Supersymmetry and String Theory, Second Edition: Beyond the Standard Model Michael Dine Frontmatter More Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2018 APS Prize and Award Recipients
APS Announces 2018 Prize and Award Recipients The APS would like to congratulate the recipients of these APS prizes and awards. They will be presented during APS award ceremonies throughout the year. Both March and April meeting award ceremonies are open to all APS members and their guests. At the March Meeting, the APS Prizes and Awards Ceremony will be held Monday, March 5, 5:45 - 6:45 p.m. at the Los Angeles Convention Center (LACC) in Los Angeles, CA. At the April Meeting, the APS Prizes and Awards Ceremony will be held Sunday, April 15, 5:30 - 6:30 p.m. at the Greater Columbus Convention Center in Columbus, OH. In addition to the award ceremonies, most prize and award recipients will give invited talks during the meeting. Some recipients of prizes, awards are recognized at APS unit meetings. For the schedule of APS meetings, please visit http://www.aps.org/meetings/calendar.cfm. Nominations are open for most 2019 prizes and awards. We encourage members to nominate their highly-qualified peers, and to consider broadening the diversity and depth of the nomination pool from which honorees are selected. For nomination submission instructions, please visit the APS web site (http://www.aps.org/programs/honors/index.cfm). Prizes 2018 APS MEDAL FOR EXCELLENCE IN PHYSICS 2018 PRIZE FOR A FACULTY MEMBER FOR RESEARCH IN AN UNDERGRADUATE INSTITUTION Eugene N. Parker University of Chicago Warren F. Rogers In recognition of many fundamental contributions to space physics, Indiana Wesleyan University plasma physics, solar physics and astrophysics for over 60 years. -
TASI Lectures on Emergence of Supersymmetry, Gauge Theory And
TASI Lectures on Emergence of Supersymmetry, Gauge Theory and String in Condensed Matter Systems Sung-Sik Lee1,2 1Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton ON L8S4M1, Canada 2Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo ON N2L2Y5, Canada Abstract The lecture note consists of four parts. In the first part, we review a 2+1 dimen- sional lattice model which realizes emergent supersymmetry at a quantum critical point. The second part is devoted to a phenomenon called fractionalization where gauge boson and fractionalized particles emerge as low energy excitations as a result of strong interactions between gauge neutral particles. In the third part, we discuss about stability and low energy effective theory of a critical spin liquid state where stringy excitations emerge in a large N limit. In the last part, we discuss about an attempt to come up with a prescription to derive holographic theory for general quantum field theory. arXiv:1009.5127v2 [hep-th] 16 Dec 2010 Contents 1 Introduction 1 2 Emergent supersymmetry 2 2.1 Emergence of (bosonic) space-time symmetry . .... 3 2.2 Emergentsupersymmetry . .. .. 4 2.2.1 Model ................................... 5 2.2.2 RGflow .................................. 7 3 Emergent gauge theory 10 3.1 Model ....................................... 10 3.2 Slave-particletheory ............................... 10 3.3 Worldlinepicture................................. 12 4 Critical spin liquid with Fermi surface 14 4.1 Fromspinmodeltogaugetheory . 14 4.1.1 Slave-particle approach to spin-liquid states . 14 4.1.2 Stability of deconfinement phase in the presence of Fermi surface... 16 4.2 Lowenergyeffectivetheory . .. .. 17 4.2.1 Failure of a perturbative 1/N expansion ............... -
Round Table Talk: Conversation with Nathan Seiberg
Round Table Talk: Conversation with Nathan Seiberg Nathan Seiberg Professor, the School of Natural Sciences, The Institute for Advanced Study Hirosi Ooguri Kavli IPMU Principal Investigator Yuji Tachikawa Kavli IPMU Professor Ooguri: Over the past few decades, there have been remarkable developments in quantum eld theory and string theory, and you have made signicant contributions to them. There are many ideas and techniques that have been named Hirosi Ooguri Nathan Seiberg Yuji Tachikawa after you, such as the Seiberg duality in 4d N=1 theories, the two of you, the Director, the rest of about supersymmetry. You started Seiberg-Witten solutions to 4d N=2 the faculty and postdocs, and the to work on supersymmetry almost theories, the Seiberg-Witten map administrative staff have gone out immediately or maybe a year after of noncommutative gauge theories, of their way to help me and to make you went to the Institute, is that right? the Seiberg bound in the Liouville the visit successful and productive – Seiberg: Almost immediately. I theory, the Moore-Seiberg equations it is quite amazing. I don’t remember remember studying supersymmetry in conformal eld theory, the Afeck- being treated like this, so I’m very during the 1982/83 Christmas break. Dine-Seiberg superpotential, the thankful and embarrassed. Ooguri: So, you changed the direction Intriligator-Seiberg-Shih metastable Ooguri: Thank you for your kind of your research completely after supersymmetry breaking, and many words. arriving the Institute. I understand more. Each one of them has marked You received your Ph.D. at the that, at the Weizmann, you were important steps in our progress. -
SUSY, Landscape and the Higgs
SUSY, Landscape and the Higgs Michael Dine Department of Physics University of California, Santa Cruz Workshop: Nature Guiding Theory, Fermilab 2014 Michael Dine SUSY, Landscape and the Higgs A tension between naturalness and simplicity There have been lots of good arguments to expect that some dramatic new phenomena should appear at the TeV scale to account for electroweak symmetry breaking. But given the exquisite successes of the Model, the simplest possibility has always been the appearance of a single Higgs particle, with a mass not much above the LEP exclusions. In Quantum Field Theory, simple has a precise meaning: a single Higgs doublet is the minimal set of additional (previously unobserved) degrees of freedom which can account for the elementary particle masses. Michael Dine SUSY, Landscape and the Higgs Higgs Discovery; LHC Exclusions So far, simplicity appears to be winning. Single light higgs, with couplings which seem consistent with the minimal Standard Model. Exclusion of a variety of new phenomena; supersymmetry ruled out into the TeV range over much of the parameter space. Tunings at the part in 100 1000 level. − Most other ideas (technicolor, composite Higgs,...) in comparable or more severe trouble. At least an elementary Higgs is an expectation of supersymmetry. But in MSSM, requires a large mass for stops. Michael Dine SUSY, Landscape and the Higgs Top quark/squark loop corrections to observed physical Higgs mass (A 0; tan β > 20) ≈ In MSSM, without additional degrees of freedom: 126 L 124 GeV H h m 122 120 4000 6000 8000 10 000 12 000 14 000 HMSUSYGeVL Michael Dine SUSY, Landscape and the Higgs 6y 2 δm2 = t m~ 2 log(Λ2=m2 ) H −16π2 t susy So if 8 TeV, correction to Higgs mass-squred parameter in effective action easily 1000 times the observed Higgs mass-squared. -
TASI Lectures on the Strong CP Problem
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server hep-th/0011376 SCIPP-00/30 TASI Lectures on The Strong CP Problem Michael Dine Santa Cruz Institute for Particle Physics, Santa Cruz CA 95064 Abstract These lectures discuss the θ parameter of QCD. After an introduction to anomalies in four and two dimensions, the parameter is introduced. That such topological parameters can have physical effects is illustrated with two dimensional models, and then explained in QCD using instantons and current algebra. Possible solutions including axions, a massless up quark, and spontaneous CP violation are discussed. 1 Introduction Originally, one thought of QCD as being described a gauge coupling at a particular scale and the quark masses. But it soon came to be recognized that the theory has another parameter, the θ parameter, associated with an additional term in the lagrangian: 1 = θ F a F˜µνa (1) L 16π2 µν where 1 F˜a = F ρσa. (2) µνρσ 2 µνρσ This term, as we will discuss, is a total divergence, and one might imagine that it is irrelevant to physics, but this is not the case. Because the operator violates CP, it can contribute to the neutron electric 9 dipole moment, dn. The current experimental limit sets a strong limit on θ, θ 10− . The problem of why θ is so small is known as the strong CP problem. Understanding the problem and its possible solutions is the subject of this lectures. In thinking about CP violation in the Standard Model, one usually starts by counting the parameters of the unitary matrices which diagonalize the quark and lepton masses, and then counting the number of possible redefinitions of the quark and lepton fields. -
Progress of Theoretical and Experimental Physics Vol. 2016, No
本会刊行英文誌目次 221 ©2016 日本物理学会 Gravitational positive energy theorems from information inequalities ....................................Nima Lashkari, Jennifer Lin, Hirosi Ooguri, Bogdan Stoica, and Mark Van Raamsdonk A note on the semiclassical formulation of BPS states in four-dimen- sional N=2 theories .....T. Daniel Brennan and Gregory W. Moore Letters Theoretical Particle Physics On the discrepancy between proton and α-induced d-cluster knockout on 16O ....................... B. N. Joshi, M. Kushwaha, and Arun K. Jain Papers General and Mathematical Physics Z2×Z2-graded Lie symmetries of the Lévy-Leblond equations .................... N. Aizawa, Z. Kuznetsova, H. Tanaka, and F. Toppan Theoretical Particle Physics Anomaly and sign problem in =( 2, 2) SYM on polyhedra: Numeri- N cal analysis .............................................Syo Kamata, So Matsuura, Tatsuhiro Misumi, and Kazutoshi Ohta Probing SUSY with 10 TeV stop mass in rare decays and CP violation of kaon .............................Morimitsu Tanimoto and Kei Yamamoto Monopole-center vortex chains in SU(2)gauge theory ..................... Seyed Mohsen Hosseini Nejad, and Sedigheh Deldar LHC 750 GeV diphoton excess in a radiative seesaw model .......................Shinya Kanemura, Kenji Nishiwaki, Hiroshi Okada, Yuta Orikasa, Seong Chan Park, and Ryoutaro Watanabe Coherent states in quantum algebra and qq-character for 5d W1+∞ super Yang-Mills ................ J.-E. Bourgine, M. Fukuda, Y. Matsuo, H. Zhang, and R.-D. Zhu Lorentz symmetry violation in the fermion number anomaly with the Progress of Theoretical and Experimental Physics chiral overlap operator .......... Hiroki Makino and Okuto Morikawa Vol. 2016, No. 12(2016) Fermion number anomaly with the fluffy mirror fermion .............................................Ken-ichi Okumura and Hiroshi Suzuki Special Section Revisiting the texture zero neutrino mass matrices Nambu, A Foreteller of Modern Physics III .................. -
10119003.Pdf
CERTAINDATA CONTAINEDINTHIS ! DOCUMENTMAYBE DIFFICULTTOREAD IN MICROFICHE I .! i PR.ODUCTS. :11 ! t | lt UCSD--916 904 TI m- rts-of-the--U-.i-ve.vsi ty o f Ca ll-f_- IIia su_b-.miL-tlte-l->r-_p_satfor--FYS-t992-=1996 . to t-h DE92 007123 Del)artment of Energy I _L..% ' . ' I "/ lI -. .I I / , , THEORETICAL PARTICLE PHYSICS University of California, San Diego DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bili.ty for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned right . Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the [Jnited States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. July 1, 1991 '_ IJ('.SI) 9169ol TABLE OF CONTENTS I. Proposal Overview ............. 3 2. Research Program .......... 6 A. quantunl Chrolnodynanlics ....... 6 I. The Spin Structure of the Nucleon . 7 12. Solitons and Discrete Symmetries ..... 9 3. Baryon Chiral Perturbation Theory ...... 9 4. Constituent Quarks as Collective Ez,citations ..... 11 5. Kaon Con,den,._ation .......... 12 B. Electroweak Interactions . ........ 14 i. -
R Symmetries, Supersymmetry Breaking, and a Bound on the Superpotential Strings2010
R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential Strings2010. Texas A&M University Michael Dine Department of Physics University of California, Santa Cruz Work with G. Festuccia, Z. Komargodski. March, 2010 Michael Dine R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential String Theory at the Dawn of the LHC Era As we meet, the LHC program is finally beginning. Can string theory have any impact on our understanding of phenomena which we may observe? Supersymmetry? Warping? Technicolor? Just one lonely higgs? Michael Dine R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential Supersymmetry Virtues well known (hierarchy, presence in many classical string vacua, unification, dark matter). But reasons for skepticism: 1 Little hierarchy 2 Unification: why generic in string theory? 3 Hierarchy: landscape (light higgs anthropic?) Michael Dine R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential Reasons for (renewed) optimism: 1 The study of metastable susy breaking (ISS) has opened rich possibilities for model building; no longer the complexity of earlier models for dynamical supersymmetry breaking. 2 Supersymmetry, even in a landscape, can account for 2 − 8π hierarchies, as in traditional naturalness (e g2 ) (Banks, Gorbatov, Thomas, M.D.). 3 Supersymmetry, in a landscape, accounts for stability – i.e. the very existence of (metastable) states. (Festuccia, Morisse, van den Broek, M.D.) Michael Dine R Symmetries, Supersymmetry Breaking, and A Bound on The Superpotential All of this motivates revisiting issues low energy supersymmetry. While I won’t consider string constructions per se, I will focus on an important connection with gravity: the cosmological constant. -
Memories of a Theoretical Physicist
Memories of a Theoretical Physicist Joseph Polchinski Kavli Institute for Theoretical Physics University of California Santa Barbara, CA 93106-4030 USA Foreword: While I was dealing with a brain injury and finding it difficult to work, two friends (Derek Westen, a friend of the KITP, and Steve Shenker, with whom I was recently collaborating), suggested that a new direction might be good. Steve in particular regarded me as a good writer and suggested that I try that. I quickly took to Steve's suggestion. Having only two bodies of knowledge, myself and physics, I decided to write an autobiography about my development as a theoretical physicist. This is not written for any particular audience, but just to give myself a goal. It will probably have too much physics for a nontechnical reader, and too little for a physicist, but perhaps there with be different things for each. Parts may be tedious. But it is somewhat unique, I think, a blow-by-blow history of where I started and where I got to. Probably the target audience is theoretical physicists, especially young ones, who may enjoy comparing my struggles with their own.1 Some dis- claimers: This is based on my own memories, jogged by the arXiv and IN- SPIRE. There will surely be errors and omissions. And note the title: this is about my memories, which will be different for other people. Also, it would not be possible for me to mention all the authors whose work might intersect mine, so this should not be treated as a reference work. -
Parallel Worlds
www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page i PARALLEL WORLDS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iii Also by Michio Kaku Beyond Einstein Hyperspace Visions Einstein’s Cosmos www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page iv MICHIO KAKU DOUBLEDAY New York London Toronto Sydney Auckland www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page v PARALLEL WORLDS A JOURNEY THROUGH CREATION, HIGHER DIMENSIONS, AND THE FUTURE OF THE COSMOS www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vi published by doubleday a division of Random House, Inc. doubleday and the portrayal of an anchor with a dolphin are regis- tered trademarks of Random House, Inc. Book design by Nicola Ferguson Illustrations by Hadel Studio Library of Congress Cataloging-in-Publication Data Kaku, Michio. Parallel worlds : a journey through creation, higher dimensions, and the future of the cosmos/Michio Kaku.—1st ed. p. cm. Includes bibliographical references 1. Cosmology. 2. Big bang theory. 3. Superstring theories. 4. Supergravity. I. Title. QB981.K134 2004 523.1—dc22 2004056039 eISBN 0-385-51416-6 Copyright © 2005 Michio Kaku All Rights Reserved v1.0 www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page vii This book is dedicated to my loving wife, Shizue. www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page viii www.Ael.af Kaku_0385509863_4p_all_r1.qxd 10/27/04 7:07 AM Page ix CONTENTS acknowledgments xi -
Relaxion: a Landscape Without Anthropics
The Relaxion: A Landscape Without Anthropics Ann Nelson∗ and Chanda Prescod-Weinsteiny Department of Physics, University of Washington, Seattle, Washington 98195-1560 (Dated: December 18, 2017) The relaxion mechanism provides a potentially elegant solution to the hierarchy problem without resorting to anthropic or other fine-tuning arguments. This mech- anism introduces an axion-like field, dubbed the relaxion, whose expectation value determines the electroweak hierarchy as well as the QCD strong CP violating θ¯ parameter. During an inflationary period, the Higgs mass squared is selected to be negative and hierarchically small in a theory which is consistent with 't Hooft's technical naturalness criteria. However, in the original model proposed by Graham, Kaplan, and Rajendran [1], the relaxion does not solve the strong CP problem, and in fact contributes to it, as the coupling of the relaxion to the Higgs field and the introduction of a linear potential for the relaxion produces large strong CP violation. We resolve this tension by considering inflation with a Hubble scale which is above the QCD scale but below the weak scale, and estimating the Hubble temperature dependence of the axion mass. The relaxion potential is thus very different during inflation than it is today. We find that provided the inflationary Hubble scale is between the weak scale and about 3 GeV, the relaxion resolves the hierarchy, strong CP, and dark matter problems in a way that is technically natural. arXiv:1708.00010v2 [hep-ph] 15 Dec 2017 I. INTRODUCTION Although the Standard Model represents a significant triumph for both theoretical and experimental particle physics, questions remain. -
SSI2018 Copy.Key
Why is there more matter than antimatter? recommended reading: arXiv:1706.03138 Ann Nelson, University of Washington, August 8, 2018 this is as far back as we have ‘seen’ who knows? Don’t need to know? Message for Particle Physics from observations of cosmological light element production any more messages? 99.7% ! Origin story • Nuclei synthesized from protons and neutrons (baryons) at T~MeV • Baryons are synthesized from quarks at T~100 MeV •Quarks are elementary (?) but tiny excess of quarks over anti quarks in hot early universe • How did that asymmetry arise? Just-so “Primordial” Asymmetry at the beginning of time? Set by initial conditions? 7 “Big Bang Theory” of origins now replaced by Inflation—much more predictive Inflation Universe begins from a tiny (~10-24 cm) patch of space which expanded by factor > 1025 in 10-32 s • Inflation smooths, dilutes universe • Replaces “Big Bang” singularity with theory for conditions at 10-32 s • Theory for spectrum of temperature fluctuations • confirmed by CMB observations • Prediction (not confirmed yet) for spectrum of gravitational waves 9 Implications of Inflation • Immediately after inflation universe is • hot, thermal (causality issue for thermal equilibrium solved) • flat (k=0) • uniform • small deviations from uniform temperature (eventually grow into galaxies etc) • symmetrical (equal numbers of quarks and anti- quarks) 10 Inflation+Standard Model predicts that our present universe would mostly consist of photons and neutrinos Why are we (the baryons) here? • As universe expands and cools, particles and antiparticles annihilate • Observed ratio of baryon density to entropy density is 10-10 •after inflation (10-32 s) and before nucleosynthesis •(.01 sec—3 minutes), an asymmetry of 10-8 arose between quarks and anti- quarks •We don’t know how the asymmetry happened.