Symbols, Units, Nomenclature and Fundamental Constants in Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
General@ Electric Space Sciences Laboratory Theoretical Fluid Physics Section
4 3 i d . GPO PRICE $ CFSTI PRICE(S) $ R65SD50 Microfiche (MF) , 7.3, We53 July85 THE STRUCTURE OF THE VISCOUS HYPERSONIC SHOCK LAYER SPACE SCIENCES LABORATORY . MISSILE AND SPACE DIVISION GENERAL@ ELECTRIC SPACE SCIENCES LABORATORY THEORETICAL FLUID PHYSICS SECTION THE STRUCTURE OF THE VISCOUS HYPERSONIC SHOCK LAYER BY L. Goldberg . Work performed for the Space Nuclear Propulsion Office, NASA, under Contract No. SNPC-29. f This report first appeared as part of Contract Report DIN: 214-228F (CRD), October 1, 1965. Permission for release of this publication for general distribution was received from SNPO on December 9, 1965. R65SD50 December, 1965 MISSILE AND SPACE DIVISION GENERAL ELECTRIC CONTENTS PAGE 1 4 I List of Figures ii ... Abstract 111 I Symbols iv I. INTRODUCTION 1 11. DISCUSSION OF THE HYPER NIC CO TTINUI 3 FLOW FIELD 111. BASIC RELATIONS 11 IV . BOUNDARY CONDITIONS 14 V. NORMALIZED SYSTEM OF EQUATIONS AND BOUNDARY 19 CONDITIONS VI. DISCUSSION OF RESULTS 24 VII. CONCLUSIONS 34 VIII. REFERENCES 35 Acknowledgements 39 Figures 40 1 LIST OF FIGURES 'I PAGE 1 1 1. Hypersonic Flight Regimes 40 'I 2. Coordinate System 41 3. Profiles Re = 15, 000 42 S 3 4. Profiles Re = 10 43 S 3 5. Profiles Re = 10 , f = -0.4 44 S W 2 6. Profiles Re = 10 45 S 2 7. Profiles Re = 10 , f = do. 4 46 S W Profiles Re = 10 47 8. s 9. Normalized Boundary Layer Correlations 48 10. Reduction in Skin Friction and Heat Transfer with Mass 49 Transfer 11. Normalized Heat Transfer 50 12. Normalized Skin Friction 51 13. -
Standard Conversion Factors
Standard conversion factors 7 1 tonne of oil equivalent (toe) = 10 kilocalories = 396.83 therms = 41.868 GJ = 11,630 kWh 1 therm = 100,000 British thermal units (Btu) The following prefixes are used for multiples of joules, watts and watt hours: kilo (k) = 1,000 or 103 mega (M) = 1,000,000 or 106 giga (G) = 1,000,000,000 or 109 tera (T) = 1,000,000,000,000 or 1012 peta (P) = 1,000,000,000,000,000 or 1015 WEIGHT 1 kilogramme (kg) = 2.2046 pounds (lb) VOLUME 1 cubic metre (cu m) = 35.31 cu ft 1 pound (lb) = 0.4536 kg 1 cubic foot (cu ft) = 0.02832 cu m 1 tonne (t) = 1,000 kg 1 litre = 0.22 Imperial = 0.9842 long ton gallon (UK gal.) = 1.102 short ton (sh tn) 1 UK gallon = 8 UK pints 1 Statute or long ton = 2,240 lb = 1.201 U.S. gallons (US gal) = 1.016 t = 4.54609 litres = 1.120 sh tn 1 barrel = 159.0 litres = 34.97 UK gal = 42 US gal LENGTH 1 mile = 1.6093 kilometres 1 kilometre (km) = 0.62137 miles TEMPERATURE 1 scale degree Celsius (C) = 1.8 scale degrees Fahrenheit (F) For conversion of temperatures: °C = 5/9 (°F - 32); °F = 9/5 °C + 32 Average conversion factors for petroleum Imperial Litres Imperial Litres gallons per gallons per per tonne tonne per tonne tonne Crude oil: Gas/diesel oil: Indigenous Gas oil 257 1,167 Imported Marine diesel oil 253 1,150 Average of refining throughput Fuel oil: Ethane All grades 222 1,021 Propane Light fuel oil: Butane 1% or less sulphur 1,071 Naphtha (l.d.f.) >1% sulphur 232 1,071 Medium fuel oil: Aviation gasoline 1% or less sulphur 237 1,079 >1% sulphur 1,028 Motor -
3 Litre User's Manual
™ 3 Litre User’s Manual Please visit www.drewandcole.com for video instructions and cooking demonstrations. 1 IMPORTANT SAFETY INFORMATION IMPORTANT SAFETY INFORMATION BEFORE YOU GET STARTED, PLEASE READ THE FOLLOWING IMPORTANT SAFETY INFORMATION, ALONG WITH THE MANUAL ENCLOSED AND KEEP PRESSURE RELEASE METHODS BOTH FOR FUTURE REFERENCE. WARNING YOU ARE WORKING WITH • When the programme is finished and you wish to commence pressure release press the “Cancel” button to cancel HOT LIQUIDS. YOU MUST READ THIS BEFORE USE. the Keep Warm function. • When releasing the pressure valve, always use tongs and please wear oven gloves to turn the pressure valve to the open position. This will protect against hot steam. The valve will lift up slightly and steam will release. The lid won’t BEFORE COOKING open until the steam has vented and pressure has released. • When opening the lid food will be hot, please always wear oven gloves and an apron to protect against any • ALWAYS ensure the INNER POT is in place before cooking. splashing of the hot food. • Food with skins (e.g sausages, chicken and fruit) MUST be pierced before cooking. Not piercing QUICK RELEASE SLOW RELEASE the skin may result in the food expanding and may cause splashing of hot food after the lid is Recommended for: Recommended for: released. - Quick cooking recipes and steaming, including - Food with skins (e.g sausages, chicken and fruit) and vegetables and seafood. foods with large liquid volume or high starch content • Do not overfill the inner pot. (such as porridge, soup, pasta, rice, fruit and grains, and When the Keep Warm function has been also delicate foods such as meats and potato) can trap air cancelled, move the pressure release valve to and cause the food to foam and expand which may cause To Max the open position and only attempt to open lid MAX MAX splashing of hot food after the lid is removed. -
Binary Operator
Table of Contents Teaching and Learning The Metric System Unit 1 1 - Suggested Teaching Sequence 1 - Objectives 1 - Rules of Notation 1 - Metric Units, Symbols, and Referents 2 - Metric Prefixes 2 - Linear Measurement Activities 3 - Area Measurement Activities 5 - Volume Measurement Activities 7 - Mass (Weight) Measurement Activities 9 - Temperature Measurement Activities 11 Unit 2 12 - Objectives 12 - Suggested Teaching Sequence 12 - Metrics in this Occupation 12 - Metric Units For Binary Operation 13 - Trying Out Metric Units 14 - Binding With Metrics 15 Unit 3 16 - Objective 16 - Suggested Teaching Sequence 16 - Metric-Metric Equivalents 16 - Changing Units at Work 18 Unit 4 19 - Objective 19 - Suggested Teaching Sequence 19 - Selecting and Using Metric Instruments, Tools and Devices 19 - Which Tools for the Job? 20 - Measuring Up in Binary Operations 20 Unit 5 21 - Objective 21 - Suggested Teaching Sequence 21 - Metric-Customary Equivalents 21 - Conversion Tables 22 - Any Way You Want It 23 Testing Metric Abilities 24 Answers to Exercises and Test 25 Tools and Devices List References TEACHING AND LEARNING THE METRIC SYSTEM Thi.s metric instructional package was designed to meet job-related Unit 2 provides the metric terms which are used in this occupation metric measurement needs of students. To use this package students and gives experience with occupational measurement tasks. should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with Unit 3 focuses on job-related metric equivalents and their relation the help of experienced vocational teachers, reviewed by experts, tested ships. in classrooms in different parts of the United States, and revised before distribution. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Inertia-Less Convectively-Driven Dynamo Models in the Limit
Inertia-less convectively-driven dynamo models in the limit of low Rossby number and large Prandtl number Michael A. Calkins a,1,∗, Keith Julienb,2, Steven M. Tobiasc,3 aDepartment of Physics, University of Colorado, Boulder, CO 80309 USA bDepartment of Applied Mathematics, University of Colorado, Boulder, CO 80309 USA cDepartment of Applied Mathematics, University of Leeds, Leeds, UK LS2 9JT Abstract Compositional convection is thought to be an important energy source for magnetic field generation within planetary interiors. The Prandtl number, Pr, characterizing compositional convection is significantly larger than unity, suggesting that the inertial force may not be important on the small scales of convection as long as the buoyancy force is not too strong. We develop asymptotic dynamo models for the case of small Rossby number and large Prandtl number in which inertia is absent on the convective scale. The rele- vant diffusivity parameter for this limit is the compositional Roberts number, q = D/η, which is the ratio of compositional and magnetic diffusivities. Dy- namo models are developed for both order one q and the more geophysically relevant low q limit. For both cases the ratio of magnetic to kinetic energy densities, M, is asymptotically large and reflects the fact that Alfv´en waves have been filtered from the dynamics. Along with previous investigations of asymptotic dynamo models for Pr = O(1), our results show that the ratio M is not a useful indicator of dominant force balances in the momentum equa- tion since many different asymptotic limits of M can be obtained without changing the leading order geostrophic balance. -
Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt Number Average Nusselt Number: Nul = Convective
Jingwei Zhu http://jingweizhu.weebly.com/course-note.html Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Average Nusselt number: convective heat transfer ℎ퐿 Nu = = L conductive heat transfer 푘 where L is the characteristic length, k is the thermal conductivity of the fluid, h is the convective heat transfer coefficient of the fluid. Selection of the characteristic length should be in the direction of growth (or thickness) of the boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing natural convection, or the diameter of a sphere. For complex shapes, the length may be defined as the volume of the fluid body divided by the surface area. The thermal conductivity of the fluid is typically (but not always) evaluated at the film temperature, which for engineering purposes may be calculated as the mean-average of the bulk fluid temperature T∞ and wall surface temperature Tw. Local Nusselt number: hxx Nu = x k The length x is defined to be the distance from the surface boundary to the local point of interest. 2. Prandtl number The Prandtl number Pr is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. That is, the Prandtl number is given as: viscous diffusion rate ν Cpμ Pr = = = thermal diffusion rate α k where: ν: kinematic viscosity, ν = μ/ρ, (SI units : m²/s) k α: thermal diffusivity, α = , (SI units : m²/s) ρCp μ: dynamic viscosity, (SI units : Pa ∗ s = N ∗ s/m²) W k: thermal conductivity, (SI units : ) m∗K J C : specific heat, (SI units : ) p kg∗K ρ: density, (SI units : kg/m³). -
The Analogy Between Heat and Mass Transfer in Low Temperature Crossflow Evaporation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AUT Scholarly Commons The analogy between heat and mass transfer in low temperature crossflow evaporation Reza Enayatollahi*, Roy Jonathan Nates, Timothy Anderson Department of Mechanical Engineering, Auckland University of Technology, Auckland, New Zealand. Corresponding Author: Reza Enayatollahi Email Address: [email protected] Postal Address: WD308, 19 St Paul Street, Auckland CBD, Auckland, New Zealand Phone Number: +64 9 921 9999 x8109 Abstract This study experimentally determines the relationship between the heat and mass transfer, in a crossflow configuration in which a ducted airflow passes through a planar water jet. An initial exploration using the Chilton-Colburn analogy resulted in a coefficient of determination of 0.72. On this basis, a re-examination of the heat and mass transfer processes by Buckingham’s-π theorem and a least square analysis led to the proposal of a new dimensionless number referred to as the Lewis Number of Evaporation. A modified version of the Chilton-Colburn analogy incorporating the Lewis Number of Evaporation was developed leading to a coefficient of determination of 0.96. 1. Introduction Heat and mass transfer devices involving a liquid interacting with a gas flow have a wide range of applications including distillation plants, cooling towers and aeration processes and desiccant drying [1-5]. Many studies have gone through characterising the heat and mass transfer in such configurations [6-9]. The mechanisms of heat and mass transfer are similar and analogical. Therefore, in some special cases where, either the heat or mass transfer data are not reliable or may not be available, the heat and mass transfer analogy can be used to determine the missing or unreliable set of data. -
The International System of Units (SI)
NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. -
LITRE Reports
LITRE Assessment of Ambulatory Pumps for Parenteral Nutrition Results of a LITRE Assessment Panel 29th & 30th July 2016 Published February 2017 © PINNT 2017 What is LITRE? A multi-professional panel led by patients that aims to improve the quality of life for patients on home artificial nutrition in terms of services and products. It is a standing committee of PINNT. Our Mission . Investigating and responding to the needs and concerns raised by patients, carers and healthcare professionals with regard to equipment and services. Forging links between patients, carers and industry. Acting as a forum for users to help in product and service development and market research. Representation on the Committee The LITRE committee will always be predominantly patients and carers. LITRE meets to address individual projects and the most appropriate team of experts is assembled based on the nature of each project. LITRE will invite additional experts to join the panel with the clear intention of ensuring each additional person will bring knowledge and expertise to the project in hand. Previous Projects LITRE has historically undertaken a wide ranging number of projects over the years. A full list can be found on http://pinnt.com/About-Us/LITRE.aspx LITRE Panel Members PINNT advertised the proposed LITRE assessment in Online, on Facebook and on the website. Clear information was given in terms of how the assessment would work as the previous format has been revised. All applicants were asked to complete a simple questionnaire (Appendix 1). We were seeking applicants to represent the diverse feeding regimes as well as the various lifestyles in which home parenteral feeding is used and administered. -
Introducyon to the Metric System Bemeasurement, Provips0.Nformal, 'Hands-On Experiences For.The Stud4tts
'DOCUMENT RESUME ED 13A 755 084 CE 009 744 AUTHOR Cáoper, Gloria S., Ed.; Mag4,sos Joel B., Ed. TITLE q Met,rits for.Theatrical COstum g: ° INSTITUTION Ohio State Univ., Columbus. enter for Vocational Education. SPONS AGENCY Ohio State Univ., Columbus. Center for.Vocational Education. PUB DATE 76 4. CONTRACT - OEC-0-74-9335 NOTE 59p.1 For a. related docuMent see CE 009 736-790 EDRS PRICE 10-$0.8.3 C-$3.50 Plus Pdstage: DESCRIPTORS *Curriculu; Fine Arts; Instructional Materials; Learning. ctivities;xMeasurement.Instrnments; *Metric, System; S condary Education; Teaching Technigue8; *Theater AttS; Units of Sttidy (Subject Fields) ; , *Vocational Eiducation- IDENTIFIERS Costumes (Theatrical) AESTRACT . Desigliedto meet tbe job-related m4triceasgrement needs of theatrical costuming students,'thiS instructio11 alpickage is one of live-for the arts and-huminities occupations cluster, part of aset b*: 55 packages for:metric instrection in diftepent occupations.. .The package is in'tended for students who already knovthe occupaiiOnal terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package.contains performance' objectiveS, learning:Activities, and'supporting information in-the form of text,.exertises,- ard tabled. In. add±tion, Suggested teaching technigueS are included. At the'back of the package*are objective-base'd:e"luation items, a-page of answers to' the exercises,and tests, a list of metric materials ,needed for the ,activities4 references,- and a/list of supPliers.t The_material is Y- designed. to accVmodate awariety of.individual teacting,:and learning k. styles, e.g., in,dependent:study, small group, or whole-class Setivity. -
Electronic Configurations *Read Through the Lesson Notes
Advanced Higher Chemistry CfE Unit 1 Inorganic Chemistry Lesson 5: Electronic Configurations *Read through the lesson notes. You can write them out, print them or save them. *Once you have tried to understand the lesson answer the questions that follow at the end. *The answers to the question sheet(s) will be posted later and this will allow you to self-evaluate your learning. Learning Intentions -Learn how to write spectroscopic notation for the first 36 elements. -Learn how to draw orbital box notation for the first 36 elements. Background -Leading on from lesson 4 in which we learned about orbitals and quantum numbers, this lesson explores a more accurate way of representing the electron arrangements of atoms. Early on in National 5 chemistry, we used the Bohr model of the atom to write electron arrangements. However, from lesson 4, we now know that the Bohr model is not entirely accurate and therefore we can use the knowledge that we have gained to write electron arrangements in a more accurate manner. (i) Spectroscopic Notation To write the electron arrangement in the form called spectroscopic notation, it is important to know and understand the aufbau principle (which we learned about in lesson 4). It is also useful to have a copy of the Periodic Table from your data booklet handy (page 8). The spectroscopic notation has been written for the first seven elements together with their electron arrangement as taught at National 5. Hydrogen (electron arrangement: 1) spectroscopic notation: 1s1 Helium (electron arrangement: 2) spectroscopic