RBMX Enables Productive RNA Processing of Ultra-Long Exons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Lessons from Non-Canonical Splicing 1 2 Christopher R Sibley1,2*, Lorea Blazquez1* and Jernej Ule1 3 4 Addresses: 5
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery 1 Lessons from non-canonical splicing 2 3 Christopher R Sibley1,2*, Lorea Blazquez1* and Jernej Ule1 4 5 Addresses: 6 1Department of Molecular Neuroscience, UCL Institute of Neurology, Russell 7 Square House, Russell Square, London, WC1B 5EH, UK 8 9 2Division of Brain Sciences, Imperial College, Burlington Danes, DuCane Road, 10 London W12 0NN, UK 11 12 13 Additional information: 14 * These authors contributed equally to this work 15 16 17 Correspondence to JU 18 19 E-mail: [email protected] 20 21 22 DOI: 10.1038/nrgXXXX [office use only] 1 Abstract Recent improvements in experimental and computational techniques used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. 5 This includes cryptic events located far from the currently annotated exons, and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise 10 regulation and quality control, which minimises their potential to disrupt gene expression. While non-canonical splicing can lead to aberrant transcripts that cause many diseases, we also explain how it can be exploited for new therapeutic strategies. 15 Introduction The vast majority of human genes contain more than one exon, and therefore introns need to be spliced from the nascent transcript and exons joined to form an mRNA that can be translated into a protein. -
Splicing and Editing of Ionotropic Glutamate Receptors: a Comprehensive Analysis Based on Human RNA‑Seq Data
Cellular and Molecular Life Sciences (2021) 78:5605–5630 https://doi.org/10.1007/s00018-021-03865-z Cellular andMolecular Life Sciences ORIGINAL ARTICLE Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA‑Seq data Robin Herbrechter1 · Nadine Hube1 · Raoul Buchholz1 · Andreas Reiner1 Received: 20 March 2021 / Revised: 12 May 2021 / Accepted: 22 May 2021 / Published online: 8 June 2021 © The Author(s) 2021 Abstract Ionotropic glutamate receptors (iGluRs) play key roles for signaling in the central nervous system. Alternative splicing and RNA editing are well-known mechanisms to increase iGluR diversity and to provide context-dependent regulation. Earlier work on isoform identifcation has focused on the analysis of cloned transcripts, mostly from rodents. We here set out to obtain a systematic overview of iGluR splicing and editing in human brain based on RNA-Seq data. Using data from two large-scale transcriptome studies, we established a workfow for the de novo identifcation and quantifcation of alternative splice and editing events. We detected all canonical iGluR splice junctions, assessed the abundance of alternative events described in the literature, and identifed new splice events in AMPA, kainate, delta, and NMDA receptor subunits. Notable events include an abundant transcript encoding the GluA4 amino-terminal domain, GluA4-ATD, a novel C-terminal GluD1 (delta receptor 1) isoform, GluD1-b, and potentially new GluK4 and GluN2C isoforms. C-terminal GluN1 splicing may be controlled by inclusion of a cassette exon, which shows preference for one of the two acceptor sites in the last exon. Moreo- ver, we identifed alternative untranslated regions (UTRs) and species-specifc diferences in splicing. -
The MIS12 Complex Is a Protein Interaction Hub for Outer Kinetochore Assembly
JCB: Article The MIS12 complex is a protein interaction hub for outer kinetochore assembly Arsen Petrovic,1 Sebastiano Pasqualato,1 Prakash Dube,3 Veronica Krenn,1 Stefano Santaguida,1 Davide Cittaro,4 Silvia Monzani,1 Lucia Massimiliano,1 Jenny Keller,1 Aldo Tarricone,1 Alessio Maiolica,1 Holger Stark,3 and Andrea Musacchio1,2 1Department of Experimental Oncology, European Institute of Oncology (IEO) and 2Research Unit of the Italian Institute of Technology, Italian Foundation for Cancer Research Institute of Molecular Oncology–IEO Campus, I-20139 Milan, Italy 33D Electron Cryomicroscopy Group, Max Planck Institute for Biophysical Chemistry, and Göttingen Center for Microbiology, University of Göttingen, 37077 Göttingen, Germany 4Consortium for Genomic Technologies, I-20139 Milan, Italy inetochores are nucleoprotein assemblies responsi axis of 22 nm. Through biochemical analysis, cross- ble for the attachment of chromosomes to spindle linking–based methods, and negative-stain electron mi K microtubules during mitosis. The KMN network, croscopy, we investigated the reciprocal organization of a crucial constituent of the outer kinetochore, creates an the subunits of the MIS12 complex and their contacts with interface that connects microtubules to centromeric chro the rest of the KMN network. A highlight of our findings matin. The NDC80, MIS12, and KNL1 complexes form the is the identification of the NSL1 subunit as a scaffold core of the KMN network. We recently reported the struc supporting interactions of the MIS12 complex with the tural organization of the human NDC80 complex. In this NDC80 and KNL1 complexes. Our analysis has important study, we extend our analysis to the human MIS12 com implications for understanding kinetochore organization in plex and show that it has an elongated structure with a long different organisms. -
Congenital Microcephaly
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sussex Research Online American Journal of Medical Genetics Part C (Seminars in Medical Genetics) ARTICLE Congenital Microcephaly DIANA ALCANTARA AND MARK O'DRISCOLL* The underlying etiologies of genetic congenital microcephaly are complex and multifactorial. Recently, with the exponential growth in the identification and characterization of novel genetic causes of congenital microcephaly, there has been a consolidation and emergence of certain themes concerning underlying pathomechanisms. These include abnormal mitotic microtubule spindle structure, numerical and structural abnormalities of the centrosome, altered cilia function, impaired DNA repair, DNA Damage Response signaling and DNA replication, along with attenuated cell cycle checkpoint proficiency. Many of these processes are highly interconnected. Interestingly, a defect in a gene whose encoded protein has a canonical function in one of these processes can often have multiple impacts at the cellular level involving several of these pathways. Here, we overview the key pathomechanistic themes underlying profound congenital microcephaly, and emphasize their interconnected nature. © 2014 Wiley Periodicals, Inc. KEY WORDS: cell division; mitosis; DNA replication; cilia How to cite this article: Alcantara D, O'Driscoll M. 2014. Congenital microcephaly. Am J Med Genet Part C Semin Med Genet 9999:1–16. INTRODUCTION mid‐gestation although glial cell division formation of the various cortical layers. and consequent brain volume enlarge- Furthermore, differentiating and devel- Congenital microcephaly, an occipital‐ ment does continue after birth [Spalding oping neurons must migrate to their frontal circumference of equal to or less et al., 2005]. Impaired neurogenesis is defined locations to construct the com- than 2–3 standard deviations below the therefore most obviously reflected clini- plex architecture and laminar layered age‐related population mean, denotes cally as congenital microcephaly. -
Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase. -
Molecular Genetics of Microcephaly Primary Hereditary: an Overview
brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations -
Discovery of Novel Putative Tumor Suppressors from CRISPR Screens Reveals Rewired 2 Lipid Metabolism in AML Cells 3 4 W
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.332023; this version posted August 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Discovery of novel putative tumor suppressors from CRISPR screens reveals rewired 2 lipid metabolism in AML cells 3 4 W. Frank Lenoir1,2, Micaela Morgado2, Peter C DeWeirdt3, Megan McLaughlin1,2, Audrey L 5 Griffith3, Annabel K Sangree3, Marissa N Feeley3, Nazanin Esmaeili Anvar1,2, Eiru Kim2, Lori L 6 Bertolet2, Medina Colic1,2, Merve Dede1,2, John G Doench3, Traver Hart2,4,* 7 8 9 1 - The University of Texas MD Anderson Cancer Center UTHealth Graduate School of 10 Biomedical Sciences; The University of Texas MD Anderson Cancer Center, Houston, TX 11 12 2 - Department of Bioinformatics and Computational Biology, The University of Texas MD 13 Anderson Cancer Center, Houston, TX, USA 14 15 3 - Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA 16 17 4 - Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 18 Houston, TX, USA 19 20 21 22 23 * - Corresponding author: [email protected] 24 25 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.08.332023; this version posted August 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Bub1 Positions Mad1 Close to KNL1 MELT Repeats to Promote Checkpoint Signalling
ARTICLE Received 14 Dec 2016 | Accepted 3 May 2017 | Published 12 June 2017 DOI: 10.1038/ncomms15822 OPEN Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling Gang Zhang1, Thomas Kruse1, Blanca Lo´pez-Me´ndez1, Kathrine Beck Sylvestersen1, Dimitriya H. Garvanska1, Simone Schopper1, Michael Lund Nielsen1 & Jakob Nilsson1 Proper segregation of chromosomes depends on a functional spindle assembly checkpoint (SAC) and requires kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Several aspects of Mad1/Mad2 kinetochore recruitment in human cells are unclear and in particular the underlying direct interactions. Here we show that conserved domain 1 (CD1) in human Bub1 binds directly to Mad1 and a phosphorylation site exists in CD1 that stimulates Mad1 binding and SAC signalling. Importantly, fusion of minimal kinetochore-targeting Bub1 fragments to Mad1 bypasses the need for CD1, revealing that the main function of Bub1 is to position Mad1 close to KNL1 MELTrepeats. Furthermore, we identify residues in Mad1 that are critical for Mad1 functionality, but not Bub1 binding, arguing for a direct role of Mad1 in the checkpoint. This work dissects functionally relevant molecular interactions required for spindle assembly checkpoint signalling at kinetochores in human cells. 1 The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark. Correspondence and requests for materials should be addressed to G.Z. -
The Genome of Schmidtea Mediterranea and the Evolution Of
OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5. -
A Collection of Pre-Mrna Splicing Mutants in Arabidopsis Thaliana
G3: Genes|Genomes|Genetics Early Online, published on April 7, 2020 as doi:10.1534/g3.119.400998 1 1 A collection of pre-mRNA splicing mutants in Arabidopsis thaliana 2 3 4 Tatsuo Kanno1,a, Peter Venhuizen2,a, Ming-Tsung Wu3, Phebe Chiou1, Chia-Liang Chang1, 5 Maria Kalyna2,c, Antonius J.M. Matzke1,c and Marjori Matzke1,c 6 7 1Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Nangang 8 District, Taipei, 11529 Taiwan 9 10 2Department of Applied Genetics and Cell Biology, University of Natural Resources and Life 11 Sciences - BOKU, Muthgasse 18, 1190 Vienna, Austria 12 13 3Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA Cambridge, 14 UK 15 16 athese authors should be regarded as joint first authors 17 18 19 cCorresponding authors: 20 Antonius J.M. Matzke ([email protected]) 21 Tel: +886-2787-1135 22 Marjori Matzke ([email protected]) 23 Tel: +886-2787-1135 24 Maria Kalyna ([email protected]) 25 Tel: +43-1-47654-94112 26 27 28 29 30 31 32 © The Author(s) 2020. Published by the Genetics Society of America. 2 33 34 Running title: Arabidopsis pre-mRNA splicing mutants 35 36 Key words: Arabidopsis thaliana, CBP80. miRNAs, mutant screen, pre-mRNA splicing 37 38 39 40 Corresponding authors: 41 Antonius J.M. Matzke ([email protected]), Institute of Plant and Microbial 42 Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Nangang District, Taipei, 11529 Taiwan 43 Tel: +886-2787-1135 44 45 Marjori Matzke ([email protected]), Institute of Plant and Microbial Biology, 46 Academia Sinica, 128, Sec. -
Review Article Molecular and Cellular Basis of Autosomal Recessive Primary Microcephaly
Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 547986, 13 pages http://dx.doi.org/10.1155/2014/547986 Review Article Molecular and Cellular Basis of Autosomal Recessive Primary Microcephaly Marine Barbelanne1,2 and William Y. Tsang1,2,3 1 Institut de Recherches Cliniques de Montreal,´ 110 avenue des Pins Ouest, Montreal,QC,CanadaH2W1R7´ 2 FacultedeM´ edecine,´ UniversitedeMontr´ eal,´ Montreal,QC,CanadaH3C3J7´ 3 Division of Experimental Medicine, McGill University, Montreal,´ QC, Canada H3A 1A3 Correspondence should be addressed to William Y. Tsang; [email protected] Received 16 July 2014; Revised 18 September 2014; Accepted 18 September 2014; Published 8 December 2014 Academic Editor: Saulius Butenas Copyright © 2014 M. Barbelanne and W. Y. Tsang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Autosomal recessive primary microcephaly (MCPH) is a rare hereditary neurodevelopmental disorder characterized by a marked reduction in brain size and intellectual disability. MCPH is genetically heterogeneous and can exhibit additional clinical features that overlap with related disorders including Seckel syndrome, Meier-Gorlin syndrome, and microcephalic osteodysplastic dwarfism. In this review, we discuss the key proteins mutated in MCPH. To date, MCPH-causing mutations have been identified in twelve different genes, many of which encode proteins that are involved in cell cycle regulation or are present at the centrosome, an organelle crucial for mitotic spindle assembly and cell division. We highlight recent findings on MCPH proteins with regard to their role in cell cycle progression, centrosome function, and early brain development. -
An Ancient Germ Cell-Specific RNA-Binding Protein Protects
RESEARCH ARTICLE An ancient germ cell-specific RNA-binding protein protects the germline from cryptic splice site poisoning Ingrid Ehrmann1, James H Crichton2, Matthew R Gazzara3,4, Katherine James5, Yilei Liu1,6, Sushma Nagaraja Grellscheid1,7, TomazˇCurk8, Dirk de Rooij9,10, Jannetta S Steyn11, Simon Cockell11, Ian R Adams2, Yoseph Barash3,12*, David J Elliott1* 1Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom; 2MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom; 3Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 4Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 5Life Sciences, Natural History Museum, London, United Kingdom; 6Department of Plant and Microbial Biology, University of Zu¨ rich, Zu¨ rich, Switzerland; 7School of Biological and Biomedical Sciences, University of Durham, Durham, United Kingdom; 8Laboratory of Bioinformatics, Faculty of Computer and Information Sciences, University of Ljubljana, Ljubljana, Slovenia; 9Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands; 10Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; 11Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom; 12Department of Computer and Information Science, University of Pennsylvania, Philadelphia, United States *For correspondence: [email protected] (YB); [email protected] (DJE) Competing interests: The Abstract Male germ cells of all placental mammals express an ancient nuclear RNA binding authors declare that no protein of unknown function called RBMXL2. Here we find that deletion of the retrogene encoding competing interests exist.