Interval Estimation

Total Page:16

File Type:pdf, Size:1020Kb

Interval Estimation Topic 16 Interval Estimation Our strategy to estimation thus far has been to use a method to find an estimator, e.g., method of moments, or maximum likelihood, and evaluate the quality of the estimator by evaluating the bias and the variance of the estimator. Often, we know more about the distribution of the estimator and this allows us to take a more comprehensive statement about the estimation procedure. Interval estimation is an alternative to the variety of techniques we have examined. Given data x, we replace the point estimate ✓ˆ(x) for the parameter ✓ by a statistic that is subset Cˆ(x) of the parameter space. We will consider both the classical and Bayesian approaches to choosing Cˆ(x) . As we shall learn, the two approaches have very different interpretations. 16.1 Classical Statistics In this case, the random set Cˆ(X) is chosen to have a prescribed high probability, γ, of containing the true parameter value ✓. In symbols, P ✓ Cˆ(X) = γ. ✓{ 2 } In this case, the set Cˆ(x) is called a γ-level con- fidence set. In the case of a one dimensional param- 0.4 eter set, the typical choice of confidence set is a con- fidence interval 0.35 Cˆ(x)=(✓ˆ`(x), ✓ˆu(x)). 0.3 Often this interval takes the form 0.25 Cˆ(x)=(✓ˆ(x) m(x), ✓ˆ(x)+m(x)) = ✓ˆ(x) m(x) − ± where the two statistics, 0.2 ✓ˆ(x) is a point estimate, and • 0.15 m(x) is the margin of error. • 0.1 16.1.1 Means 0.05 area α Example 16.1 (1-sample z interval). If X1.X2....Xn 0 µ z are normal random variables with unknown mean −3 −2 −1 0 1 2 α 3 2 but known variance σ0. Then, . ↵ is the area under the standard X¯ µ Figure 16.1: Upper tail critical values Z = − normal density and to the right of the vertical line at critical value z↵ σ0/pn 239 Introduction to the Science of Statistics Interval Estimation is a standard normal random variable. For any ↵ between 0 and 1, let z↵ satisfy P Z>z = ↵ or equivalently P Z z =1 ↵. { ↵} { ↵} − The value is known as the upper tail probability with critical value z↵. We can compute this in R using, for example > qnorm(0.975) [1] 1.959964 for ↵ =0.025. If γ =1 2↵, then ↵ =(1 γ)/2. In this case, we have that − − P z <Z<z = γ. {− ↵ ↵} Let µ0 is the state of nature. Taking in turn each the two inequalities in the line above and isolating µ0, we find that X¯ µ0 − = Z<z↵ σ0/pn X¯ µ <z σ0 − 0 ↵ pn σ X¯ z 0 <µ − ↵ pn 0 Similarly, X¯ µ0 − = Z> z↵ σ0/pn − implies σ µ < X¯ + z 0 0 ↵ pn Thus σ σ X¯ z 0 <µ < X¯ + z 0 . − ↵ pn 0 ↵ pn has probability γ. Thus, for data x, σ0 x¯ z(1 γ)/2 ± − pn is a confidence interval with confidence level γ. In this case, µˆ(x)=¯x is the estimate for the mean and m(x)=z(1 γ)/2σ0/pn is the margin of error. − We can use the z-interval above for the confidence interval for µ for data that is not necessarily normally dis- tributed as long as the central limit theorem applies. For one population tests for means, n>30 and data not strongly skewed is a good rule of thumb. Generally, the standard deviation is not known and must be estimated. So, let X ,X , ,X be normal random 1 2 ··· n variables with unknown mean and unknown standard deviation. Let S2 be the unbiased sample variance. If we are forced to replace the unknown variance σ2 with its unbiased estimate s2, then the statistic is known as t: x¯ µ t = − . s/pn The term s/pn which estimates the standard deviation of the sample mean is called the standard error. The remarkable discovery by William Gossett is that the distribution of the t statistic can be determined exactly. Write pn(X¯ µ) Tn 1 = − . − S Then, Gossett was able to establish the following three facts: 240 Introduction to the Science of Statistics Interval Estimation 0.4 1.0 0.8 0.3 0.6 0.2 0.4 0.1 0.2 0.0 0.0 -4 -2 0 2 4 -4 -2 0 2 4 x x Figure 16.2: The density and distribution function for a standard normal random variable (black) and a t random variable with 4 degrees of freedom (red). The variance of the t distribution is df / (df 2) = 4/(4 2) = 2 is higher than the variance of a standard normal. This can be seen in the − − broader shoulders of the t density function or in the smaller increases in the t distribution function away from the mean of 0. The numerator is a standard normal random variable. • The denominator is the square root of • 1 n S2 = (X X¯)2. n 1 i − i=1 − X The sum has chi-square distribution with n 1 degrees of freedom. − The numerator and denominator are independent. • With this, Gossett was able to compute the density of the t distribution with n 1 degrees of freedom. Gossett, − who worked for the the brewery of Arthur Guinness in Dublin, was permitted to publish his results only if it appeared under a pseudonym. Gosset chose the name Student, thus the distribution is sometimes known as Student’s t. Again, for any ↵ between 0 and 1, let upper tail probability tn 1,↵ satisfy − P Tn 1 >tn 1,↵ = ↵ or equivalently P Tn 1 tn 1,↵ =1 ↵. { − − } { − − } − We can compute this in R using, for example > qt(0.975,12) [1] 2.178813 for ↵ =0.025 and n 1 = 12. − Example 16.2. For the data on the lengths of 200 Bacillus subtilis, we had a mean x¯ =2.49 and standard deviation s =0.674. For a 96% confidence interval ↵ =0.02 and we type in R, > qt(0.98,199) [1] 2.067298 241 Introduction to the Science of Statistics Interval Estimation 4 3 2 1 0 10 20 30 40 50 df Figure 16.3: Upper critical values for the t confidence interval with γ =0.90 (black), 0.95 (red), 0.98 (magenta) and 0.99 (blue) as a function of df , the number of degrees of freedom. Note that these critical values decrease to the critical value for the z confidence interval and increases with γ. Thus, the interval is 0.674 2.490 2.0674 =2.490 0.099 or (2.391, 2.589) ± p200 ± Example 16.3. We can obtain the data for the Michaelson-Morley experiment using R by typing > data(morley) The data have 100 rows - 5 experiments (column 1) of 20 runs (column 2). The Speed is in column 3. The values for speed are the amounts over 299,000 km/sec. Thus, a t-confidence interval will have 99 degrees of freedom. We can see a histogram by writing hist(morley$Speed). To determine a 95% confidence interval, we find > mean(morley$Speed) [1] 852.4 > sd(morley$Speed) [1] 79.01055 > qt(0.975,99) [1] 1.984217 Thus, our confidence interval for the speed of light is 79.0 299, 852.4 1.9842 = 299, 852.4 15.7 or the interval (299836.7, 299868.1) ± p100 ± This confidence interval does not include the presently determined values of 299,792.458 km/sec for the speed of light. The confidence interval can also be found by tying t.test(morley$Speed). We will study this command in more detail when we describe the t-test. 242 Introduction to the Science of Statistics Interval Estimation Histogram of morley$Speed 30 25 20 15 Frequency 10 5 0 600 700 800 900 1000 1100 morley$Speed Figure 16.4: Measurements of the speed of light. Actual values are 299,000 kilometers per second plus the value shown. Exercise 16.4. Give a 90% and a 98% confidence interval for the example above. We often wish to determine a sample size that will guarantee a desired margin of error. For a γ-level t-interval, this is s m = tn 1,(1 γ)/2 . − − pn Solving this for n yields 2 tn 1,(1 γ)/2 s n = − − . m ✓ ◆ Because the number of degrees of freedom, n 1, for the t distribution is unknown, the quantity n appears on both − sides of the equation and the value of s is unknown. We search for a conservative value for n, i.e., a margin of error that will be no greater that the desired length. This can be achieved by overestimating tn 1,(1 γ)/2 and s. For the speed of light example above, if we desire a margin of error of m = 10 km/sec for a 95% confidence− − interval, then we set tn 1,(1 γ)/2 =2and s = 80 to obtain − − 2 80 2 n · = 256 ⇡ 10 ✓ ◆ measurements are necessary to obtain the desired margin of error.. The next set of confidence intervals are determined, in the case in which the distributional variance in known, by finding the standardized score and using the normal approximation as given via the central limit theorem. In the cases in which the variance is unknown, we replace the distribution variance with a variance that is estimated from the observations. In this case, the procedure that is analogous to the standardized score is called the studentized score.
Recommended publications
  • Statistical Methods for Data Science, Lecture 5 Interval Estimates; Comparing Systems
    Statistical methods for Data Science, Lecture 5 Interval estimates; comparing systems Richard Johansson November 18, 2018 statistical inference: overview I estimate the value of some parameter (last lecture): I what is the error rate of my drug test? I determine some interval that is very likely to contain the true value of the parameter (today): I interval estimate for the error rate I test some hypothesis about the parameter (today): I is the error rate significantly different from 0.03? I are users significantly more satisfied with web page A than with web page B? -20pt “recipes” I in this lecture, we’ll look at a few “recipes” that you’ll use in the assignment I interval estimate for a proportion (“heads probability”) I comparing a proportion to a specified value I comparing two proportions I additionally, we’ll see the standard method to compute an interval estimate for the mean of a normal I I will also post some pointers to additional tests I remember to check that the preconditions are satisfied: what kind of experiment? what assumptions about the data? -20pt overview interval estimates significance testing for the accuracy comparing two classifiers p-value fishing -20pt interval estimates I if we get some estimate by ML, can we say something about how reliable that estimate is? I informally, an interval estimate for the parameter p is an interval I = [plow ; phigh] so that the true value of the parameter is “likely” to be contained in I I for instance: with 95% probability, the error rate of the spam filter is in the interval [0:05; 0:08] -20pt frequentists and Bayesians again.
    [Show full text]
  • Confidence Interval Estimation in System Dynamics Models: Bootstrapping Vs
    Confidence Interval Estimation in System Dynamics Models: Bootstrapping vs. Likelihood Ratio Method Gokhan Dogan* MIT Sloan School of Management, 30 Wadsworth Street, E53-364, Cambridge, Massachusetts 02142 [email protected] Abstract In this paper we discuss confidence interval estimation for system dynamics models. Confidence interval estimation is important because without confidence intervals, we cannot determine whether an estimated parameter value is significantly different from 0 or any other value, and therefore we cannot determine how much confidence to place in the estimate. We compare two methods for confidence interval estimation. The first, the “likelihood ratio method,” is based on maximum likelihood estimation. This method has been used in the system dynamics literature and is built in to some popular software packages. It is computationally efficient but requires strong assumptions about the model and data. These assumptions are frequently violated by the autocorrelation, endogeneity of explanatory variables and heteroskedasticity properties of dynamic models. The second method is called “bootstrapping.” Bootstrapping requires more computation but does not impose strong assumptions on the model or data. We describe the methods and illustrate them with a series of applications from actual modeling projects. Considering the empirical results presented in the paper and the fact that the bootstrapping method requires less assumptions, we suggest that bootstrapping is a better tool for confidence interval estimation in system dynamics
    [Show full text]
  • WHAT DID FISHER MEAN by an ESTIMATE? 3 Ideas but Is in Conflict with His Ideology of Statistical Inference
    Submitted to the Annals of Applied Probability WHAT DID FISHER MEAN BY AN ESTIMATE? By Esa Uusipaikka∗ University of Turku Fisher’s Method of Maximum Likelihood is shown to be a proce- dure for the construction of likelihood intervals or regions, instead of a procedure of point estimation. Based on Fisher’s articles and books it is justified that by estimation Fisher meant the construction of likelihood intervals or regions from appropriate likelihood function and that an estimate is a statistic, that is, a function from a sample space to a parameter space such that the likelihood function obtained from the sampling distribution of the statistic at the observed value of the statistic is used to construct likelihood intervals or regions. Thus Problem of Estimation is how to choose the ’best’ estimate. Fisher’s solution for the problem of estimation is Maximum Likeli- hood Estimate (MLE). Fisher’s Theory of Statistical Estimation is a chain of ideas used to justify MLE as the solution of the problem of estimation. The construction of confidence intervals by the delta method from the asymptotic normal distribution of MLE is based on Fisher’s ideas, but is against his ’logic of statistical inference’. Instead the construc- tion of confidence intervals from the profile likelihood function of a given interest function of the parameter vector is considered as a solution more in line with Fisher’s ’ideology’. A new method of cal- culation of profile likelihood-based confidence intervals for general smooth interest functions in general statistical models is considered. 1. Introduction. ’Collected Papers of R.A.
    [Show full text]
  • A Framework for Sample Efficient Interval Estimation with Control
    A Framework for Sample Efficient Interval Estimation with Control Variates Shengjia Zhao Christopher Yeh Stefano Ermon Stanford University Stanford University Stanford University Abstract timates, e.g. for each individual district or county, meaning that we need to draw a sufficient number of We consider the problem of estimating confi- samples for every district or county. Another diffi- dence intervals for the mean of a random vari- culty can arise when we need high accuracy (i.e. a able, where the goal is to produce the smallest small confidence interval), since confidence intervals possible interval for a given number of sam- producedp by typical concentration inequalities have size ples. While minimax optimal algorithms are O(1= number of samples). In other words, to reduce known for this problem in the general case, the size of a confidence interval by a factor of 10, we improved performance is possible under addi- need 100 times more samples. tional assumptions. In particular, we design This dilemma is generally unavoidable because concen- an estimation algorithm to take advantage of tration inequalities such as Chernoff or Chebychev are side information in the form of a control vari- minimax optimal: there exist distributions for which ate, leveraging order statistics. Under certain these inequalities cannot be improved. No-free-lunch conditions on the quality of the control vari- results (Van der Vaart, 2000) imply that any alter- ates, we show improved asymptotic efficiency native estimation algorithm that performs better (i.e. compared to existing estimation algorithms. outputs a confidence interval with smaller size) on some Empirically, we demonstrate superior perfor- problems, must perform worse on other problems.
    [Show full text]
  • Likelihood Confidence Intervals When Only Ranges Are Available
    Article Likelihood Confidence Intervals When Only Ranges are Available Szilárd Nemes Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden; [email protected] Received: 22 December 2018; Accepted: 3 February 2019; Published: 6 February 2019 Abstract: Research papers represent an important and rich source of comparative data. The change is to extract the information of interest. Herein, we look at the possibilities to construct confidence intervals for sample averages when only ranges are available with maximum likelihood estimation with order statistics (MLEOS). Using Monte Carlo simulation, we looked at the confidence interval coverage characteristics for likelihood ratio and Wald-type approximate 95% confidence intervals. We saw indication that the likelihood ratio interval had better coverage and narrower intervals. For single parameter distributions, MLEOS is directly applicable. For location-scale distribution is recommended that the variance (or combination of it) to be estimated using standard formulas and used as a plug-in. Keywords: range, likelihood, order statistics, coverage 1. Introduction One of the tasks statisticians face is extracting and possibly inferring biologically/clinically relevant information from published papers. This aspect of applied statistics is well developed, and one can choose to form many easy to use and performant algorithms that aid problem solving. Often, these algorithms aim to aid statisticians/practitioners to extract variability of different measures or biomarkers that is needed for power calculation and research design [1,2]. While these algorithms are efficient and easy to use, they mostly are not probabilistic in nature, thus they do not offer means for statistical inference. Yet another field of applied statistics that aims to help practitioners in extracting relevant information when only partial data is available propose a probabilistic approach with order statistics.
    [Show full text]
  • Points for Discussion
    Bayesian Analysis in Medicine EPIB-677 Points for Discussion 1. Precisely what information does a p-value provide? 2. What is the correct (and incorrect) way to interpret a confi- dence interval? 3. What is Bayes Theorem? How does it operate? 4. Summary of above three points: What exactly does one learn about a parameter of interest after having done a frequentist analysis? Bayesian analysis? 5. Example 8 from the book chapter by Jim Berger. 6. Example 13 from the book chapter by Jim Berger. 7. Example 17 from the book chapter by Jim Berger. 8. Examples where there is a choice between a binomial or a negative binomial likelihood, found in the paper by Berger and Berry. 9. Problems with specifying prior distributions. 10. In what types of epidemiology data analysis situations are Bayesian methods particularly useful? 11. What does decision analysis add to a Bayesian analysis? 1. Precisely what information does a p-value provide? Recall the definition of a p-value: The probability of observing a test statistic as extreme as or more extreme than the observed value, as- suming that the null hypothesis is true. 2. What is the correct (and incorrect) way to interpret a confi- dence interval? Does a 95% confidence interval provide a 95% probability region for the true parameter value? If not, what it the correct interpretation? In practice, it is usually helpful to consider the following graphic: Figure 1: How to interpret confidence intervals and/or credible regions. Depending on where the confidence/credible interval lies in relation to a region of clinical equivalence, different conclusions can be drawn.
    [Show full text]
  • The Bayesian New Statistics: Hypothesis Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective
    Published online: 2017-Feb-08 Corrected proofs submitted: 2017-Jan-16 Accepted: 2016-Dec-16 Published version at http://dx.doi.org/10.3758/s13423-016-1221-4 Revision 2 submitted: 2016-Nov-15 View only at http://rdcu.be/o6hd Editor action 2: 2016-Oct-12 In Press, Psychonomic Bulletin & Review. Revision 1 submitted: 2016-Apr-16 Version of November 15, 2016. Editor action 1: 2015-Aug-23 Initial submission: 2015-May-13 The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective John K. Kruschke and Torrin M. Liddell Indiana University, Bloomington, USA In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty, on the other hand. Among frequentists in psychology a shift of emphasis from hypothesis testing to estimation has been dubbed “the New Statistics” (Cumming, 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis. Keywords: Null hypothesis significance testing, Bayesian inference, Bayes factor, confidence interval, credible interval, highest density interval, region of practical equivalence, meta-analysis, power analysis, effect size, randomized controlled trial. he New Statistics emphasizes a shift of empha- phasis. Bayesian methods provide a coherent framework for sis away from null hypothesis significance testing hypothesis testing, so when null hypothesis testing is the crux T (NHST) to “estimation based on effect sizes, confi- of the research then Bayesian null hypothesis testing should dence intervals, and meta-analysis” (Cumming, 2014, p.
    [Show full text]
  • More on Bayesian Methods: Part II
    More on Bayesian Methods: Part II Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Lecture 5 1 Today's menu I Confidence intervals I Credible Intervals I Example 2 Confidence intervals vs credible intervals A confidence interval for an unknown (fixed) parameter θ is an interval of numbers that we believe is likely to contain the true value of θ: Intervals are important because they provide us with an idea of how well we can estimate θ: 3 Confidence intervals vs credible intervals I A confidence interval is constructed to contain θ a percentage of the time, say 95%. I Suppose our confidence level is 95% and our interval is (L; U). Then we are 95% confident that the true value of θ is contained in (L; U) in the long run. I In the long run means that this would occur nearly 95% of the time if we repeated our study millions and millions of times. 4 Common Misconceptions in Statistical Inference I A confidence interval is a statement about θ (a population parameter). I It is not a statement about the sample. I It is also not a statement about individual subjects in the population. 5 Common Misconceptions in Statistical Inference I Let a 95% confidence interval for the average amount of television watched by Americans be (2.69, 6.04) hours. I This doesn't mean we can say that 95% of all Americans watch between 2.69 and 6.04 hours of television. I We also cannot say that 95% of Americans in the sample watch between 2.69 and 6.04 hours of television.
    [Show full text]
  • On the Frequentist Coverage of Bayesian Credible Intervals for Lower Bounded Means
    Electronic Journal of Statistics Vol. 2 (2008) 1028–1042 ISSN: 1935-7524 DOI: 10.1214/08-EJS292 On the frequentist coverage of Bayesian credible intervals for lower bounded means Eric´ Marchand D´epartement de math´ematiques, Universit´ede Sherbrooke, Sherbrooke, Qc, CANADA, J1K 2R1 e-mail: [email protected] William E. Strawderman Department of Statistics, Rutgers University, 501 Hill Center, Busch Campus, Piscataway, N.J., USA 08854-8019 e-mail: [email protected] Keven Bosa Statistics Canada - Statistique Canada, 100, promenade Tunney’s Pasture, Ottawa, On, CANADA, K1A 0T6 e-mail: [email protected] Aziz Lmoudden D´epartement de math´ematiques, Universit´ede Sherbrooke, Sherbrooke, Qc, CANADA, J1K 2R1 e-mail: [email protected] Abstract: For estimating a lower bounded location or mean parameter for a symmetric and logconcave density, we investigate the frequentist per- formance of the 100(1 − α)% Bayesian HPD credible set associated with priors which are truncations of flat priors onto the restricted parameter space. Various new properties are obtained. Namely, we identify precisely where the minimum coverage is obtained and we show that this minimum 3α 3α α2 coverage is bounded between 1 − 2 and 1 − 2 + 1+α ; with the lower 3α bound 1 − 2 improving (for α ≤ 1/3) on the previously established ([9]; 1−α [8]) lower bound 1+α . Several illustrative examples are given. arXiv:0809.1027v2 [math.ST] 13 Nov 2008 AMS 2000 subject classifications: 62F10, 62F30, 62C10, 62C15, 35Q15, 45B05, 42A99. Keywords and phrases: Bayesian credible sets, restricted parameter space, confidence intervals, frequentist coverage probability, logconcavity.
    [Show full text]
  • Bayesian Inference for Median of the Lognormal Distribution K
    Journal of Modern Applied Statistical Methods Volume 15 | Issue 2 Article 32 11-1-2016 Bayesian Inference for Median of the Lognormal Distribution K. Aruna Rao SDM Degree College, Ujire, India, [email protected] Juliet Gratia D'Cunha Mangalore University, Mangalagangothri, India, [email protected] Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Rao, K. Aruna and D'Cunha, Juliet Gratia (2016) "Bayesian Inference for Median of the Lognormal Distribution," Journal of Modern Applied Statistical Methods: Vol. 15 : Iss. 2 , Article 32. DOI: 10.22237/jmasm/1478003400 Available at: http://digitalcommons.wayne.edu/jmasm/vol15/iss2/32 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Bayesian Inference for Median of the Lognormal Distribution Cover Page Footnote Acknowledgements The es cond author would like to thank Government of India, Ministry of Science and Technology, Department of Science and Technology, New Delhi, for sponsoring her with an INSPIRE fellowship, which enables her to carry out the research program which she has undertaken. She is much honored to be the recipient of this award. This regular article is available in Journal of Modern Applied Statistical Methods: http://digitalcommons.wayne.edu/jmasm/vol15/ iss2/32 Journal of Modern Applied Statistical Methods Copyright © 2016 JMASM, Inc. November 2016, Vol. 15, No. 2, 526-535.
    [Show full text]
  • Bayestest Interval — Interval Hypothesis Testing
    Title stata.com bayestest interval — Interval hypothesis testing Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Reference Also see Description bayestest interval performs interval hypothesis tests for model parameters and functions of model parameters using current Bayesian estimation results. bayestest interval reports mean estimates, standard deviations, and MCMC standard errors of posterior probabilities associated with an interval hypothesis. Quick start Posterior probability of the hypothesis that 45 < {y: cons} < 50 bayestest interval {y: cons}, lower(45) upper(50) As above, but skip every 5 observations from the full MCMC sample bayestest interval {y: cons}, lower(45) upper(50) skip(5) Posterior probability of a hypothesis about a function of model parameter {y:x1} bayestest interval (OR:exp({y:x1})), lower(1.1) upper(1.5) Posterior probability of hypotheses 45 < {y: cons} < 50 and 0 < {var} < 10 tested independently bayestest interval ({y: cons}, lower(45) upper(50)) /// ({var}, lower(0) upper(10)) As above, but tested jointly bayestest interval (({y: cons}, lower(45) upper(50)) /// ({var}, lower(0) upper(10)), joint) Posterior probability of the hypothesis {mean} = 2 for discrete parameter {mean} bayestest interval ({mean}==2) Posterior probability of the interval hypothesis 0 ≤ {mean} ≤ 4 bayestest interval {mean}, lower(0, inclusive) upper(4, inclusive) Posterior probability that the first observation of the first simulated outcome is positive (after bayesmh) bayespredict {_ysim},
    [Show full text]
  • 32. Statistics 1 32
    32. Statistics 1 32. STATISTICS Revised September 2007 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in High Energy Physics. In statistics, we are interested in using a given sample of data to make inferences about a probabilistic model, e.g., to assess the model’s validity or to determine the values of its parameters. There are two main approaches to statistical inference, which we may call frequentist and Bayesian. In frequentist statistics, probability is interpreted as the frequency of the outcome of a repeatable experiment. The most important tools in this framework are parameter estimation, covered in Section 32.1, and statistical tests, discussed in Section 32.2. Frequentist confidence intervals, which are constructed so as to cover the true value of a parameter with a specified probability, are treated in Section 32.3.2. Note that in frequentist statistics one does not define a probability for a hypothesis or for a parameter. Frequentist statistics provides the usual tools for reporting objectively the outcome of an experiment without needing to incorporate prior beliefs concerning the parameter being measured or the theory being tested. As such they are used for reporting most measurements and their statistical uncertainties in High Energy Physics. In Bayesian statistics, the interpretation of probability is more general and includes degree of belief (called subjective probability). One can then speak of a probability density function (p.d.f.) for a parameter, which expresses one’s state of knowledge about where its true value lies. Bayesian methods allow for a natural way to input additional information, such as physical boundaries and subjective information; in fact they require as input the prior p.d.f.
    [Show full text]