View Preprint
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Géneros De Lamiaceae De México, Diversidad Y Endemismo
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Martínez-Gordillo, Martha; Fragoso-Martínez, Itzi; García-Peña, María del Rosario; Montiel, Oscar Géneros de Lamiaceae de México, diversidad y endemismo Revista Mexicana de Biodiversidad, vol. 84, núm. 1, marzo, 2013, pp. 30-86 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=42526150034 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad 84: 30-86, 2013 DOI: 10.7550/rmb.30158 Géneros de Lamiaceae de México, diversidad y endemismo Genera of Lamiaceae from Mexico, diversity and endemism Martha Martínez-Gordillo1, Itzi Fragoso-Martínez1, María del Rosario García-Peña2 y Oscar Montiel1 1Herbario de la Facultad de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México. partado postal 70-399, 04510 México, D.F., México. 2Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-367, 04510 México, D.F., México. [email protected] Resumen. La familia Lamiaceae es muy diversa en México y se distribuye con preferencia en las zonas templadas, aunque es posible encontrar géneros como Hyptis y Asterohyptis, que habitan en zonas secas y calientes; es una de las familias más diversas en el país, de la cual no se tenían datos actualizados sobre su diversidad y endemismo. -
Plant List 2016
Established 1990 PLANT LIST 2016 European mail order website www.crug-farm.co.uk CRÛG FARM PLANTS • 2016 Welcome to our 2016 list hope we can tempt you with plenty of our old favourites as well as some exciting new plants that we have searched out on our travels. There has been little chance of us standing still with what has been going on here in 2015. The year started well with the birth of our sixth grandchild. January into February had Sue and I in Colombia for our first winter/early spring expedition. It was exhilarating, we were able to travel much further afield than we had previously, as the mountainous areas become safer to travel. We are looking forward to working ever closer with the Colombian institutes, such as the Medellin Botanic Gardens whom we met up with. Consequently we were absent from the RHS February Show at Vincent Square. We are finding it increasingly expensive participating in the London shows, while re-branding the RHS February Show as a potato event hardly encourages our type of customer base to visit. A long standing speaking engagement and a last minute change of date, meant that we missed going to Fota near Cork last spring, no such problem this coming year. We were pleasantly surprised at the level of interest at the Trgrehan Garden Rare Plant Fair, in Cornwall. Hopefully this will become an annual event for us, as well as the Cornwall Garden Society show in April. Poor Sue went through the wars having to have a rush hysterectomy in June, after some timely results revealed future risks. -
Review of Pharmacological Properties, Phytochemistry and Medicinal Uses of Volkameria Glabra
264 Journal of Pharmacy and Nutrition Sciences, 2020, 10, 264-273 Review of Pharmacological Properties, Phytochemistry and Medicinal uses of Volkameria glabra Alfred Maroyi* Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa Abstract: Volkameria glabra (E. Mey.) Mabb. & Y.W. Yuan is a deciduous shrub or a small tree widely used as traditional medicine throughout its distributional range in tropical Africa. This study is aimed at providing a critical review of pharmacological properties, phytochemistry, and medicinal uses of V. glabra. Documented information on pharmacological properties, phytochemistry and medicinal uses of V. glabra was collected from several online sources such as Scopus, Google Scholar, PubMed and Science Direct, and pre-electronic sources such as book chapters, books, journal articles and scientific publications obtained from the university library. This study revealed that the bark, leaf and root infusion and/or decoction of V. glabra are mainly used as immune booster, protective charm, anthelmintic and ethnoveterinary medicine, and traditional medicine for convulsions, fractured bones, fever, wounds, gastro-intestinal problems, snake bite and respiratory diseases. Phytochemical compounds identified from the species include aliphatic glycosides, anthraquinones, cardiac glycosides, flavonoids, iridoid, phenols, saponins, steroids, tannins and triterpenoids. The V. glabra and compounds isolated from the species exhibited acaricidal, anthelmintic, antibacterial, antifungal, antimycobacterial, -
Morphological Variability of the Bulgarian Endemic Betonica Bulgarica Degen Et Neič
Acta Bot. Croat. 75 (1), 81–88, 2016 CODEN: ABCRA 25 DOI: 10.1515/botcro-2016-0020 ISSN 0365-0588 eISSN 1847-8476 Morphological variability of the Bulgarian endemic Betonica bulgarica Degen et Neič. (Lamiaceae) from Sinite Kamani Natural Park, Eastern Balkan Range Neli H. Grozeva1*, Mariya A. Gerdzhikova2, Dimitar H. Pavlov2, Galia D. Panayotova2, Mima H. Todorova2 1 Trakia University, Faculty of Agriculture, Department of Biology and Aquaculture, Stara Zagora, Bulgaria 2 Trakia University, Faculty of Agriculture, Department of Plant Growing, Stara Zagora, Bulgaria Abstract – Four populations of Betonica bulgarica Degen et Neič. at Sinite Kamani Natural Park were mor- phologically tested. Intrapopulation and interpopulation variabilities were established. The rеlationship be- tween morphological variability, number, area and ecological appurtenance of the studied populations were explored. The results demonstrated that the main source of phenotype variation is intrapopulation variability, mainly due to the age structure of populations. The most variable traits are height of stem and dimensions of leaves. The registered interpopulation variability was affected by the differences in altitude, soil type and dif- ferences in environmental conditions and soil properties. Indumentum and morphology of generative organs had taxonomic signifi cance for distinguishing B. bulgarica from the other species in the genus, including the species that were morphologically most similar to it – Betonica offi cinalis L. Keywords: Betonica bulgarica, morphology populations, variations Introduction not been subjected to detailed morphological studies. The polyphenol content in roots and above-ground parts has Endemic plants are an emblematic symbol of the Bul- been studied (Bankova et al. 1999). Data about the state of garian fl ora and one of the most sensitive and vulnerable B. -
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever
Staminal Evolution In The Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence For Multiple Origins Of The Staminal Lever Jay B. Walker & Kenneth J. Sytsma (Dept. of Botany, University of Wisconsin, Madison) Annals of Botany (in press) Abstract • Background and Aims - The genus Salvia has traditionally included any member of the tribe Mentheae (Lamiaceae) with only two stamens and with each stamen expressing an elongate connective. The recent demonstration of the non-monophyly of the genus presents interesting implications for staminal evolution in the tribe Mentheae. In the context of a molecular phylogeny, we characterize the staminal morphology of the various lineages of Salvia and related genera and present an evolutionary interpretation of staminal variation within the tribe Mentheae. • Methods. Two molecular analyses are presented in order to investigate phylogenetic relationships in the tribe Mentheae and the genus Salvia. The first presents a tribal survey of the Mentheae and the second concentrates on Salvia and related genera. Schematic sketches are presented for the staminal morphology of each major lineage of Salvia and related genera. • Key Results. These analyses suggest an independent origin of the staminal elongate connective on at least three different occasions within the tribe Mentheae, each time with a distinct morphology. Each independent origin of the lever mechanism shows a similar progression of staminal change from slight elongation of the connective tissue separating two fertile thecae to abortion of the posterior thecae and fusion of adjacent posterior thecae. We characterize a monophyletic lineage within the Mentheae consisting of the genera Lepechinia, Melissa, Salvia, Dorystaechas, Meriandra, Zhumeria, Perovskia, and Rosmarinus. • Conclusions. -
Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the -
Dispersion of Vascular Plant in Mt. Huiyangsan, Korea
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Korean Nature Vol. 3, No. 1 1-10, 2010 Dispersion of Vascular Plant in Mt. Huiyangsan, Korea Hyun-Tak Shin1, Sung-Tae Yoo2, Byung-Do Kim2, and Myung-Hoon YI3* 1Gyeongsangnam-do Forest Environment Research Institute, Jinju 660-871, Korea 2Daegu Arboretum 284 Daegok-Dong Dalse-Gu Daegu 704-310, Korea 3Department of Landscape Architecture, Graduate School, Yeungnam University, Gyeongsan 712-749, Korea Abstract: We surveyed that vascular plants can be classified into 90 families and 240 genus, 336 species, 69 variants, 22 forms, 3 subspecies, total 430 taxa. Dicotyledon plant is 80.9%, monocotyledon plant is 9.8%, Pteridophyta is 8.1%, Gymnosermae is 1.2% among the whole plant family. Rare and endangered plants are Crypsinus hastatus, Lilium distichum, Viola albida, Rhododendron micranthum, totalling four species. Endemic plants are Carex okamotoi, Salix koriyanagi for. koriyanagi, Clematis trichotoma, Thalictrum actaefolium var. brevistylum, Galium trachyspermum, Asperula lasiantha, Weigela subsessilis, Adenophora verticillata var. hirsuta, Aster koraiensis, Cirsium chanroenicum and Saussurea seoulensis total 11 taxa. Specialized plants are 20 classification for I class, 7 classifications for the II class, 7 classifications for the III class, 2 classification for the IV class, and 1 classification for the V class, total 84 taxa. Naturalized plants specified in this study are 10 types but Naturalization rate is not high compared to the area of BaekDu-DaeGan. This survey area is focused on the center of BaekDu- DaeGan, and it has been affected by excessive investigations and this area has been preserved as Buddhist temples' woods. -
Fire-Resistant Plants for Oregon Home Landscapes
FFire-ire-RResistantesistant PlantsPlants forfor OregonOregon HomeHome LandscapesLandscapes Suggesting specific types of vegetation that may reduce your risk from wildfire. Stephen Fitzgerald Area Extension Forester and Associate Professor Amy Jo Waldo Area Extension Horticulture Agent and Assistant Professor OSU Extension Service 1421 S. Hwy 97, Redmond, OR 97756 Introduction Oregon has many wildfire prone areas. In these places, fires are a natural part of the changing landscape. As homes are built in these areas, special precautions must be taken by the homeowner to pro- tect their property. Installation of fire- resistive roofing is critical to preventing firebrands from igniting the home from a roof fire. Well maintained fire-resistant vegetation and irrigated landscape is also critical within close proximity of a home. These actions DO NOT insure that your home will survive a wildfire, but they provide for a good chance of structural survival. Implementation of FireFree [www.firefree.org] and FireWise [www.firewise.org] activities can also significantly improve chances of a home surviving a wildfire. Fire-resistant vegetation. When landscaping around a home, most homeowners are interested in creating a landscape that is aesthetically pleasing, compliments their home, and has varia- tions in color, texture, flowers, and foliage. If your home is located in or adjacent to forests or rangeland, you should also consider the flammability of plants within your home landscape. Flammable plant material in your land- scape can increase the fire-risk around your home. The 1991 Oakland Hills Fire in California is a prime example of how flam- mable plant material (Eucalyptus trees) can act as fuel and contribute to the inten- sity of a wildfire. -
Filoggenia Mo J Olecular José Flor R Da Subt Implica
I JOSÉ FLORIANO BARÊA PASTORE FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS Feira de Santana, Bahia 2010 II UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS José Floriano Barêa Pastore Feira de Santana, Bahia Julho de 2010 III UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA FILOGENIA MOLECULAR DA SUBTRIBO HYPTIDINAE ENDL. (LABIATAE) E SUAS IMPLICAÇÕES TAXONÔMICAS José Floriano Barêa Pastore Orientador: Prof. Dr. Cássio van den Berg (UEFS) Co-orientador: Prof. Dr. Raymond Mervyn Harley (Royal Botanic Gardens, Kew) IV Tese apresentada ao Programa de Pós‐ Graduação em Botânica da Universidade Estadual de Feira de Santana como parte dos requisitos para a obtenção do título de Doutor em Botânica. Feira de Santana, Bahia Julho de 2010 V Pastore, José Floriano Barêa Pastore Filogenia molecular da subtribo Hyptidinae Endl. (Labiatae) e suas implicações taxonômicasFicha /catalográfica: José Floriano Biblioteca Barêa Pastore. Central – 2010. Julieta Carteado 123 f. : Il. ; 30 cm. Tese (doutorado) – Universidade Estadual de Feira de Santana, Departamento de Botânica, 2010. Orientação: Cássio van den Berg. Co-orientação: Raymond M. Harley. 1. Botânica sistemática. 2. Filogenia molecular. 3. Labiatae, subtribo Hyptidinae. I. Título VII AGRADECIMENTOS À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa do Programa de Doutorado no Brasil com estágio no Exterior (PDEE), que possibilitou período de estágio no Royal Botanic Gardens, Kew, Inglaterra. Ao Programa de Pós-Graduação em Botânica da Universidade Estadual de Feira de Santana (PPGBot/UEFS), em especial aos meus orientadores Prof. -
15. CARYOPTERIS Bunge, Pl. Mongholico-Chin. 27. 1835. 莸属 You Shu Cardioteucris C
Flora of China 17: 43–47. 1994. 15. CARYOPTERIS Bunge, Pl. Mongholico-Chin. 27. 1835. 莸属 you shu Cardioteucris C. Y. Wu. Herbs, subshrubs, or shrubs, erect or climbing. Leaves opposite, simple, entire or dentate, usually with glistening glands. Flowers in lax or dense cymes often aggregate into thyrses, rarely solitary. Calyx (4- or) 5- (or 6)-dentate or -lobed. Corolla short tubed, slightly 2-lipped, margin entire or dentate; lobes 5, spreading; lower lobe larger, concave, fringed. Stamens 4, often strongly exserted, inserted on apical part of corolla tube. Ovary 4-locular; ovules pendulous or laterally attached. Stigma 2-cleft. Fruit dry, usually dividing into four nutlets. Sixteen species: C and E Asia, 14 species in China. 1a. Inflorescences terminal, narrowly cylindric thyrses, sharply differentiated from vegetative shoots, cymes subtended by very reduced bracts. 2a. Thyrses lax; lateral cymes to 5-flowered; calyx clearly 2-lipped; corolla white .............................................. 12. C. siccanea 2b. Thyrses very dense; lateral cymes more than 5-flowered; calyx deeply 6-lobed; corolla bluish purple ......... 13. C. bicolor 1b. Inflorescences axillary or subterminal, mostly cymes, sometimes compact thyrses or reduced to a solitary flower, all except sometimes the uppermost subtended by normal leaves. 3a. Inflorescences dense axillary thyrses; fruit globose, ca. 4 × as long as calyx ................................................ 14. C. paniculata 3b. Inflorescences axillary or subterminal cymes, often corymbose, sometimes reduced to 1 flower; fruit usually winged or lobed, to 2 × as long as calyx. 4a. Leaf blade entire or with occasional teeth. 5a. Leaf blade linear-lanceolate or linear-oblong to narrowly oblanceolate, abaxial veins often darker than rest of leaf surface. -
NVEO 2017, Volume 4, Issue 4, Pages 14-27
Nat. Volatiles & Essent. Oils, 2017: 4(4): 14-27 Celep & Dirmenci REVIEW Systematic and Biogeographic overview of Lamiaceae in Turkey Ferhat Celep1,* and Tuncay Dirmenci2 1 Mehmet Akif Ersoy mah. 269. cad. Urankent Prestij Konutları, C16 Blok, No: 53, Demetevler, Ankara, TURKEY 2 Biology Education, Necatibey Education Faculty, Balıkesir University, Balıkesir, TURKEY *Corresponding author. E-mail: [email protected] Abstract Lamiaceae is the third largest family based on the taxon number and fourth largest family based on the species number in Turkey. The family has 48 genera and 782 taxa (603 species, 179 subspecies and varieties), 346 taxa (271 species, 75 subspecies and varieties) of which are endemic (ca. 44%) (data updated 1th February 2017) in the country. There are also 23 hybrid species, 19 of which are endemic (82%). The results proven that Turkey is one of the centers of diversity for Lamiaceae in the Old World. In addition, Turkey has about 10% of all Lamiaceae members in the World. The largest five genera in the country based on the taxon number are Stachys (118 taxa), Salvia (107 taxa), Sideritis (54 taxa), Phlomis (53 taxa) and Teucrium (49 taxa). According to taxon number, five genera with the highest endemism ratio are Dorystaechas (1 taxon, 100%), Lophantus (1 taxon, 100%), Sideritis (54 taxa, 74%), Drymosiphon (9 taxa, 67%), and Marrubium (27 taxa, 63%). There are two monotypic genera in Turkey as Dorystaechas and Pentapleura. Turkey sits on the junction of three phytogeographic regions with highly diverse climate and the other ecologic features. Phytogeographic distribution of Turkish Lamiaceae taxa are 293 taxa in the Mediterranean (37.4%), 267 taxa in the Irano-Turanian (36.7%), 90 taxa in the Euro-Siberian (Circumboreal) phytogeographic region, and 112 taxa in Unknown or Multiregional (14.3%) phytogeographical elements.