoassays for population research on reproduction: Estrone conjugates and pregnanediol-3-glucuronide. Running Title: Urinary EIA’s for population research: E1C and PDG Authors and Institutions: Kathleen A. O’Connor1 Eleanor Brindle1 Darryl J. Holman1 Nancy A. Klein 2 Michael R. Soules 2 Kenneth L. Campbell 3 Fortüne Kohen 4 Coralie J. Munro 5 William L. Lasley 6 James W. Wood 7 1 Department of Anthropology and Center for Studies in Demography and Ecology, University of Washington, Seattle WA 98195 2 Department of Obstetrics and Gynecology, University of Washington, Seattle WA 98195 3 Department of Biology, University of Massachusetts, Boston MA 02125 4 Department of Biological Regulation, Weizmann Institute of Science, Rehovet 76100 Israel 5 Department of Population Health and Reproduction, University of California, Davis, CA 95616 6 Department of Obstetrics and Gynecology, University of California, Davis, CA 95616 7 Department of Anthropology and Population Research Institute, Pennsylvania State University, University Park, PA 16802 Total Number of Pages:22 Number of Figures: 9 Number of Tables: 5 Keywords: E1G, E1C, EIA, PDG, urinary reproductive steroids, Quidel 330, validations, Bangladesh, 3F11 clone, 155B3 clone, assay validation, urine specimen stability, specific gravity Corresponding Author: Kathleen A. O’Connor Department of Anthropology Box 353100 University of Washington Seattle, Washington 98195 phone: (206) 543-9605 fax: (206) 543-3285 email: [email protected] Date: 10/19/2002 Page 3 K.A.
    [Show full text]
  • PDG) Enzyme Immunoassay Kit
    DetectX® Pregnanediol-3-Glucuronide (PDG) Enzyme Immunoassay Kit 1 Plate Kit Catalog Number K037-H1 5 Plate Kit Catalog Number K037-H5 Species Independent Sample Types Validated: Dried Fecal Extracts, Urine, Extracted Serum/Plasma, and Tissue Culture Media Please read this insert completely prior to using the product. For research use only. Not for use in diagnostic procedures. www.ArborAssays.com K037-H WEB 210301 TABLE OF CONTENTS Background 3 Assay Principle 4 Related Products 4 Supplied Components 5 Storage Instructions 5 Other Materials Required 6 Precautions 6 Sample Types 7 Sample Preparation 7 Reagent Preparation 8 Assay Protocol 9 Calculation of Results 10 Typical Data 10-11 Validation Data Sensitivity, Linearity, etc. 11-13 Samples Values and Cross Reactivity 14 Warranty & Contact Information 15 Plate Layout Sheet 16 ® 2 EXPECT ASSAY ARTISTRY™ K037-H WEB 210301 BACKGROUND Pregnanediol Glucuronide, C27H44O8, also known as PDG (5β-Pregnan-3a,20a-diol 3-glucosiduronate) is the major metabolite of progesterone1-4. Progesterone is the hormone involved in the female menstrual cycle, gestation and embryogenesis of humans and other species. Progesterone belongs to a class of hormones called progestogens, and is the major naturally occurring human progestogen5,6. Progesterone is an essential regulator of human female reproductive function in the uterus, ovary, mammary gland and brain, and plays an important role in non-reproductive tissues such as the cardiovascular system, bone and the central nervous system. Progesterone action is conveyed by two isoforms of the nuclear progesterone receptor (PR), PRA and PRB. PRA and B are expressed in a variety of normal breast tissue from humans, rats and mice and is also expressed in breast cancer cells7,8.
    [Show full text]
  • Multidisciplinary Analysis of Biological Effects of Novel Analogs of The
    UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE des Sciences de la vie et de la santé (ED 414) INSERM UMR_S U1119 Biopathologies de la Myéline, Neuroprotection et Stratégies Thérapeutiques THÈSE En cotutelle avec l´Albert-Ludwigs-Universität Freiburg, Allemagne présentée par : Mona KAROUT soutenue le : 30 Septembre 2015 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline / Spécialité : Neurosciences Multidisciplinary analysis of biological effects of novel analogs of the neurosteroid allopregnanolone: evidence for a proliferative, neurogenic and ne uroprote ctive action THÈSE dirigée par : M. MENSAH-NYAGAN Ayikoé, Guy Professeur, Université de Strasbourg, France M. HOFMANN Hans-Dieter Professeur, Albert-Ludwigs-Universität Freiburg, Allemagne RAPPORTEURS : M. FISCHBACH Karl-Friedrich Professeur, Albert-Ludwigs-Universität Freiburg, Allemagne M. SCHWEMMLE Martin Professeur, Albert-Ludwigs-Universität Freiburg, Allemagne AUTRES MEMBRES DU JURY : M. DUFOUR André Professeur, Université de Strasbourg, France Mme. PATTE-MENSAH Christine Docteur, Université de Strasbourg, France !"# $%&'(%# To my parents A mes parents Acknowledgement ACKNOWLEDGEMENT First of all, I would like to express my appreciation and gratitude to all members of my thesis committee, Prof. Karl-Friedrich Fischbach, Prof. Martin Schwemmle, Prof. André Dufour and Dr. Christine Patte-Mensah for taking the time to evaluate my thesis. Furthermore, I would like to express my deepest gratitude to my two PhD supervisors Prof. Ayikoé Guy Mensah-Nyagan and Prof. Hans-Dieter Hofmann. I am very thankful to you Prof. Mensah-Nyagan for giving me a great opportunity for performing this joint French-German PhD. Thank you very much for the continuous support, for your patience, enthusiasm, passion for research and immense knowledge.
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Evolution of pharmacologic specificity in the pregnane X receptor Sean Ekins1,2,3, Erica J Reschly4, Lee R Hagey5 and Matthew D Krasowski*4 Address: 1Collaborations in Chemistry, Inc., Jenkintown, PA, USA, 2Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA, 3Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ, USA, 4Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA and 5Department of Medicine, University of California at San Diego, San Diego, CA, USA Email: Sean Ekins - [email protected]; Erica J Reschly - [email protected]; Lee R Hagey - [email protected]; Matthew D Krasowski* - [email protected] * Corresponding author Published: 2 April 2008 Received: 28 August 2007 Accepted: 2 April 2008 BMC Evolutionary Biology 2008, 8:103 doi:10.1186/1471-2148-8-103 This article is available from: http://www.biomedcentral.com/1471-2148/8/103 © 2008 Ekins et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The pregnane X receptor (PXR) shows the highest degree of cross-species sequence diversity of any of the vertebrate nuclear hormone receptors. In this study, we determined the pharmacophores for activation of human, mouse, rat, rabbit, chicken, and zebrafish PXRs, using a common set of sixteen ligands. In addition, we compared in detail the selectivity of human and zebrafish PXRs for steroidal compounds and xenobiotics.
    [Show full text]
  • Disappearance and Conjugation of Free Etiocholanolone Peter Berkeley Gregory Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1963 Turnover rates: disappearance and conjugation of free etiocholanolone Peter Berkeley Gregory Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Gregory, Peter Berkeley, "Turnover rates: disappearance and conjugation of free etiocholanolone" (1963). Yale Medicine Thesis Digital Library. 2673. http://elischolar.library.yale.edu/ymtdl/2673 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. Turnover Rates: Disappearance and Conjugation of Free Etiocholanolone Peter B. Gregory Yale School of Medicine 1963 Dedicated to George L, Cohn, Philip K» Bondy arid Morris Dillard for their invaluable assistance Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/turnoverratesdisOOgreg 1 It is recognized that certain endogenous steroids xv^ith a 5-3eta configuration produce a febrile response in man, (1,2,3) Several of these compounds may have well known physiologic functions 5 the temperature rise in the luteal phase of the menstrual period, with the concomitant increase of progesterone and its pyrogenic metabolites, pregnanolone and pregnanediol, Other 5-Beta steroids such as 11-keto-pregnanolone, pregnane- dione, 21-hydro xy-pregnanedione, 11-Beta-hydroxy-etiocholanolone, etiocholanedione, and etiocholanolone have no known responsi¬ bility for temperature regulation in normal individuals, (3) In 1957, Kappas and his collaborators (4,5) administered etiocholanolone intramuscularly to normal volunteers.
    [Show full text]
  • Tissue Steroid Levels in Response to Reduced Testicular Estrogen Synthesis in the Male Pig, Sus
    1 Tissue steroid levels in response to reduced testicular estrogen synthesis in the male pig, Sus 2 scrofa 3 Heidi Kucera1, Birgit Puschner1, Alan Conley2, Trish Berger3* 4 5 1 Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 6 Davis, CA 7 2 Department of Population Health and Reproduction, School of Veterinary Medicine, University 8 of California, Davis, CA 9 3 Department of Animal Science, College of Agricultural and Environmental Sciences, 10 University of California, Davis, CA 11 12 Short title: Estrogen sulfates, aromatase activity and free estrogen concentrations in prostate, 13 testis and liver 14 15 * Corresponding author 16 E-mail: [email protected] (TB) 17 1 18 Abstract 19 Production of steroid hormones is complex and dependent upon steroidogenic enzymes, 20 cofactors, receptors, and transporters expressed within a tissue. Collectively, these factors create 21 an environment for tissue-specific steroid hormone profiles and potentially tissue-specific 22 responses to drug administration. Our objective was to assess steroid production, including 23 sulfated steroid metabolites in the boar testis, prostate, and liver following inhibition of 24 aromatase, the enzyme that converts androgen precursors to estrogens. Boars were treated with 25 the aromatase inhibitor, letrozole from 11 to 16 weeks of age and littermate boars received the 26 canola oil vehicle. Steroid profiles were evaluated in testes, prostate, and livers of 16, 20, and 40 27 week old boars using liquid chromatography/mass spectrometry. Testis, prostate, and liver had 28 unique steroid profiles in vehicle-treated animals. Only C18 steroid hormones were altered by 29 treatment with the aromatase inhibitor, letrozole; no significant differences were detected in any 30 of the C19 or C21 steroids evaluated.
    [Show full text]
  • Wo 2007/049157 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 3 May 2007 (03.05.2007) PCT WO 2007/049157 A2 (51) International Patent Classification: Not classified (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, PCT/IB2006/003925 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, (22) International Filing Date: 24 October 2006 (24.10.2006) JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV,LY, MA, MD, MG, MK, MN, MW, MX, MY, (25) Filing Language: English MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 60/729,554 24 October 2005 (24.10.2005) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (71) Applicant (for all designated States except US): MAN- European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, AWATU BIOTECH INVESTMENTS LTD.
    [Show full text]