The Mayfly Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

The Mayfly Newsletter The Mayfly Newsletter Volume 15 Issue 2 Article 1 4-1-2008 The Mayfly Newsletter Peter M. Grant Southwestern Oklahoma State University, [email protected] Follow this and additional works at: https://dc.swosu.edu/mayfly Recommended Citation Grant, Peter M. (2008) "The Mayfly Newsletter," The Mayfly Newsletter: Vol. 15 : Iss. 2 , Article 1. Available at: https://dc.swosu.edu/mayfly/vol15/iss2/1 This Article is brought to you for free and open access by the Newsletters at SWOSU Digital Commons. It has been accepted for inclusion in The Mayfly Newsletter by an authorized editor of SWOSU Digital Commons. An ADA compliant document is available upon request. For more information, please contact [email protected]. THE MAYFLY NEWSLETTER Vol. 15 No. 2 Southwestern Oklahoma State University, Weatherford, Oklahoma 73096-3098 USA April 2008 DNA and Mayfly Taxonomy DNA Barcoding North American Mayflies - Large-scale DNA Sequencing in Taxonomy A Call for International Collaboration and Conservation: A Case Study with the Mayfly Family Heptageniidae Xin Zhou1, Luke M. Jacobus2 and Paul D. N. Hebert1 (Ephemeroptera) in the Alps and 1 Canadian Centre for DNA Barcoding, Biodiversity Madagascar Institute of Ontario, University of Guelph, Guelph, Ontario Laurent Vuataz, Michel Sartori, Olivier Glaizot and Jean-Luc NIG 2W1, Canada, [email protected],2Department Gattolliat, Musee cantonal de zoologie, Palais de Rumine, of Biology, Indiana University, 1001 East 3rd Street, Place de la Riponne 6, CH-1014 Lausanne, Switzerland, Bloomington, Indiana 47405-7005, USA [email protected]. In collaboration with Luca Fumagalli, Lausanne University, and Michael Monaghan, Natural Because mayflies (Ephemeroptera) are common in many History Museum, London, UK. freshwater habitats, they are widely used in freshwater biomonitoring. However, difficulties in species-level Advances in high-throughput DNA sequencing and analysis identifications and the uncertainty of certain life stage are transforming most aspects of organismal biology, but ^associations present a major impediment. The recently their potential for the study of biodiversity, taxonomy, and inched DNA barcoding initiative can help to standardize evolution has yet to be fully realized. Applied to whole identifications and enable confident association of larval and communities and entire faunas, large-scale sequencing could adult stages. provide rapid species inventories and a means to characterize DNA barcoding is based on the observation that a short, biodiversity where an existing taxonomy is incomplete or standardized segment of the genome can enable species absent. The need for such advances is critical - only 10-20% identification and discovery. There is now clear evidence of Earth’s species have been formally described and the rate that a 658-bp segment positioned near the 5' terminus of the of conventional species description would require a 1000- mitochondrial cytochrome c oxidase subunit I (COI) gene fold increase to meet the existing taxonomic needs of the is extraordinarily effective in discriminating members of global community (Seberg, 2004). This is particularly true the animal kingdom, allowing unambiguous identification for the functionally important but morphologically cryptic of more than 98% of animal species in studies that have meio- and micro-fauna (Blaxter et al., 2004). Freshwater examined a wide range of taxonomic groups. ecosystems are the most threatened of the world’s natural A large-scale program to identity North American resources (Abell, 2002), and the knowledge of their fauna is freshwater macroinvertebrates utilizing COI sequences particularly relevant for conservation purposes (Dudgeon et has been launched by the Canadian Centre for DNA al., 2006). Barcoding (CCDB, http://www.dnabarcoding.ca) at the Here we develop novel, DNA-based methods to provide University of Guelph. In order to develop this approach to (Continued on p. 6) the identification of aquatic insects, a COI barcode reference library must first be established from expertly identified specimens. Once a COI barcode is linked with a named Inside This Issue species, query sequences from unidentified specimens can Course on South American Mayflies.................................3 be compared with the reference barcode and suggested Mayfly Conference Update................................................4 identifications are generated based on the result. Conference Auction...........................................................4 Among all freshwater macroinvertebrates, mayflies clearly Hosting a Conference.........................................................5 deserve high priority for developing a barcode reference Copies of Proceedings........................................................ 5 brary because of their great diversity and abundance. Thus, Members of the Permanent Committee.............................5 searchers at the CCDB are launching an international Online Entomology Publications.......................................6 (Continued on p. 2) 2006 Mayfly Bibliography................................................7 The Mayfly Newsletter is printed on recycled paper with vegetable-based ink. (Zhou et al., continued from p. 1) should be kept in a refrigerator when possible. Unfortunately, DNA barcoding project with the aim of barcoding all mayfly specimens, especially adults, become very brittle mayfly species of the Nearctic fauna. Because there are in high concentration ethanol. A potential solution would more than 600 species of mayflies in North America, no be preparing a separate set of specimens for DNA analysis. single researcher or institute can carry out this project. Alternatively, legs can be pulled and kept in 95% ethanol for However, the task can be completed through an international DNA purpose while the remainder of the specimens can be collaboration involving mayfly systematists, freshwater stored in the traditional way. ecologists, and biomonitoring specialists. All collaborators Male adults and larvae are preferred, but female adults will benefit from the results of this project - barcode can also be used, especially if they have been identified sequences will advance our understanding of mayfly biology to species-level by association with identifiable stages. by discovering cryptic species, by revealing cases of over Our recent study on the Ephemeroptera of the Great splitting, by supplementing the description of new species, Smoky Mountains National Park has shown that life-stage by associating life stages, by tracing dispersion histories, and associations for most species were correct. In order to by creating an easy system for the identification of any life measure the levels of genetic divergence within species, stage of any species. we plan to analyze multiple (>5) individuals for each The tool of DNA barcoding shows great potential for use species. The widest range of intraspecific morphological by those studying the systematics of many Ephemeroptera differentiation from the widest geographic distribution species groups. One example of the utility of barcoding is should be included when choosing the particular individuals the verification of stage associations, especially those not for DNA analysis. made by careful rearing. Recent revisionary work on the Museum materials family Ephemerellidae Klapalek provides an illustration. While fresh materials are preferred for establishing DNA The species concept of Ephemerella altana Allen, a western barcode library, museum collections may serve as an Nearctic taxon, had been based on a larva belonging to alternative and critical resource. Although museum materials the genus Ephemerella Walsh and an adult of Serratella generally have lower success rate in DNA sequencing, they Edmunds. Had barcoding technology been available at the typically provide much more complete species coverage time of E. altana's discovery and description, it potentially than new collection efforts. Additionally, freshly collected could have shown that this association was erroneous. specimens can be examined against the type specimens Furthermore, barcoding could have helped to resolve the that are deposited in various museums over the world using species identities of the larva and adult. Based on traditional DNA sequences. A series of studies have shown that a specimen comparisons, the larva is thought to be that of the very short fragment of COI sequences (—130 bps on the 5’ transcontinental species, Ephemerella excrucians Walsh, terminus) can provide surprisingly good resolution (>95%) and the adult to be that of the western species, Serratella for species-level identification in Lepidoptera as well as in micheneri (Traver). Ephemerella excrucians exhibits an Ephemeroptera, Plecoptera, and Trichoptera (EPT). Because amazing amount of morphological variability throughout short DNA fragments are much easier to amplify in old its wide geographic range, which begs the question of specimens, museum materials, including type specimens, whether the current species concept might contain various can be associated with fresh materials using these “mini­ cryptic lineages that are unrecognizable by traditional, barcodes.” morphological means. Barcoding technology could be used Identification of mayfly specimens to study various populations, including those from type Since the barcoding project was launched in mid-2007, locales, and could provide a guideline for decisions about mayfly specimens have been contributed from various species
Recommended publications
  • Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S Rdna Sequences: a Reply to Sun Et Al
    Utah Valley University From the SelectedWorks of T. Heath Ogden 2008 Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) are not monophyletic based on 18S rDNA sequences: A Reply to Sun et al. (2006) T. Heath Ogden, Utah Valley University Available at: https://works.bepress.com/heath_ogden/9/ LETTERS TO THE EDITOR Pisciforma, Setisura, and Furcatergalia (Order: Ephemeroptera) Are Not Monophyletic Based on 18S rDNA Sequences: A Response to Sun et al. (2006) 1 2 3 T. HEATH OGDEN, MICHEL SARTORI, AND MICHAEL F. WHITING Sun et al. (2006) recently published an analysis of able on GenBank October 2003. However, they chose phylogenetic relationships of the major lineages of not to include 34 other mayßy 18S rDNA sequences mayßies (Ephemeroptera). Their study used partial that were available 18 mo before submission of their 18S rDNA sequences (Ϸ583 nucleotides), which were manuscript (sequences available October 2003; their analyzed via parsimony to obtain a molecular phylo- manuscript was submitted 1 March 2005). If the au- genetic hypothesis. Their study included 23 mayßy thors had included these additional taxa, they would species, representing 20 families. They aligned the have increased their generic and familial level sam- DNA sequences via default settings in Clustal and pling to include lineages such as Leptohyphidae, Pota- reconstructed a tree by using parsimony in PAUP*. manthidae, Behningiidae, Neoephemeridae, Epheme- However, this tree was not presented in the article, rellidae, and Euthyplociidae. Additionally, there were nor have they made the topology or alignment avail- 194 sequences available (as of 1 March 2005) for other able despite multiple requests. This molecular tree molecular markers, aside from 18S, that could have was compared with previous hypotheses based on been used to investigate higher level relationships.
    [Show full text]
  • Data Quality, Performance, and Uncertainty in Taxonomic Identification for Biological Assessments
    J. N. Am. Benthol. Soc., 2008, 27(4):906–919 Ó 2008 by The North American Benthological Society DOI: 10.1899/07-175.1 Published online: 28 October 2008 Data quality, performance, and uncertainty in taxonomic identification for biological assessments 1 2 James B. Stribling AND Kristen L. Pavlik Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Susan M. Holdsworth3 Office of Wetlands, Oceans, and Watersheds, US Environmental Protection Agency, 1200 Pennsylvania Ave., NW, Mail Code 4503T, Washington, DC 20460 USA Erik W. Leppo4 Tetra Tech, Inc., 400 Red Brook Blvd., Suite 200, Owings Mills, Maryland 21117-5159 USA Abstract. Taxonomic identifications are central to biological assessment; thus, documenting and reporting uncertainty associated with identifications is critical. The presumption that comparable results would be obtained, regardless of which or how many taxonomists were used to identify samples, lies at the core of any assessment. As part of a national survey of streams, 741 benthic macroinvertebrate samples were collected throughout the eastern USA, subsampled in laboratories to ;500 organisms/sample, and sent to taxonomists for identification and enumeration. Primary identifications were done by 25 taxonomists in 8 laboratories. For each laboratory, ;10% of the samples were randomly selected for quality control (QC) reidentification and sent to an independent taxonomist in a separate laboratory (total n ¼ 74), and the 2 sets of results were compared directly. The results of the sample-based comparisons were summarized as % taxonomic disagreement (PTD) and % difference in enumeration (PDE). Across the set of QC samples, mean values of PTD and PDE were ;21 and 2.6%, respectively.
    [Show full text]
  • Research Report110
    ~ ~ WISCONSIN DEPARTMENT OF NATURAL RESOURCES A Survey of Rare and Endangered Mayflies of Selected RESEARCH Rivers of Wisconsin by Richard A. Lillie REPORT110 Bureau of Research, Monona December 1995 ~ Abstract The mayfly fauna of 25 rivers and streams in Wisconsin were surveyed during 1991-93 to document the temporal and spatial occurrence patterns of two state endangered mayflies, Acantha­ metropus pecatonica and Anepeorus simplex. Both species are candidates under review for addition to the federal List of Endang­ ered and Threatened Wildlife. Based on previous records of occur­ rence in Wisconsin, sampling was conducted during the period May-July using a combination of sampling methods, including dredges, air-lift pumps, kick-nets, and hand-picking of substrates. No specimens of Anepeorus simplex were collected. Three specimens (nymphs or larvae) of Acanthametropus pecatonica were found in the Black River, one nymph was collected from the lower Wisconsin River, and a partial exuviae was collected from the Chippewa River. Homoeoneuria ammophila was recorded from Wisconsin waters for the first time from the Black River and Sugar River. New site distribution records for the following Wiscon­ sin special concern species include: Macdunnoa persimplex, Metretopus borealis, Paracloeodes minutus, Parameletus chelifer, Pentagenia vittigera, Cercobrachys sp., and Pseudiron centra/is. Collection of many of the aforementioned species from large rivers appears to be dependent upon sampling sand-bottomed substrates at frequent intervals, as several species were relatively abundant during only very short time spans. Most species were associated with sand substrates in water < 2 m deep. Acantha­ metropus pecatonica and Anepeorus simplex should continue to be listed as endangered for state purposes and receive a biological rarity ranking of critically imperiled (S1 ranking), and both species should be considered as candidates proposed for listing as endangered or threatened as defined by the Endangered Species Act.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Annual Newsletter and Bibliography of the International Society of Plecopterologists PERLA NO. 37, 2019
    PERLA Annual Newsletter and Bibliography of The International Society of Plecopterologists Nemoura cinerea (Retzius, 1783) (Nemouridae): Slovenia, near Planina, cave entrance to Ucina River, 15 June 2008. Photograph by Bill P. Stark PERLA NO. 37, 2019 Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA PERLA Annual Newsletter and Bibliography of the International Society of Plecopterologists Available on Request to the Managing Editor MANAGING EDITOR: Boris C. Kondratieff Department of Bioagricultural Sciences and Pest Management Colorado State University Fort Collins, Colorado 80523 USA E-mail: [email protected] EDITORIAL BOARD: Richard W. Baumann Department of Biology and Monte L. Bean Life Science Museum Brigham Young University Provo, Utah 84602 USA E-mail: [email protected] J. Manuel Tierno de Figueroa Dpto. de Zoología Facultad de Ciencias Universidad de Granada 18071 Granada, SPAIN E-mail: [email protected] Shigekazu Uchida Aichi Institute of Technology 1247 Yagusa Toyota 470-0392, JAPAN E-mail: [email protected] Peter Zwick Schwarzer Stock 9 D-36110 Schlitz, GERMANY E-mail: [email protected] 1 TABLE OF CONTENTS Subscription policy... ............................................................................................................ 3 The XVth International Conference on Ephemeroptera and XIXth International Symposium on Plecoptera .............................................................................................................................
    [Show full text]
  • Check List 4(2): 92–97, 2008
    Check List 4(2): 92–97, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Insecta, Ephemeroptera, Baetidae: Range extensions and new state records from Kansas, U.S.A. W. Patrick McCafferty 1 Luke M. Jacobus 2 1 Department of Entomology, Purdue University. West Lafayette, Indiana 47907 USA. E-mail: [email protected] 2 Department of Biology, Indiana University. Bloomington, Indiana 47405 USA. The mayfly (Ephemeroptera) fauna of the U.S.A. other central lowland prairie states as well state of Kansas is relatively poorly documented (McCafferty et al. 2001; 2003; Guenther and (McCafferty 2001). With respect to small minnow McCafferty 2005). Some additionally common mayflies (family Baetidae), only 16 species have species will be evident from the new data we been documented with published records from present herein. Kansas. Those involve Acentrella turbida (McDunnough, 1924); Acerpenna pygmaea Our examination of additional unidentified (Hagen, 1861); Apobaetis Etowah (Traver, 1935); material of Kansas Baetidae housed in the Snow A. lakota McCafferty, 2000; Baetis flavistriga Museum, University of Kansas, Lawrence, McDunnough, 1921; B. intercalaris McDunnough, Kansas, and collected mainly by the State 1921; Callibaetis fluctuans (Walsh, 1862); C. Biological Survey of Kansas, has led to the pictus Eaton, 1871; Centroptilum album discovery of 19 additional species of Baetidae in McDunnough, 1926; C. bifurcatum McDunnough, Kansas, resulting in a new total of 35 species of 1924; Fallceon quilleri (Dodds, 1923); Baetidae now known from the state. The records Paracloeodes minutus (Daggy, 1945); P. given alphabetically below also represent the first dardanum (McDunnough, 1923); P. ephippiatum Kansas records of the genera Camelobaetidius, (Traver, 1935); P.
    [Show full text]
  • The Effects of Environmental Integrity on the Diversity of Mayflies, Leptophlebiidae \(Ephemeroptera\), in Tropical Streams of T
    Ann. Limnol. - Int. J. Lim. 50 (2014) 325–334 Available online at: Ó EDP Sciences, 2014 www.limnology-journal.org DOI: 10.1051/limn/2014026 The effects of environmental integrity on the diversity of mayflies, Leptophlebiidae (Ephemeroptera), in tropical streams of the Brazilian Cerrado Leandro S. Brasil1*, Leandro Juen2 and Helena S. R. Cabette1 1 Programa de Po´s Graduac¸a˜ o em Ecologia e Conservac¸a˜ o – Universidade do Estado de Mato Grosso (UNEMAT) – Br 158, Km 655 – Cep. 78690-000 Caixa postal 08, Nova Xavantina, MT, USA 2 Laborato´rio de Ecologia e Conservac¸a˜ o, Instituto de Cieˆ ncias Biolo´gicas – Universidade Federal do Para´(UFPA) – Rua Augusto Correia, no 1, Bairro Guama´, Cep 66075-110, Bele´m, PA, USA Received 9 July 2014; Accepted 9 October 2014 Abstract – Aquatic insects are widely distributed, and are especially diverse and abundant in tropical streams, where they play an important role in the food chain due to their diversity of feeding strategies, and the potential for the transfer of energy between aquatic and terrestrial environments. The intimate relation- ship found between these insects and environmental variables means that they are often used as bioindicatorss in environmental studies. We tested the hypothesis that the loss of environmental integrity in tropical streams will lead to a loss of species and a decline in the abundance of mayflies (Leptophlebiidae), in addition to a change in species composition, and the dynamics of population. Collect immature leptophlebiids in 18 streams representing different degrees of conservation, in the Brazilian Cerrado. The environmental integrity of the sites was assessed using a Habitat Integrity Index (HII), which generates values of zero (degraded) to one (preserved), based on soil use, the extension and conservation of riparian forest, as well as morphological features of the stream.
    [Show full text]
  • Complete 00-01
    Contents Personnel Administration 2 School of Agriculture Faculty 3 Agricultural and Biological Engineering – ABE Agricultural Economics – AG ECON Agronomy – AGRY Animal Sciences – ANSC Biochemistry – BCHM Botany and Plant Pathology – B&PP Entomology – ENTM Food Science – FS Forestry and Natural Resources – F&NR Horticulture and Landscape Architecture – H&LA School of Consumer and Family Sciences Faculty 9 School of Veterinary Medicine Faculty 11 Research Projects School of Agriculture 16 Agricultural and Biological Engineering Agricultural Economics Agronomy Animal Sciences Biochemistry Botany and Plant Pathology Entomology Food Science Forestry and Natural Resources Horticultural and Landscape Architecture School of Consumer and Family Sciences Faculty 25 School of Veterinary Medicine Faculty 27 Publications 29 Financial Support Government 61 Non-Government 76 Agricultural Research Programs Graduate Opportunities Doctoral Programs 96 Graduat e Opportunities Masters Program 96 Lynn Interdisciplinary Graduate Fellowship 96 Agricultural Research Programs Assistantship Grants 96 Purdue Research Foundation Grants 97 Center for Food Safety Engineering Projects 98 Expenditures 99 1 Administration Agriculture Victor L. Lechtenberg, Dean William R. Woodson, Associate Dean and Director, Agricultural Research Programs David C. Petritz, Associate Dean and Director, Cooperative Extension Service Dale Whittaker, Associate Dean and Director, Academic Programs David J. Sammons, Associate Dean and Director, International Programs in Agriculture Agricultural Research Programs William R. Woodson, Director Marshall A.Martin, Associate Director Richard H. Linton, Assistant Director, Food Safety Lesley Oliver, Assistant Director, Sponsored Program Development Ron Turco, Assistant Director, Environmental Sciences Lynn Okagaki, Assistant Director, Consumer & Family Sciences Greg Stevenson, Assistant Director, Veterinary Medicine Jerry Fankhauser, Director, Purdue Agricultural Centers Steve Hawkins, Assistant Director, Purdue Agricultural Centers Agriculture Departments Chris W.
    [Show full text]
  • Comprehensive Conservation Plan Benton Lake National Wildlife
    Glossary accessible—Pertaining to physical access to areas breeding habitat—Environment used by migratory and activities for people of different abilities, es- birds or other animals during the breeding sea- pecially those with physical impairments. son. A.D.—Anno Domini, “in the year of the Lord.” canopy—Layer of foliage, generally the uppermost adaptive resource management (ARM)—The rigorous layer, in a vegetative stand; mid-level or under- application of management, research, and moni- story vegetation in multilayered stands. Canopy toring to gain information and experience neces- closure (also canopy cover) is an estimate of the sary to assess and change management activities. amount of overhead vegetative cover. It is a process that uses feedback from research, CCP—See comprehensive conservation plan. monitoring, and evaluation of management ac- CFR—See Code of Federal Regulations. tions to support or change objectives and strate- CO2—Carbon dioxide. gies at all planning levels. It is also a process in Code of Federal Regulations (CFR)—Codification of which the Service carries out policy decisions the general and permanent rules published in the within a framework of scientifically driven ex- Federal Register by the Executive departments periments to test predictions and assumptions and agencies of the Federal Government. Each inherent in management plans. Analysis of re- volume of the CFR is updated once each calendar sults helps managers decide whether current year. management should continue as is or whether it compact—Montana House bill 717–Bill to Ratify should be modified to achieve desired conditions. Water Rights Compact. alternative—Reasonable way to solve an identi- compatibility determination—See compatible use.
    [Show full text]
  • CHAPTER 4: EPHEMEROPTERA (Mayflies)
    Guide to Aquatic Invertebrate Families of Mongolia | 2009 CHAPTER 4 EPHEMEROPTERA (Mayflies) EPHEMEROPTERA Draft June 17, 2009 Chapter 4 | EPHEMEROPTERA 45 Guide to Aquatic Invertebrate Families of Mongolia | 2009 ORDER EPHEMEROPTERA Mayflies 4 Mayfly larvae are found in a variety of locations including lakes, wetlands, streams, and rivers, but they are most common and diverse in lotic habitats. They are common and abundant in stream riffles and pools, at lake margins and in some cases lake bottoms. All mayfly larvae are aquatic with terrestrial adults. In most mayfly species the adult only lives for 1-2 days. Consequently, the majority of a mayfly’s life is spent in the water as a larva. The adult lifespan is so short there is no need for the insect to feed and therefore the adult does not possess functional mouthparts. Mayflies are often an indicator of good water quality because most mayflies are relatively intolerant of pollution. Mayflies are also an important food source for fish. Ephemeroptera Morphology Most mayflies have three caudal filaments (tails) (Figure 4.1) although in some taxa the terminal filament (middle tail) is greatly reduced and there appear to be only two caudal filaments (only one genus actually lacks the terminal filament). Mayflies have gills on the dorsal surface of the abdomen (Figure 4.1), but the number and shape of these gills vary widely between taxa. All mayflies possess only one tarsal claw at the end of each leg (Figure 4.1). Characters such as gill shape, gill position, and tarsal claw shape are used to separate different mayfly families.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Aquatic Insect Ecophysiological Traits Reveal Phylogenetically Based Differences in Dissolved Cadmium Susceptibility
    Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility David B. Buchwalter*†, Daniel J. Cain‡, Caitrin A. Martin*, Lingtian Xie*, Samuel N. Luoma‡, and Theodore Garland, Jr.§ *Department of Environmental and Molecular Toxicology, Campus Box 7633, North Carolina State University, Raleigh, NC 27604; ‡Water Resources Division, U.S. Geological Survey, 345 Middlefield Road, MS 465, Menlo Park, CA 94025; and §Department of Biology, University of California, Riverside, CA 92521 Edited by George N. Somero, Stanford University, Pacific Grove, CA, and approved April 28, 2008 (received for review February 20, 2008) We used a phylogenetically based comparative approach to evaluate ecosystems today (e.g., trace metals) (6). This variation in the potential for physiological studies to reveal patterns of diversity susceptibility has practical implications, because the ecological in traits related to susceptibility to an environmental stressor, the structure of aquatic insect communities is often used to indicate trace metal cadmium (Cd). Physiological traits related to Cd bioaccu- the ecological conditions in freshwater systems (7–9). Differ- mulation, compartmentalization, and ultimately susceptibility were ences among species’ responses to environmental stressors can measured in 21 aquatic insect species representing the orders be profound, but it is uncertain whether the cause is related to Ephemeroptera, Plecoptera, and Trichoptera. We mapped these ex- functional ecology [usually the assumption (10, 11)] or physio- perimentally derived physiological traits onto a phylogeny and quan- logical traits (5, 12–14), which have received considerably less tified the tendency for related species to be similar (phylogenetic attention. To the degree that either is involved, their link to signal).
    [Show full text]