The Structure and Stratigraphy of the Aiguilles Rouges External Massif

Total Page:16

File Type:pdf, Size:1020Kb

The Structure and Stratigraphy of the Aiguilles Rouges External Massif Page 1 The structure and stratigraphy of the Aiguilles Rouges External Massif, its autochthonous Tertiary sediment cover and overlying Morcles nappe in Emosson (Helvetic Realm of the Western Alps, Switzerland) Michael J. Heap1 1University of Liverpool, 4 Brownlow Street, Liverpool, L69 3GP, U.K. West face of Petit Dent de Morcles Page 2 Abstract The stratigraphy of Emosson is dominated by three main groups of rocks: the metamorphic basement (Aiguilles Rouge massif), its autochthonous Triassic cover and a large recumbent fold called the Morcles nappe. The metamorphic basement displays low-grade subgreenschist metamorphism and is folded on both the km and metre-scale. It also contains many high angle normal faults that have provided palaeostress plunge and plunge directions of 093 64 for σ1, 203 10 for σ2 and 300 27 for σ3. Foliations are folded with the km-scale folding, therefore the foliations pre-date the folding. These foliations could relate to bedding in the sedimentary rocks before they experienced Variscan metamorphism. The metamorphic basement in Emosson is very variable and comprises of nine formations in total, but it mainly consists of a granitoid gneiss called augen gneiss. The top of the metamorphic basement is signalled by an augen gneiss formation containing a red/pink weathered top marking an unconformity. Triassic sediments (the Trias) unconformably overlie this augen gniess and consist of sandstone, mudstone and a carbonate conglomerate called cargneule. The sandstone is a very mature quartz arenite and contains many dinosaur footprints on one of its beds; the presence of a mature, well-rounded arenite with faintly dipping laminations indicates the sandstone was formed in a beach environment. Two types of mudstone are present: a green less oxidised mudstone and a more oxidised purple mudstone. The different colours do not reflect different parent compositions but whether the mud was waterlogged or not during deposition. The mudstones lack bioturbation, contain starved sandstone ripples and were formed on the floodplain of a sandy braided river. The cargneule can be split up into two types: one which contains angular polygonal hollows once occupied by halite and one which contains clasts derived from the surrounding material. The formation of the cargneule occurred in an evapouritic sabkha environment. The top of the cargneule is a decollement surface as the Morcles nappe, a succession of limestones, marls and shales, was thrust over it resulting in the burial of the underlying sediments and basement. This thrusting caused slight metamorphism in the Trias, especially in the cargneule where folding related to nappe emplacement is present. The Morcles nappe contains many large recumbent folds, the hinges lines of these folds were formed in close proximity to a shear plane resulting in the ‘shear out’ of the hinge lines to form sheath folds. Key words: Aiguilles Rouge Massif; Morcles nappe; sheath folds; Triassic sediments; palaeostress. Page 3 Table of contents 1. Introduction………………………………………………………………………5 Location of the mapping area (Emosson)……………………………………5 Alpine history, formation and geology………………………………………7 A brief history of the Alps…………………………………………...7 Western Alp geology and geological setting of Emosson……………8 Aims, scope and outline of the report…………………………………….....13 2. The Variscan metamorphic basement………………………………………….14 Stratigraphy and rock descriptions…………………………………………..14 The small tunnel feldspar gneiss Formation…………………………16 North of the small tunnel layered metasediment Formation…………17 South of the small tunnel mica schist Formation…………………….19 North of the big tunnel garnet gneiss Formation……………...……..21 North of the big tunnel layered metasediment Formation……...……23 Barrage de Barberine augen gneiss Formation…………………...….25 Barrage de Barberine garnet schist Formation…………………...….27 Combe du Col mica schist Formation…………………………….....29 Tete des Ottans augen gneiss Formation………………………….....30 Structural observations within the metamorphic basement……………….....31 Folding……………………………………………………………….31 Faulting………………………………………………………………33 Other observations…………………………………………………..36 Interpretations of the metamorphic basement……………………………….37 Metamorphic grade…………………………………………………..37 Formation of augen gneiss…………………………………………...38 Different formations of augen gneiss………………………………..38 Folding……………………………………………………………….41 Faulting………………………………………………………………44 Implications of garnets in metamorphic formations…………………48 Other interpretations…………………………………………………48 3. The granite……………………………………………………………………….50 The church white granite Formation…………………………………………50 Stratigraphy and rock descriptions…………………………………..50 Interpretations of the granite…………………………………………52 4. The Trias…………………………………………………………………………53 The signpost sandstone Formation…………………………………………..53 Stratigraphy and rock descriptions…………………………………..53 Dinosaur footprints…………………………………………………..58 Col de Barberine interbedded sandstone and mudstone Member……60 Interpretation of the sandstone features………………………………61 The signpost mudstone Formation…………………………………………...63 Stratigraphy and rock descriptions…………………………………...63 Interpretation of the mudstone features………………………………65 The Col du Barberine cargneule Formation………………………………….66 Stratigraphy and rock descriptions…………………………………...66 Page 4 The river valley white structureless Member………………………71 The river mouth quartz limestone Member………………………...72 Interpretation of the cargneule features…………………………….73 Palaeoenvironmental analysis for the Trias………………………………..75 5. The Morcles nappe……………………………………………………………..77 The Combe des Fonds carbonate nappe Formation………………………..77 Stratigraphy and rock descriptions…………………………………77 Structural observations within the Morcles nappe…………………79 Interpretations of the Morcles nappe……………………………….82 6. Superficial deposits…………………………………………………………….86 7. Geological history………………………………………………………………87 Acknowledgements and references………………………………………………91 Appendix…………………………………………………………………………...93 Page 5 1. Introduction Location of the mapping area (Emosson) Emosson is located in the region of Valais, which is located in the southwest of Switzerland (Fig1.2). Emosson was a small village but has been flooded by the consecutive construction of two dams: the Barrage de Barberine in 1925, which was eventually superseded by the Barrage d’Emosson in 1973 (Fig1.1). Position of the now submerged Barrage de Barberine Barrage d’Emosson Lac d’Emosson Figure 1.1 - Photograph of the barrage d'Emosson and Lac d'Emosson (from www.swisscastles.ch) Figure 1.2 - Map of Switzerland with Valais coloured orange Page 6 Figure 1.3 - Map of Valais showing position of Emosson and Lac d’Emosson; the exact mapping area is the east side of Lac d’Emosson (shaded red) The area under study is on the east side of Lac d’Emosson (Fig1.3) from Six Jeur (2062m), located near the Restaurant de Gueulaz, as far as Tour Salliere (3219m) keeping on the west side of Bel Oiseau (2628m), Fontanabran (2702m) and the Pointes d’Aboillon. Page 7 Alpine history, formation and geology A brief history of the Alps Before the Alps were formed the Hercynian (also known as Variscan or Amorican), a vast mountain belt, covered Europe. During the Permian sediments were deposited unconformably on the eroded basement of this orogen, deposition ensued in the Triassic when mostly carbonate marine rocks were deposited. The Adriatic and Eurasian plates collided following the subduction of the Piemonte Ocean (a branch of the Tethys Ocean that opened due to rifting in the Jurassic), which separated the two continents. This resulted in the subduction of the Eurasian plate under the Adriatic plate and the geology of the Alps thus consists of rocks from both continents and oceanic crust. Subduction of this ocean began in the mid-Cretaceous and was directed down towards the south or southeast; the Adriatic plate therefore overrode the Piemonte Ocean and eventually the Eurasian continental margin (Wheeler, 2003). The Pip or Sliver model is an applicable model for the formation of the Western Alps (Fig. 1.4). Figure 1.4 – The Pip or Sliver model (a) Piemonte Ocean subducted and French continental crust is 'pulled' down by more dense mantle (b) crust weakens and the movement sense is reversed forcing the subducted continental crust back to the surface Page 8 Western Alp geology and geological setting of Emosson The main geological units found in Emosson are the Aiguilles Rouge Massif (one of the External Massifs in the Helvetic Realm), its autochthonous Triassic sedimentary cover (mainly carbonates) and a large recumbent fold called the Morcles nappe. More or less allochthonous after the Alpine events, the External Massifs are the relics of a Variscan continental crust that had formed Carboniferous-Permian horsts, within which updomed Variscan nappes are preserved (von Raumer and Schwander, 1984). Overlying the Morcles Nappe is a thin zone of Ultrahelvetic sediments that were thrust over the Morcles’ Triassic to Tertiary sequence during the embryonic stages of the folding responsible for the formation of the Morcles fold. Overlying the Morcles and Ultrahelvetic units are 2-4km of higher Helvetic nappes (Ardon, Diablerets, Mont Gond and Sublage) and more then 5km of now eroded Préalps nappes (Kirschner, Sharp and Masson, 1995). The cross section below shows the positions of the different Helvetic units (Fig 1.5). Préalps nappes Ultrahelvetics nappes Morcles nappe Aiguilles Rouge massif Figure 1.5 - Cross section showing the relative positions of the different Helvetic units (modified from Kirschner
Recommended publications
  • Geological Excursion BASE-Line Earth
    Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17
    [Show full text]
  • Balkatach Hypothesis: a New Model for the Evolution of the Pacific, Tethyan, and Paleo-Asian Oceanic Domains
    Research Paper GEOSPHERE Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains 1,2 2 GEOSPHERE, v. 13, no. 5 Andrew V. Zuza and An Yin 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 89557, USA 2Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095-1567, USA doi:10.1130/GES01463.1 18 figures; 2 tables; 1 supplemental file ABSTRACT suturing. (5) The closure of the Paleo-Asian Ocean in the early Permian was accompanied by a widespread magmatic flare up, which may have been CORRESPONDENCE: avz5818@gmail .com; The Phanerozoic history of the Paleo-Asian, Tethyan, and Pacific oceanic related to the avalanche of the subducted oceanic slabs of the Paleo-Asian azuza@unr .edu domains is important for unraveling the tectonic evolution of the Eurasian Ocean across the 660 km phase boundary in the mantle. (6) The closure of the and Laurentian continents. The validity of existing models that account for Paleo-Tethys against the southern margin of Balkatach proceeded diachro- CITATION: Zuza, A.V., and Yin, A., 2017, Balkatach hypothesis: A new model for the evolution of the the development and closure of the Paleo-Asian and Tethyan Oceans criti- nously, from west to east, in the Triassic–Jurassic. Pacific, Tethyan, and Paleo-Asian oceanic domains: cally depends on the assumed initial configuration and relative positions of Geosphere, v. 13, no. 5, p. 1664–1712, doi:10.1130 the Precambrian cratons that separate the two oceanic domains, including /GES01463.1. the North China, Tarim, Karakum, Turan, and southern Baltica cratons.
    [Show full text]
  • FURTHER READING for the Article 'Orogenic Belts' by A. M. C. Şengör
    FURTHER READING for the article ‘Orogenic Belts’ by A. M. C. Şengör in the second edition of the Encyclopaedia of Solid Earth Geophysics published by Springer Cham., Berlin and Heidelberg. Aaron, J. M., editor, 1991, An Issue dedicated to Aspects of the Geology of Japan, Site of the 29th International Geological Congress: Episodes, v. 14, no. 3, pp. 187- 302. Akbayram, K., , Şengör, A. M. C. and Özcan, E, 2017, The evolution of the Intra- Pontide suture: Implications of the discovery of late Cretaceous–early Tertiary mélanges, in Sorkhabi, R., editor, Tectonic Evolution, Collision, and Seismicity of Southwest Asia— In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions: Geological Society of America Special Paper 525, pp. 573-612. Altunkaynak, Ş., 2007, Collision-driven slab breakoff magmatism in northWestern Anatolia, Turkey: The Journal of Geology, v. 115, pp. 63-82. Anonymous, 1984, Origin and History of Marginal and Inland Seas: Proceedings of the 27th International Geological Congress, Moscow, 4-14 August 1984,v. 23, VNU Science Press, Utrecht, vii+223 pp. Arai, R., IWasaki, T., Sato, H., Abe, S. and Hirata, N., 2009, Collision and subduction structure of the Izu–Bonin arc, central Japan, revealed by refraction/wide-angle reflection analysis: Tectonophysics, v. 475, pp. 438-453. Aramaki, S. and Kushiro, I., editors, 1983, Arc Volcanism: Elsevier, Amsterdam, VII+652 pp. Arkle, J. C., Armstrong, P. A., Haeussler, P. J., Prior, M. G., Harman, S., Sendziak, K. L. and Brush, J. A., 2013, Focused exhumation in the syntaxis of the Western Chugach Mountains and Prince William Sound, Alaska: Geological Society of America Bulletin, v.
    [Show full text]
  • Ion Microprobe Dating of Fissure Monazite in the Western Alps
    Ricchi et al. Swiss J Geosci (2020) 113:15 https://doi.org/10.1186/s00015-020-00365-3 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Ion microprobe dating of fssure monazite in the Western Alps: insights from the Argentera Massif and the Piemontais and Briançonnais Zones Emmanuelle Ricchi1* , Edwin Gnos2, Daniela Rubatto3,4, Martin John Whitehouse5 and Thomas Pettke3 Abstract Ion probe 208Pb/232Th fssure monazite ages from the Argentera External Massif and from the high-pressure units of the Western Alps provide new insights on its Cenozoic tectonic evolution. Hydrothermal monazite crystallizes dur- ing cooling/exhumation in Alpine fssures, an environment where monazite is highly susceptible to fuid-mediated dissolution-(re)crystallization. Monazite growth domains visualized by BSE imaging all show a negative Eu anomaly, positive correlation of Sr and Ca and increasing cheralite component (Ca Th replacing 2REE) with decreasing xenotime (Y) component. The huttonite component (Th Si replacing REE+ and P) is very low. Growth domains record crystallization following chemical disequilibrium in a fssure+ environment, and growing evidence indicates that they register tectonic activity. Fissure monazite ages obtained in this study corroborate previous ages, recording crystal- lization at ~ 36 Ma, ~ 32–30 Ma, and ~ 25–23 Ma in the high-pressure regions of the Western Alps, interpreted to be respectively related to top-NNW, top-WNW and top-SW thrusting in association with strike-slip faulting. During this latter transpressive phase, younger fssure monazite crystallization is recorded between ~ 20.6 and 14 Ma in the Argentera Massif, interpreted to have occurred in association with dextral strike-slip faulting related to anticlockwise rotation of the Corsica-Sardinia Block.
    [Show full text]
  • Paleozoic Evolution of Pre-Variscan Terranes: from Gondwana to the Variscan Collision
    Geological Society of America Special Paper 364 2002 Paleozoic evolution of pre-Variscan terranes: From Gondwana to the Variscan collision Gérard M. Stamp×i Institut de Géologie et Paléontologie, Université de Lausanne, CH-1015 Lausanne, Switzerland Jürgen F. von Raumer Institut de Minéralogie et Pétrographie, Université de Fribourg, CH-1700 Fribourg, Switzerland Gilles D. Borel Institut de Géologie et Paléontologie, Université de Lausanne, CH-1015 Lausanne, Switzerland ABSTRACT The well-known Variscan basement areas of Europe contain relic terranes with a pre-Variscan evolution testifying to their peri-Gondwanan origin (e.g., relics of Neo- proterozoic volcanic arcs, and subsequent stages of accretionary wedges, backarc rift- ing, and spreading). The evolution of these terranes was guided by the diachronous subduction of the proto-Tethys oceanic ridge under different segments of the Gond- wana margin. This subduction triggered the emplacement of magmatic bodies and the formation of backarc rifts, some of which became major oceanic realms (Rheic, paleo- Tethys). Consequently, the drifting of Avalonia was followed, after the Silurian and a short Ordovician orogenic event, by the drifting of Armorica and Alpine domains, ac- companied by the opening of the paleo-Tethys. The slab rollback of the Rheic ocean is viewed as the major mechanism for the drifting of the European Variscan terranes. This, in turn, generated a large slab pull force responsible for the opening of major rift zones within the passive Eurasian margin. Therefore, the µrst Middle Devonian Variscan orogenic event is viewed as the result of a collision between terranes detached from Gondwana (grouped as the Hun superterrane) and terranes detached from Eurasia.
    [Show full text]
  • Download Abstract Booklet Session 1
    Abstract Volume 16th Swiss Geoscience Meeting Bern, 3oth November – 1st December 2018 1. Structural Geology, Tectonics and Geodynamics 10 01. Structural Geology, Tectonics and Geodynamics Guido Schreurs, Neil Mancktelow, Paul Tackley, Daniel Egli Swiss Society of Mineralogy and Petrology (SSMP) TALKS: 1.1 Akker I.V., Zwingmann H., Todd A., Berger A., Herwegh M.: The role of sheet-silicates in the formation of spaced cleavages under changing physico-chemical conditions 1.2 Bastias J., Spikings R., Ulianov A., Grunow A., Chiaradia M., Riley T., Burton-Johnson A.: The Gondwanan margin in West Antarctica: insights from the Triassic metamorphic basement of the Antarctic Peninsula Symposium 1: Structural Geology, Tectonics and Geodynamics Tectonics Symposium 1: Structural Geology, 1.3 Beaussier S.J., Gerya T., Burg J.-P.: Effects of extensional inheritance on passive margin collapse 1.4 Behr W.M., Becker T.W.: Sediment Control on Subduction Plate Speeds 1.5 Bergemann C.A., Gnos E., Whitehouse M.J.: Dating retrograde tectonic activity in the Mont Blanc and Aiguilles Rouges massifs dated through ion probe analysis of hydrothermal cleft monazite 1.6 Brett A.C., Diamond L.W., Weber S., Gilgen S.: Rock-matrix versus fracture-controlled fluid pathways in the upper oceanic crust 1.7 Candioti L.G., Schmalholz S.M., Duretz T., Picazo S.: The Alpine cycle: Modelling orogenic wedge formation from generation of hyper-extended passive margins and forced subduction to continent-continent collision 1.8 Delunel R., Schlunegger F., Valla P.G., Dixon J., Glotzbach
    [Show full text]
  • Abstracts & Field Guides
    Berichte der Geologischen Bundesanstalt, 99 11th Workshop on Alpine Geological Studies & th 7 European Symposium on Fossil Algae Abstracts & Field Guides Schladming, Sept. 2013 Redaktion: Ralf Schuster Cover image: Sölk marble from the base of the Weiße Wand, Walchental (Styria, Austria) Impressum: ISSN 1017-8880 Alle Rechte für das In- und Ausland vorbehalten © Geologische Bundesanstalt (GBA) A-1030 Wien, Neulinggasse 38 www.geologie.ac.at Wien, September 2013 Medieninhaber, Herausgeber und Verleger: GBA, Wien Redaktion: Ralf Schuster (Geologische Bundesanstalt) Technische Redaktion; Christoph Janda (Geologische Bundesanstalt) Umschlag Monika Brüggemann-Ledolter Druck: Riegelnik, Offsetschnelldruck, Piaristengasse 19, A-1080 Wien Ziel der „Berichte der Geologischen Bundesanstalt“ ist die Verbreitung wissenschaftlicher Ergebnisse durch die Geologische Bundesanstalt. Die „Berichte der Geologischen Bundesanstalt“ sind im Handel nicht erhältlich. Berichte Geol. B.-A., 99 11th Workshop on Alpine Geological Studies & 7th IFAA Content Organisation & Time Schedule 4 Abstracts Emile Argand Conference (11th Workshop on Alpine Geological Studies) Editorial: Ralf Schuster 9 Abstracts 7th European Symposium on Fossil Algae Editorial: Sigrid Missoni & Hans-Jürgen Gawlick 107 Field guide: General Introduction in the Geology of the Easter Alps Ralf Schuster 121 Field guide Excursion A1: Southern Alps of Slovenia in a nutshell: paleogeography, tectonics, and active deformation Bogomir Celarc, Marko Vrabec, Boštjan Rožič, Polona Kralj, Petra Jamšek Rupnik,
    [Show full text]
  • Memorie Della Accademia Delle Scienze Di Torino
    Memorie della Accademia delle Scienze di Torino Classe di Scienze Fisiche, Matematiche e Naturali Serie V, Volume 41 ACCADEMIA DELLE S CIENZE DI T ORINO 2017 Edito con il contributo dell’Istituto di Geoscienze e Georisorse (IGG, unità di Torino) del Consiglio Nazionale delle Ricerche (CNR) 2017 ACCADEMIA DELLE S CIENZE DI T ORINO Via Accademia delle Scienze, 6 10123 Torino, Italia Uffi ci : Via Maria Vittoria, 3 10123 Torino, Italia Tel. +39-011-562.00.47; Fax +39-011-53.26.19 Tutte le memorie che appaiono nelle «Memorie dell’Accademia delle Scienze di Torino» sono disponibili in rete ad accesso aperto e sono valutate da referees anonimi attraverso un sistema di peer review . I lavori pubblicati sono classifi cati in base al seguente elenco di materie: Biologia animale e dell’uomo, Biologia vegetale, Chimica, Fisica, Geoscienze, Matematica, Scienza dell’informazione, Scienza dell’ingegneria, Scienze dell’ambiente, Scienze e ingegneria dei materiali, Storia delle scienze. L’Accademia vende direttamente le proprie pubblicazioni. Per acquistare fascicoli scrivere a: * [email protected] Per contattare la redazione rivolgersi a * [email protected] I lettori che desiderino informarsi sulle pubblicazioni e sull’insieme delle iniziative dell’Accademia delle Scienze di Torino possono consultare il sito www.accademiadellescienze.it ISSN: 1120-1630 ISBN: 978-88-99471-14-9 Acc. Sc. Torino Memorie Sc. Fis. 41 (2017), 3-143, 1 tab., 16 fi gg. GEOSCIENZE Geological Map of Piemonte Region at 1:250,000 scale Explanatory Notes Memoria di F!"#$%$& P$!'! *, L B*, R.& C!1'&'$** , A ’A.#$**,*, G F*, A I*, P M*, S T!++&'- *, G M.& * e M M*** presentata dal Socio corrispondente F!"#$%$& P$!'! nell’adunanza del 10 maggio 2017 e approvata nell’adunanza del 13 dicembre 2017 Abstract.
    [Show full text]
  • Miocene Basement Exhumation in the Central Alps Recorded by Detrital
    https://doi.org/10.5194/se-2019-98 Preprint. Discussion started: 14 June 2019 c Author(s) 2019. CC BY 4.0 License. 1 Miocene basement exhumation in the Central Alps recorded 2 by detrital garnet geochemistry in foreland basin deposits 3 Laura Stutenbecker1*, Peter M.E. Tollan2, Andrea Madella3, Pierre Lanari2 4 5 1Institute of Applied Geosciences, Technische Universität Darmstadt, Schnittspahnstr. 9, 6 64287 Darmstadt, Germany 7 2Institute of Geological Sciences, University of Bern, Baltzerstrasse 1+3, 3012 Bern, 8 Switzerland 9 3Department of Geosciences, University of Tuebingen, Wilhelmstr. 56, 72074 Tübingen, 10 Germany 11 *corresponding author: [email protected] 12 Abstract 13 The Neogene evolution of the European Alps was characterized by the exhumation of crystalline 14 basement, the so-called external crystalline massifs. Their exhumation presumably controlled the 15 evolution of relief, distribution of drainage networks and generation of sediment in the Central Alps. 16 However, due to the absence of suitable proxies, the timing of their surficial exposure, and thus the 17 initiation of sediment supply from these areas, are poorly constrained. 18 The northern alpine foreland basin preserves the Oligocene to Miocene sedimentary record of tectonic 19 and climatic adjustments in the hinterland. This contribution analyses the provenance of 25 to 14 My- 20 old alluvial fan deposits by means of detrital garnet chemistry. Unusually grossular- and spessartine- 21 rich garnets are found to be unique proxies for identifying detritus from the external crystalline 22 massifs. In the foreland basin, these garnets are abundant in 14 My-old deposits, thus providing a 23 minimum age for the surficial exposure of the crystalline basement.
    [Show full text]
  • The Italian Alps: a Journey Across Two Centuries of Alpine Geology
    The Italian Alps: a journey across two centuries of Alpine geology Giorgio Vittorio Dal Piaz Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 8 In: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, Sandro Conticelli, and Carlo Doglioni, The Geology of Italy: tectonics and life along plate margins, 2010. Download from: http://virtualexplorer.com.au/article/2010/234/a-journey-across-two-centuries-of-alpine- geology Click http://virtualexplorer.com.au/subscribe/ to subscribe to the Journal of the Virtual Explorer. Email [email protected] to contact a member of the Virtual Explorer team. Copyright is shared by The Virtual Explorer Pty Ltd with authors of individual contributions. Individual authors may use a single figure and/or a table and/or a brief paragraph or two of text in a subsequent work, provided this work is of a scientific nature, and intended for use in a learned journal, book or other peer reviewed publication. Copies of this article may be made in unlimited numbers for use in a classroom, to further education and science. The Virtual Explorer Pty Ltd is a scientific publisher and intends that appropriate professional standards be met in any of its publications. Journal of the Virtual Explorer, 2010 Volume 36 Paper 8 http://virtualexplorer.com.au/ The Italian Alps: a journey across two centuries of Alpine geology Giorgio Vittorio Dal Piaz University of Padua, Via Meneghini 10, 35122 Padova, Italy. Email: [email protected] Abstract: This review is first and mainly an historical journey across two centuries of Alpine geology, from the early fixist views to the mobilist revolutions produced by the nappe theory and, later, by the global theory of plate tectonics, including the important developments of the last decade.
    [Show full text]
  • Geology of Europe - Franz Neubauer
    GEOLOGY – Vol. IV – Geology of Europe - Franz Neubauer GEOLOGY OF EUROPE Franz Neubauer Institute of Geology and Paleontology, University of Salzburg, Austria Keywords: continental crust, crustal growth, tectonics, resources, earth history, seismic risk, plate tectonics, active tectonics, volcanism, hydrocarbon Contents 1. Introduction 2. Geological and Geophysical Overview 3. Laurentian Basement 4. Fennosarmatia and the East European Platform 4.1. Overview 4.2. Baltic Shield 4.3. Podolic Shield 4.4. East European Platform 5. Late Neoproterozoic and Paleozoic Orogens 5.1. Cadomides 5.2. Caledonides 5.3. Variscides 5.4. Skythides 5.5. Uralides 6. Mesozoic-Tertiary Orogens 6.1. Cimmerian Orogen 6.2. Alpine-Mediterranean Mountain Belts 6.3. Mediterranean Sea 7. Post-Variscan Sedimentary Basins 7.1. Permo-Mesozoic and Cenozoic Sedimentary Basins 7.2. Moesian Platform 7.3. North Caspian Trough 7.4. Passive Continental Margins Facing towards the Atlantic Ocean 8. Cenozoic Intraplate Magmatism 9. Quaternary Glaciation and Periglacial Deposits 10. ResourcesUNESCO – EOLSS 10.1. Coal 10.2. Hydrocarbon 10.3. Mineral SAMPLEResources CHAPTERS 10.4. Culturally Interesting Mineral Raw Materials Glossary Bibliography Biographical Sketch Summary The European continent is part of the Eurasian continent and is separated from Asia by ©Encyclopedia of Life Support Systems (EOLSS) GEOLOGY – Vol. IV – Geology of Europe - Franz Neubauer the late Paleozoic Uralian orogen. The European continent comprises two major sectors, Fennosarmatia in Eastern Europe with an Archean/Early Proterozoic basement and a Middle Proterozoic to Tertiary cover, and Central/Western/Southern Europe with Paleozoic orogens, which accreted since Silurian towards Fennosarmatia. Both sectors are separated by the Caledonian thrust front and the Tornquist-Teisseyre fault (Trans- European suture zone), the later representing a wide zone of superposed fault-suture- type structures.
    [Show full text]
  • On the Karelides in the Tohmajärvi Area, Eastern Finland
    ON THE KARELIDES IN THE TOHMAJÄRVI AREA, EASTERN FINLAND OSMO NYKÄNEN NYKÄNEN, OSMO 1971: On the Karelides in the Tohmajärvi area, eastern Finland. Bull. Geo/. Soc. Finland 43, 93—108. The evolution of the Karelides in the Tohmajärvi area is discussed. The Karelidic schists (metasediments) are devided into two stratigraphic groups, the Jatulian and the Kalevian, which likewise represent two different sedimentation facies. The Jatulian metasediments are so-called evolutionary sediments, deposited under relatively peaceful conditions in marginal parts of the continental block, partly in a shallow transgressive sea. These continental- epicontinental sediments were originally weathering gravel, quartz sands, bituminous and calcareous sediments, which were metamorphosed into metaconglomerates, quartzites, black schists and dolomites. The Kalevian metasediments are revolutionary sediments, chemically weakly weathered and mixed with sand and clay, which deposited rather rapidly into fold basins formed during orogenic movements. They are so-called flysch (Wegmann 1928, 1929) sediments and form the phyllite — mica schist group. Besides the normal metasediments, the Jatulian group comprises pyroclastic sediments and hypabyssic and metabasaltic effusives which erupted during the initial stages of the Svecofenno-Karelidic orogeny. In the southern part of the schist area there are smaller Late-Karelidic granite intrusions which together with the orogenic movements caused regional metamorphism under conditions of amphibolite facies where staurolite
    [Show full text]