Impact of Sphagneticola Trilobata on Plant Diversity in Soils in South-East Viti Levu, Fiji

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Sphagneticola Trilobata on Plant Diversity in Soils in South-East Viti Levu, Fiji Jun. 2013, Vol. 7, No. 6, pp. 635-642 Journal of Life Sciences, ISSN 1934-7391, USA D DAVID PUBLISHING Impact of Sphagneticola trilobata on Plant Diversity in Soils in South-East Viti Levu, Fiji Apaitia R. Macanawai Tropical Weed Research Unit, Plant Protection Section, Koronivia Research Station, Ministry of Agriculture, Nausori, Fiji Received: January 03, 2013 / Accepted: March 02, 2013 / Published: June 30, 2013. Abstract: Wedelia (Sphagneticola trilobata (L.) Pruski) has become one of the most dominant invasive plant species in Fiji. However, the soil seed bank of its monospecific stand and its ability to reproduce by seed is relatively unknown. A soil seed bank study was undertaken in a monospecific stand of S. trilobata in Sawani, Natavea and Wainivesi in south-east Viti Levu, Fiji in March 2012. The soil samples were collected from within 1.0 m2 quadrat taken at 10 spots in each of the study areas and spread thinly over a base of Yates Thrive Premium potting mix in seedling trays and placed in a glasshouse at Koronivia Research Station, Fiji. A total of 23, 26 and 33 plant species were found in the soil seed bank in Wainivesi, Sawani and Natavea respectively which may have succumbed to S. trilobata invasiability. There were ca. 3,800 (17%), 2,100 (11%) and 2,600 (6%) germinable S. trilobata seeds·m-2 in the soil seed bank in Wainivesi, Sawani and Natavea areas respectively. This study has demonstrated that S. trilobata seeds may have a role in the spread of the invasive species in Fiji and movement of soil to S. trilobata free areas should be restricted. Key words: Sphagneticola trilobata, wedelia, Fiji, soil seed bank, quadrat, invasive. 1. Introduction nodes [4]. The invasive species spreads vegetatively and encroach the neighbouring area easily and at a ((Spagneticola trilobata (L.) Pruski); Asteraceae) rapid rate. According to Batianoff & Franks [5], the is native to Mexico, Central America, and the highest rate of spread of S. trilobata in Australia was Caribbean and has been introduced widely to tropical recorded at 167 km·year-1. and sub-tropical regions of the world including the From an observation on cultivated S. trilobata in Pacific Islands [1, 2]. In the Pacific Island countries Hawaii, it was reported that S. trilobata matured and territories, S. trilobata is established in American achenes were 4-5 mm long [4]. Similarly, the risk Samoa, Northern Mariana Islands, Cook Islands, assessment for S. trilobata prepared for Australia was Federated States of Micronesia, Fiji, French silent on the seed reproduction capability of the Polynesia, Guam, Hawaii, Kiribati, Kingdom of species [2]. Based on a published literature on biology Tonga, Marshall Islands, Nauru, New Caledonia, of non-native plants in natural areas in Florida, S. Niue, Palau, Samoa and Tokelau [2]. S. trilobata is trilobata fruit is a tiny, brown, pimpled achene, ca. 5 commonly known as wedelia, creeping ox-eye, mm in length [6]. All these authors neither reported Singapore daisy and trailing daisy [2]. It is usually the production capacity nor the fertility of S. trilobata introduced as an ornamental plant, attributed to its achenes. This suggests that there is a gap in fleshy green leaves and bright yellow flowers [3]. It is knowledge on the seed biology of S. trilobata. a perennial creeper that forms dense thickets of However, the reproductive potential of S. trilobata inter-winning stems that shoots and roots at the may have played a substantial role in the success of its naturalization and invasion as occurred in a related Corresponding author: Apaitia R. Macanawai, Ph.D., species, Mikania micrantha H.B.K. [7]. Furthermore, research field: tropical weed research. E-mail: [email protected]. factors influencing the number of propagules 636 Impact of Sphagneticola trilobata on Plant Diversity in Soils in South-East Viti Levu, Fiji produced, mode of spread and rate of recruitments and annual plant found to decrease the growth and nutrient deaths contribute in the spread of invasive species [8]. content of S. trilobata in a field study in China had S. trilobata was thought to have been introduced been recommended as a potential biological control into Fiji in mid-1970s [9]. However, it did not take for the invasive species [14]. Cuscuta species have long to colonise road sides, river banks, drains, been observed on S. trilobata in some sites in Viti pasture fields and vacant lands in major islands in Fiji Levu Fiji (personal observation). According to [9] (personal observation). S. trilobata has extended Englberger [21], S. trilobata is controlled by repeated its boundary to cropping areas and was found as a new physical removal of the plants but this method is labor weed of taro (Colocasia esculenta L. Schott) in the intensive. Herbicide found to be effective on S. taro production areas in south-east Viti Levu [10]. In trilobata was metsulfuron methyl herbicide (600 g/kg) Taveuni Island Fiji, S. trilobata was found infesting a and has been registered for controlling the weed in taro farm in the southern side of the island in October Australia [22]. In Fiji, metsulfuron methyl herbicide 2012 (personal observation). It has very wide has been recommended for the control of S. ecological tolerance range and found to be equally trilobata [23]. Other herbicides found to have had suited to dry and moist sites and seemed to grow very some effect were dicamba and 2,4-D [24], triclopyr well on almost all soil types [2]. Based on its (Garlon 4) and glyphosate (Roundup) [21]. ecological significance, S. trilobata was considered There is insufficient data on impacts of invasive one of the “100 World’s Worst Invasive Alien species in the PICs and strong recommendation was Species” [11]. made for research to be undertaken on the assessment According to Meyer 2000 [3], wedelia is one of the of the impacts of invasive species on the biodiversity most significant dominant invasive plant species in of island ecosystems [25]. S. trilobata is a threat to the most of the Pacific islands. The presence of invasive ecosystem because of its ability to easily colonise an plant species such as S. trilobata in the islands area however, the soil seed bank of a monospecific terrestrial ecosystem poses a major threat to the stands of S. trilobata and its effect on plant diversity is biodiversity of a given community and ecosystem relatively unknown. functions [12, 13]. S. trilobata was found to prevent The presence of a seed bank is essential for the life regeneration of co-occurring species and damage cycle of many plant species [26, 27]. The soil seed riverbanks and wastelands [14]. This could have been bank is “plant biodiversity in storage” and provides attributed to the allelopathic effect of S. trilobata the future re-establishment of variation back into the leachates and residues that caused substantial ecosystem [28]. However, the dominance of a reduction in germination and growth rate of tested particular invasive plant would deplete seed crop and native plants in China [15, 16]. Furthermore, production of other neighboring species and may the high concentration of CO2 found to cause greater reduce the genetic diversity of the community [29, growth stimulation in S. trilobata as compared to its 30]. Therefore, the aim of this study was to determine native congener, (Wedelia chinensis (Osbeck.) Merr.) if S. trilobata is present and if it does, its density in southern China [17]. relative to co-occurring plant species in the soil seed One of the reasons S. trilobata is more aggressive bank community, underneath monospecific stands of S. and dominant in the invaded region is because of the trilobata, with a view to better understand its lack of natural enemies which are capable of invasiveness and to identify better management controlling its population growth [18-20]. However, practices in cropping areas of Fiji. A positive outcome Cuscuta australis R. Brown, a holoparasitic rootless is evidence that S. trilobata can produce fertile seeds. Impact of Sphagneticola trilobata on Plant Diversity in Soils in South-East Viti Levu, Fiji 637 This study may also reveal plant species that S. these samples was estimated by counting the viable trilobata may have displaced, i.e., the history of the seeds germinating from the soil seed bank tray. The site and the potential future plant community if S. soil samples were subjected to conditions favorable trilobata is controlled. for seed germination. Five additional trays, filled only with “Yates Thrive Premium” potting mix, were used 2. Materials and Methods as controls to detect any seed in the potting compost 2.1 Study Site or in the glasshouse environment. The thin layering of the soil sample spread over Three S. trilobata infested fields in Sawani (18°02'S; the potting mix in the tray was undertaken to enhance 178°28'E), Natavea (18°04'S; 178°34'E) and the possibility of germination of the viable seeds Wainivesi (17°47'S; 178°31'E) in south-east Viti Levu present in the sample. Daily observations made on were identified. Each study site has a measurement of newly emerged seedlings and all trays were watered approximately 50 m × 50 m of > 95% monospecific to field capacity when required. The emerged stand and > 30 cm dense thickets of S. trilobata. A seedlings were counted, identified and then removed zig-zag method of sampling and the use of quadrats from the seedling tray. Unidentified seedlings were (1.0 m2) (method modified from that described by removed from the trays and transplanted into Colbach et al. [31] and Mehdi et al. [32] was separate pots and grown to maturity so that they employed to collect soil samples for soil seed bank could be identified at a later date using taxonomical assessment.
Recommended publications
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Sphagneticola Trilobata (L.) Pruski
    World Wide Journal of Multidisciplinary Research and Development WWJMRD 2020; 6(1): 01-03 www.wwjmrd.com International Journal Peer Reviewed Journal Sphagneticola trilobata (L.) Pruski. - A Phytochemical Refereed Journal Indexed Journal Review Impact Factor MJIF: 4.25 E-ISSN: 2454-6615 P.L.Rajagopal, A.K.Anjana, K.R.Sreejith, K.Premaletha, S. Aneeshia P.L.Rajagopal Department of Pharmacognosy Abstract and Phytochemistry, College of Phytochemical screening of the medicinal plants is having greater significance because the Pharmaceutical Sciences, therapeutic utility of the medicinal plants mainly depends up on the presence of secondary Government Medical College, Kannur, Kerala, India metabolites present in them. The secondary metabolites may be present or accumulated in a particular plant part or distributed throughout the plant. It is always that part of the plant which contain A.K.Anjana maximum amount of secondary metabolite is designated as drug. The secondary metabolites can be Department of Pharmacognosy separated from plant part through various techniques. In the present review, an attempt has been and Phytochemistry, College of made to compile most of the reported active constituents of the plant which will be helpful for the Pharmaceutical Sciences, researchers. Government Medical College, Kannur, Kerala, India Keywords: Sphagneticola trilobata, Phytochemical K.R.Sreejith Department of Pharmacognosy Introduction and Phytochemistry, College of Sphagneticola trilobata (Asteraceae) commonly known as “Singapore Daisy”, is a creeping, Pharmaceutical Sciences, perennial herb, growing up to 30 cm tall and 2-3 m long. The plant is having ornamental and Government Medical College, many medicinal values. The plant is also known as Wedelia trilobata. The following are the Kannur, Kerala, India some of the major reported active constituents from the plant.
    [Show full text]
  • Weed Risk Assessment for Pilea Hyalina Fenzl (Urticaceae)
    Weed Risk Assessment for Pilea hyalina United States Fenzl (Urticaceae) Department of Agriculture Animal and Plant Health Inspection Service July 17, 2012 Version 1 Left: Pilea hyalina (source: The Smithsonian’s Flora of the West Indies Database, http://botany.si.edu/antilles/WestIndies/catalog.htm). Right: Pilea hyalina flowers (source: TROPICOS database, http://tropicos.org/Home.aspx; photograph taken by O. M. Montiel). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Pilea hyalina Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA) —specifically, the PPQ WRA model1—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because our WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or any area within it.
    [Show full text]
  • Predicting Invasions of Wedelia Trilobata (L.) Hitchc. with Maxent and GARP Models
    J Plant Res (2015) 128:763–775 DOI 10.1007/s10265-015-0738-3 REGULAR PAPER Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models Zhong Qin1,2,3 · Jia-en Zhang1,2,3 · Antonio DiTommaso4 · Rui-long Wang1,2,3 · Rui-shan Wu1,2,3 Received: 27 February 2014 / Accepted: 18 February 2015 / Published online: 5 June 2015 © The Botanical Society of Japan and Springer Japan 2015 Abstract Wedelia trilobata (L.) Hitchc., an ornamental succeeded in predicting the known occurrences in Australia, groundcover plant introduced to areas around the world while the other models failed to identify favorable habitats from Central America, has become invasive in many regions. in this region. Given the rapid spread of W. trilobata and the To increase understanding of its geographic distribution and serious risk of this species poses to local ecosystems, practi- potential extent of spread, two presence-only niche-based cal strategies to prevent the establishment and expansion of modeling approaches (Maxent and GARP) were employed this species should be sought. to create models based on occurrence records from its: (1) native range only and (2) full range (native and invasive). Keywords Wedelia trilobata · Maximum entropy Models were then projected globally to identify areas vul- (Maxent) · Genetic algorithm (GARP) · Predict · nerable to W. trilobata invasion. W. trilobata prefers hot Invasive species and humid environments and can occur in areas with differ- ent environmental conditions than experienced in its native range. Based on native and full occurrence points, GARP Introduction and Maxent models produced consistent distributional maps of W. trilobata, although Maxent model results were more A large proportion of the world’s introduced ornamen- conservative.
    [Show full text]
  • A Rapid Biodiversity Survey of Papua New Guinea’S Manus and Mussau Islands
    A Rapid Biodiversity Survey of Papua New Guinea’s Manus and Mussau Islands edited by Nathan Whitmore Published by: Wildlife Conservation Society Papua New Guinea Program PO BOX 277, Goroka, Eastern Highlands Province PAPUA NEW GUINEA Tel: +675-532-3494 www.wcs.org Editor: Nathan Whitmore. Authors: Ken P. Aplin, Arison Arihafa, Kyle N. Armstrong, Richard Cuthbert, Chris J. Müller, Junior Novera, Stephen J. Richards, William Tamarua, Günther Theischinger, Fanie Venter, and Nathan Whitmore. The Wildlife Conservation Society is a private, not-for-profit organisation exempt from federal income tax under section 501c(3) of the Inland Revenue Code. The opinions expressed in this publication are those of the contributors and do not necessarily reflect those of the Wildlife Conservation Society, the Criticial Ecosystems Partnership Fund, nor the Papua New Guinean Department of Environment or Conservation. Suggested citation: Whitmore N. (editor) 2015. A rapid biodiversity survey of Papua New Guinea’s Manus and Mussau Islands. Wildlife Conservation Society Papua New Guinea Program. Goroka, PNG. ISBN: 978-0-9943203-1-5 Front cover Image: Fanie Venter: cliffs of Mussau. ©2015 Wildlife Conservation Society A rapid biodiversity survey of Papua New Guinea’s Manus and Mussau Islands. Edited by Nathan Whitmore Table of Contents Participants i Acknowledgements iii Organisational profiles iv Letter of support v Foreword vi Executive summary vii Introduction 1 Chapters 1: Plants of Mussau Island 4 2: Butterflies of Mussau Island (Lepidoptera: Rhopalocera)
    [Show full text]
  • A New Natural Hybrid of Sphagneticola (Asteraceae, Heliantheae) from Guang- Dong, China
    Phytotaxa 221 (1): 071–076 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.221.1.7 A new natural hybrid of Sphagneticola (Asteraceae, Heliantheae) from Guang- dong, China HUI-MIN LI1, 2, CHEN REN1, QIN-ER YANG1 & QIONG YUAN1* 1Key Lab of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, CN-510650, Guangzhou, China 2University of Chinese Academy of Sciences, CN-100049, Beijing, China *Author for correspondence: e-mail: [email protected] Abstract A new natural hybrid, Sphagneticola × guangdongensis (Asteraceae, Heliantheae), is described and illustrated. Its chromo- some number was revealed to be 2n = 53, lending strong support for its hybridity and parental origin (S. calendulacea with 2n = 50 and S. trilobata with 2n = 56) as previously already confirmed by evidence from morphology and molecular data. Keywords: chromosome number, invasive species, parental origin Introduction Sphagneticola Hoffmann (1900: 36) (Asteraceae-Heliantheae) is a small genus of four species that are common at lower elevations in the tropical and subtropical regions of the world (though not known to occur in Africa), including S. brachycarpa (Baker 1884: 181) Pruski (1996: 411), S. calendulacea (Linnaeus 1753: 902) Pruski (1996: 411), S. gracilis (Richard 1807: 490) Pruski (1996: 412), and S. trilobata (Linnaeus 1759: 1233) Pruski (Pruski 1996: 412). Among them, the widespread Asian S. calendulacea is the only species native to China (Fujian, Guangong, Liaoning, Taiwan). Sphagneticola trilobata, native to the New World tropics but widespread in the Old World tropics, was originally cultivated as an ornamental ground cover in China but now has become an invasive species at least in Fujian, Guangdong, Guangxi, and Taiwan (Chen & Head 2011).
    [Show full text]
  • THE ANDEAN SPECIES of PILEA by Ellsworth P. Killip INTRODUCTION
    THE ANDEAN SPECIES OF PILEA By Ellsworth P. Killip INTRODUCTION Pilea is by far the largest genus of Urticaceae. Weddell in his final monograph 1 of the family recognized 159 species as valid, about 50 of which were said to occur in the Andes of South America. That these species had a very limited range of distribution was indicated by the fact that more than 30 were known from only a single collection and that only 9 of the others were in any sense widely distributed in the Andean countries. Two, P. microphyUa and P. pubescens, occurred throughout the American Tropics, and P. kyalina and P. dendrophUa extended eastward in South America. In the 50 years following the publication of this monograph only 10 species were described from the Andean region. Because of the large number of specimens of Pilea collected by expeditions to the Andes sponsored by the Smithsonian Institution, the New York Botanical Garden, the Gray Herbarium and the Arnold Arboretum of Harvard University, the Field Museum of Natural History, and the Academy of Natural Sciences, Philadelphia, which were submitted to me for identification but which could not be assigned to any known species, I began the preparation of a mono- graph of all the Andean species. This was completed in 1935 but unfortunately could not be printed in its entirety at that time. Instead, a greatly abridged paper was published,2 which contained a key to all the Andean species, descriptions of 30 new ones, and a few changes of name and of rank. In this there was no opportunity to present descriptions of the earlier species or to discuss their synonymy.
    [Show full text]
  • Pilea Victoriae V. Suresh & Sojan (Urticaceae)
    Bioscience Discovery, 9(2):290-292, April - 2018 © RUT Printer and Publisher Print & Online, Open Access, Research Journal Available on http://jbsd.in ISSN: 2229-3469 (Print); ISSN: 2231-024X (Online) Research Article Pilea victoriae V. Suresh & Sojan (Urticaceae)–A New Distributional Plant Record for Maharashtra State, India Deshmukh U. B1*., M. B. Shende1 and O. S. Rathor2 1.Higher Learning And Research Center and P.G. Department of Botany, Janata Mahavidyalaya, Chandrapur ,442401. Maharashtra, (India). 2. Ex. Principal and Reader in Botany N.E.S. Science College, Nanded. Maharashtra, (India). *[email protected] Article Info Abstract Received: 22-01-2018, During an ethno botanical survey of Chandrapur district an interesting plant of Revised: 22-03-2018, Urticaceae family was collected as a weed on shady and moist places of Accepted: 03-04-2018 gardens. After going through the literature plant species indentified as Pilea victoriae V. Suresh & Sojan, it is found to be new record for Flora of Keywords: Maharashtra State, India. A brief description with coloured photograph, India, Maharashtra State, phenological data, notes on its distribution provided here. Key is prepared for new record, Pilea Pilea genus in Maharashtra state for its easy identification. victoriae, Urticaceae. INTRODUCTION Suresh & Sojan, P. melastomoides (Poir.) Wedd., P. Pilea Lindley (1821) represented by ca.715 microphylla (L.) Liebm. and P. pubescens Liebm. species and it is the most species rich genus in the has been reported from Maharashtra State (Singh & family Urticaceae (Monro, 2004). Pilea genus Karthikeyan, 2001; Almeida, 2003). distributed throughout the temperate, tropical and sub tropical regions with the exception of Europe, MATERIALS AND METHODS New Zealand and Australia.
    [Show full text]
  • WRA Species Report
    Family: Urticaceae Taxon: Pilea hyalina Synonym: Pilea lundii Liebm. Common Name: Virdrillo Pilea scrobiculata Liebm. Urtica arvensis Poepp. ex Fenzl Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 8 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 y 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 n 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see y Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see n Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see y Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 405 Toxic to animals
    [Show full text]
  • Exotic Species Survey of the Kokoda Track, Papua New Guinea
    Exotic Species Survey of the Kokoda Track, Papua New Guinea Honolulu, Hawai‘i December 2015 Cover shot: Alola Village and Kokoda Track showing anthropogenous vegetation. Photo: Allen Allison. Exotic Species Survey of the Kokoda Track, Papua New Guinea Allen Allison Linda Pratt Thane Pratt Clyde Imada Pacific Biological Survey Bishop Museum Honolulu, Hawai‘i 96817, USA Report prepared for: PNG Conservation and Environmental Protection Authority (CEPA), Port Moresby, Papua New Guinea Bishop Museum Technical Report 67 Honolulu, Hawai‘i December 2015 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2015 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2015-004 to the Pacific Biological Survey Table of Contents Executive Summary ..................................................................................................................... v 1 Introduction .....................................................................................................................1 2 Purpose ............................................................................................................................2 2.1 Compilation of a Checklist of Exotic Species ..................................................................2 2.2 Document Particularly Problematic Species ..................................................................2 3 Personnel .........................................................................................................................3
    [Show full text]
  • Botanical Survey of the War in the Pacific National Historical Park Guam, Mariana Islands
    PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 161 Botanical survey of the War in the Pacific National Historical Park Guam, Mariana Islands July 2008 Joan M. Yoshioka 1 1 Pacific Cooperative Studies Unit (University of Hawai`i at Mānoa), NPS Inventory and Monitoring Program, Pacific Island Network, PO Box 52, Hawai`i National Park, HI 96718 PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: Inventory and Monitoring Program, Pacific Island Network, PO Box 52, Hawaii National Park, HI 96718, phone: 808-985-6183, fax: 808-985-6111 Recommended Citation: Yoshioka, J. M. 2008. Botanical survey of the War in the Pacific National Historical Park Guam, Mariana Islands. Pacific Cooperative Studies Unit Technical Report 161, University of Hawai`i at Manoa, Department of Botany, Honolulu, HI. Key words: Vegetation types, Vegetation management, Alien species, Endemic species, Checklist, Ferns, Flowering plants Place key words: War in the Pacific National Historical Park, Guam Editor: Clifford W. Morden, PCSU Deputy Director (Mail to: mailto:[email protected]) i Table of Contents List of Tables......................................................................................................iii List of Figures ....................................................................................................iii
    [Show full text]
  • The Vegetation and Flora of Nauru – 2007
    THE VEGETATION AND FLORA OF NAURU – 2007 Current Status, Cultural Importance and Suggestions for Conservation, Restoration, Rehabilitation, Agroforestry and Food, Health and Economic Security Report prepared for the Ministry of Commerce, Industry and Resources and the Nauru Rehabilitation Corporation, Republic of Nauru R. R. Thaman1, D. C. Hassall2 and Shingo Takeda3 Secretariat of the Pacific Community Land Resources Division Suva, Fiji Islands January 2009 1 Professor of Pacific Islands Biogeography, Faculty of Islands and Oceans, The University of the South Pacific, Suva, Fiji Islands. 2 Director, Yurrah Integrated Landscape Solutions, Windsor, Queensland, Australia. 3 GIS Consultant, School of Geography, Faculty of Islands and Oceans, The University of the South Pacific, Suva, Fiji Islands. © Secretariat of the Pacific Community (SPC) 2009 Original text: English Secretariat of the Pacific Community Cataloguing-in-publication data Thaman, R. R. The vegetation and flora of Nauru – 2007: current status, cultural importance and suggestions for conservation, restoration, rehabilitation, agroforestry and food, health and economic security / R. R. Thaman, D. C. Hassall and Shingo Takeda 1. Plant ecology – Nauru. 2. Botany – Nauru. I. Hassal, D. C. II. Takeda, Shingo. III. Secretariat of the Pacific Community. 581.509685 AACR2 ISBN 978-982-00-0314-9 Secretariat of the Pacific Community Suva Sub-regional Office Private Mail Bag Suva FIJI ISLANDS Tel: +679 337 0733 Fax: +679 337 0021 Email: [email protected] Printed by Quality Print Limited, Suva, Fiji Islands DEDICATION We dedicate this report to the late Joseph Detsimea Audoa, former Minister of Health and Education and Minister of Justice in the Government of Nauru, who, because of his vision and commitment to the culture and environment of Nauru, initiated and provided the financial support for the 1980s study of the flora of Nauru, and to the people of the Republic of Nauru who have had their precious island and its vegetation and flora destroyed and degraded as a result of wars and exploitation beyond their control.
    [Show full text]