Bayesian Random-Effects Meta-Analysis Using the Bayesmeta
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statistical Methods for Data Science, Lecture 5 Interval Estimates; Comparing Systems
Statistical methods for Data Science, Lecture 5 Interval estimates; comparing systems Richard Johansson November 18, 2018 statistical inference: overview I estimate the value of some parameter (last lecture): I what is the error rate of my drug test? I determine some interval that is very likely to contain the true value of the parameter (today): I interval estimate for the error rate I test some hypothesis about the parameter (today): I is the error rate significantly different from 0.03? I are users significantly more satisfied with web page A than with web page B? -20pt “recipes” I in this lecture, we’ll look at a few “recipes” that you’ll use in the assignment I interval estimate for a proportion (“heads probability”) I comparing a proportion to a specified value I comparing two proportions I additionally, we’ll see the standard method to compute an interval estimate for the mean of a normal I I will also post some pointers to additional tests I remember to check that the preconditions are satisfied: what kind of experiment? what assumptions about the data? -20pt overview interval estimates significance testing for the accuracy comparing two classifiers p-value fishing -20pt interval estimates I if we get some estimate by ML, can we say something about how reliable that estimate is? I informally, an interval estimate for the parameter p is an interval I = [plow ; phigh] so that the true value of the parameter is “likely” to be contained in I I for instance: with 95% probability, the error rate of the spam filter is in the interval [0:05; 0:08] -20pt frequentists and Bayesians again. -
A Tail Quantile Approximation Formula for the Student T and the Symmetric Generalized Hyperbolic Distribution
A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Schlüter, Stephan; Fischer, Matthias J. Working Paper A tail quantile approximation formula for the student t and the symmetric generalized hyperbolic distribution IWQW Discussion Papers, No. 05/2009 Provided in Cooperation with: Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics Suggested Citation: Schlüter, Stephan; Fischer, Matthias J. (2009) : A tail quantile approximation formula for the student t and the symmetric generalized hyperbolic distribution, IWQW Discussion Papers, No. 05/2009, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW), Nürnberg This Version is available at: http://hdl.handle.net/10419/29554 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu IWQW Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung Diskussionspapier Discussion Papers No. -
Mixture Random Effect Model Based Meta-Analysis for Medical Data
Mixture Random Effect Model Based Meta-analysis For Medical Data Mining Yinglong Xia?, Shifeng Weng?, Changshui Zhang??, and Shao Li State Key Laboratory of Intelligent Technology and Systems,Department of Automation, Tsinghua University, Beijing, China [email protected], [email protected], fzcs,[email protected] Abstract. As a powerful tool for summarizing the distributed medi- cal information, Meta-analysis has played an important role in medical research in the past decades. In this paper, a more general statistical model for meta-analysis is proposed to integrate heterogeneous medi- cal researches efficiently. The novel model, named mixture random effect model (MREM), is constructed by Gaussian Mixture Model (GMM) and unifies the existing fixed effect model and random effect model. The pa- rameters of the proposed model are estimated by Markov Chain Monte Carlo (MCMC) method. Not only can MREM discover underlying struc- ture and intrinsic heterogeneity of meta datasets, but also can imply reasonable subgroup division. These merits embody the significance of our methods for heterogeneity assessment. Both simulation results and experiments on real medical datasets demonstrate the performance of the proposed model. 1 Introduction As the great improvement of experimental technologies, the growth of the vol- ume of scientific data relevant to medical experiment researches is getting more and more massively. However, often the results spreading over journals and on- line database appear inconsistent or even contradict because of variance of the studies. It makes the evaluation of those studies to be difficult. Meta-analysis is statistical technique for assembling to integrate the findings of a large collection of analysis results from individual studies. -
A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1. -
D. Normal Mixture Models and Elliptical Models
D. Normal Mixture Models and Elliptical Models 1. Normal Variance Mixtures 2. Normal Mean-Variance Mixtures 3. Spherical Distributions 4. Elliptical Distributions QRM 2010 74 D1. Multivariate Normal Mixture Distributions Pros of Multivariate Normal Distribution • inference is \well known" and estimation is \easy". • distribution is given by µ and Σ. • linear combinations are normal (! VaR and ES calcs easy). • conditional distributions are normal. > • For (X1;X2) ∼ N2(µ; Σ), ρ(X1;X2) = 0 () X1 and X2 are independent: QRM 2010 75 Multivariate Normal Variance Mixtures Cons of Multivariate Normal Distribution • tails are thin, meaning that extreme values are scarce in the normal model. • joint extremes in the multivariate model are also too scarce. • the distribution has a strong form of symmetry, called elliptical symmetry. How to repair the drawbacks of the multivariate normal model? QRM 2010 76 Multivariate Normal Variance Mixtures The random vector X has a (multivariate) normal variance mixture distribution if d p X = µ + WAZ; (1) where • Z ∼ Nk(0;Ik); • W ≥ 0 is a scalar random variable which is independent of Z; and • A 2 Rd×k and µ 2 Rd are a matrix and a vector of constants, respectively. > Set Σ := AA . Observe: XjW = w ∼ Nd(µ; wΣ). QRM 2010 77 Multivariate Normal Variance Mixtures Assumption: rank(A)= d ≤ k, so Σ is a positive definite matrix. If E(W ) < 1 then easy calculations give E(X) = µ and cov(X) = E(W )Σ: We call µ the location vector or mean vector and we call Σ the dispersion matrix. The correlation matrices of X and AZ are identical: corr(X) = corr(AZ): Multivariate normal variance mixtures provide the most useful examples of elliptical distributions. -
Mixture Modeling with Applications in Alzheimer's Disease
University of Kentucky UKnowledge Theses and Dissertations--Epidemiology and Biostatistics College of Public Health 2017 MIXTURE MODELING WITH APPLICATIONS IN ALZHEIMER'S DISEASE Frank Appiah University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/ETD.2017.100 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Appiah, Frank, "MIXTURE MODELING WITH APPLICATIONS IN ALZHEIMER'S DISEASE" (2017). Theses and Dissertations--Epidemiology and Biostatistics. 14. https://uknowledge.uky.edu/epb_etds/14 This Doctoral Dissertation is brought to you for free and open access by the College of Public Health at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Epidemiology and Biostatistics by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Points for Discussion
Bayesian Analysis in Medicine EPIB-677 Points for Discussion 1. Precisely what information does a p-value provide? 2. What is the correct (and incorrect) way to interpret a confi- dence interval? 3. What is Bayes Theorem? How does it operate? 4. Summary of above three points: What exactly does one learn about a parameter of interest after having done a frequentist analysis? Bayesian analysis? 5. Example 8 from the book chapter by Jim Berger. 6. Example 13 from the book chapter by Jim Berger. 7. Example 17 from the book chapter by Jim Berger. 8. Examples where there is a choice between a binomial or a negative binomial likelihood, found in the paper by Berger and Berry. 9. Problems with specifying prior distributions. 10. In what types of epidemiology data analysis situations are Bayesian methods particularly useful? 11. What does decision analysis add to a Bayesian analysis? 1. Precisely what information does a p-value provide? Recall the definition of a p-value: The probability of observing a test statistic as extreme as or more extreme than the observed value, as- suming that the null hypothesis is true. 2. What is the correct (and incorrect) way to interpret a confi- dence interval? Does a 95% confidence interval provide a 95% probability region for the true parameter value? If not, what it the correct interpretation? In practice, it is usually helpful to consider the following graphic: Figure 1: How to interpret confidence intervals and/or credible regions. Depending on where the confidence/credible interval lies in relation to a region of clinical equivalence, different conclusions can be drawn. -
The Bayesian New Statistics: Hypothesis Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective
Published online: 2017-Feb-08 Corrected proofs submitted: 2017-Jan-16 Accepted: 2016-Dec-16 Published version at http://dx.doi.org/10.3758/s13423-016-1221-4 Revision 2 submitted: 2016-Nov-15 View only at http://rdcu.be/o6hd Editor action 2: 2016-Oct-12 In Press, Psychonomic Bulletin & Review. Revision 1 submitted: 2016-Apr-16 Version of November 15, 2016. Editor action 1: 2015-Aug-23 Initial submission: 2015-May-13 The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective John K. Kruschke and Torrin M. Liddell Indiana University, Bloomington, USA In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty, on the other hand. Among frequentists in psychology a shift of emphasis from hypothesis testing to estimation has been dubbed “the New Statistics” (Cumming, 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis. Keywords: Null hypothesis significance testing, Bayesian inference, Bayes factor, confidence interval, credible interval, highest density interval, region of practical equivalence, meta-analysis, power analysis, effect size, randomized controlled trial. he New Statistics emphasizes a shift of empha- phasis. Bayesian methods provide a coherent framework for sis away from null hypothesis significance testing hypothesis testing, so when null hypothesis testing is the crux T (NHST) to “estimation based on effect sizes, confi- of the research then Bayesian null hypothesis testing should dence intervals, and meta-analysis” (Cumming, 2014, p. -
More on Bayesian Methods: Part II
More on Bayesian Methods: Part II Rebecca C. Steorts Bayesian Methods and Modern Statistics: STA 360/601 Lecture 5 1 Today's menu I Confidence intervals I Credible Intervals I Example 2 Confidence intervals vs credible intervals A confidence interval for an unknown (fixed) parameter θ is an interval of numbers that we believe is likely to contain the true value of θ: Intervals are important because they provide us with an idea of how well we can estimate θ: 3 Confidence intervals vs credible intervals I A confidence interval is constructed to contain θ a percentage of the time, say 95%. I Suppose our confidence level is 95% and our interval is (L; U). Then we are 95% confident that the true value of θ is contained in (L; U) in the long run. I In the long run means that this would occur nearly 95% of the time if we repeated our study millions and millions of times. 4 Common Misconceptions in Statistical Inference I A confidence interval is a statement about θ (a population parameter). I It is not a statement about the sample. I It is also not a statement about individual subjects in the population. 5 Common Misconceptions in Statistical Inference I Let a 95% confidence interval for the average amount of television watched by Americans be (2.69, 6.04) hours. I This doesn't mean we can say that 95% of all Americans watch between 2.69 and 6.04 hours of television. I We also cannot say that 95% of Americans in the sample watch between 2.69 and 6.04 hours of television. -
On the Frequentist Coverage of Bayesian Credible Intervals for Lower Bounded Means
Electronic Journal of Statistics Vol. 2 (2008) 1028–1042 ISSN: 1935-7524 DOI: 10.1214/08-EJS292 On the frequentist coverage of Bayesian credible intervals for lower bounded means Eric´ Marchand D´epartement de math´ematiques, Universit´ede Sherbrooke, Sherbrooke, Qc, CANADA, J1K 2R1 e-mail: [email protected] William E. Strawderman Department of Statistics, Rutgers University, 501 Hill Center, Busch Campus, Piscataway, N.J., USA 08854-8019 e-mail: [email protected] Keven Bosa Statistics Canada - Statistique Canada, 100, promenade Tunney’s Pasture, Ottawa, On, CANADA, K1A 0T6 e-mail: [email protected] Aziz Lmoudden D´epartement de math´ematiques, Universit´ede Sherbrooke, Sherbrooke, Qc, CANADA, J1K 2R1 e-mail: [email protected] Abstract: For estimating a lower bounded location or mean parameter for a symmetric and logconcave density, we investigate the frequentist per- formance of the 100(1 − α)% Bayesian HPD credible set associated with priors which are truncations of flat priors onto the restricted parameter space. Various new properties are obtained. Namely, we identify precisely where the minimum coverage is obtained and we show that this minimum 3α 3α α2 coverage is bounded between 1 − 2 and 1 − 2 + 1+α ; with the lower 3α bound 1 − 2 improving (for α ≤ 1/3) on the previously established ([9]; 1−α [8]) lower bound 1+α . Several illustrative examples are given. arXiv:0809.1027v2 [math.ST] 13 Nov 2008 AMS 2000 subject classifications: 62F10, 62F30, 62C10, 62C15, 35Q15, 45B05, 42A99. Keywords and phrases: Bayesian credible sets, restricted parameter space, confidence intervals, frequentist coverage probability, logconcavity. -
Bayesian Inference for Median of the Lognormal Distribution K
Journal of Modern Applied Statistical Methods Volume 15 | Issue 2 Article 32 11-1-2016 Bayesian Inference for Median of the Lognormal Distribution K. Aruna Rao SDM Degree College, Ujire, India, [email protected] Juliet Gratia D'Cunha Mangalore University, Mangalagangothri, India, [email protected] Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical Theory Commons Recommended Citation Rao, K. Aruna and D'Cunha, Juliet Gratia (2016) "Bayesian Inference for Median of the Lognormal Distribution," Journal of Modern Applied Statistical Methods: Vol. 15 : Iss. 2 , Article 32. DOI: 10.22237/jmasm/1478003400 Available at: http://digitalcommons.wayne.edu/jmasm/vol15/iss2/32 This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState. Bayesian Inference for Median of the Lognormal Distribution Cover Page Footnote Acknowledgements The es cond author would like to thank Government of India, Ministry of Science and Technology, Department of Science and Technology, New Delhi, for sponsoring her with an INSPIRE fellowship, which enables her to carry out the research program which she has undertaken. She is much honored to be the recipient of this award. This regular article is available in Journal of Modern Applied Statistical Methods: http://digitalcommons.wayne.edu/jmasm/vol15/ iss2/32 Journal of Modern Applied Statistical Methods Copyright © 2016 JMASM, Inc. November 2016, Vol. 15, No. 2, 526-535. -
Bayestest Interval — Interval Hypothesis Testing
Title stata.com bayestest interval — Interval hypothesis testing Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas Reference Also see Description bayestest interval performs interval hypothesis tests for model parameters and functions of model parameters using current Bayesian estimation results. bayestest interval reports mean estimates, standard deviations, and MCMC standard errors of posterior probabilities associated with an interval hypothesis. Quick start Posterior probability of the hypothesis that 45 < {y: cons} < 50 bayestest interval {y: cons}, lower(45) upper(50) As above, but skip every 5 observations from the full MCMC sample bayestest interval {y: cons}, lower(45) upper(50) skip(5) Posterior probability of a hypothesis about a function of model parameter {y:x1} bayestest interval (OR:exp({y:x1})), lower(1.1) upper(1.5) Posterior probability of hypotheses 45 < {y: cons} < 50 and 0 < {var} < 10 tested independently bayestest interval ({y: cons}, lower(45) upper(50)) /// ({var}, lower(0) upper(10)) As above, but tested jointly bayestest interval (({y: cons}, lower(45) upper(50)) /// ({var}, lower(0) upper(10)), joint) Posterior probability of the hypothesis {mean} = 2 for discrete parameter {mean} bayestest interval ({mean}==2) Posterior probability of the interval hypothesis 0 ≤ {mean} ≤ 4 bayestest interval {mean}, lower(0, inclusive) upper(4, inclusive) Posterior probability that the first observation of the first simulated outcome is positive (after bayesmh) bayespredict {_ysim},