2018SORUS467.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

2018SORUS467.Pdf Sorbonne Université Ecole doctorale 227 : Science de la Nature et de l’Homme UMR 7205 Institut de Systématique, Evolution, Biodiversité / Exploration, Espèces et Evolution UMR 7144 Adaptation et Diversitié en Milieu Marin / Adaptation et Biologie des Invertébrés en Conditions Extrêmes Origines et évolution de lignées hydrothermales Par Perrine Mandon Thèse de doctorat de Biologie évolutive, Phylogénie Dirigée par Sarah Samadi et Stéphane Hourdez Présentée et soutenue publiquement le 18 septembre 2018 Devant un jury composé de : M. Aurelle Didier, maître de conférence à l’Université d’Aix-Marseille (Rapporteur) M. Chen Wei-Jen, professeur à l’Université Nationale de Taiwan (Rapporteur) M. Higuet Dominique, professeur à Sorbonne Université (Examinateur) Mme. Matabos Marjolaine, chercheuse à l’IFREMER (Examinatrice) M. Hourdez Stéphane, chargé de recherche CNRS (co-directeur de thèse) Mme. Samadi Sarah, professeure au MNHN (directrice de thèse) 2 A Bergamotte, qui me suis dès le premier jour et me suivra toujours 3 4 Remerciements Parce que cette thèse est un travail que je signe, mais qui en réalité a pu voir le jour, grandir puis finalement s’achever aujourd’hui grâce à la collaboration d’énormément de monde… Cette page est attribuée à l’ensemble de ces personnes. Pour m’avoir permis de travailler sur ce sujet pendant presque 4 ans, pour m’avoir accompagnée parfois plus que de raison, pour m’avoir secoué les puces ou pris du temps pour me rassurer, chacun à votre façon, pour avoir été là jusqu’au bout et sans défaillir ; pour l’ensemble des efforts que je vous sais avoir fait, Sarah, Stéphane, je vous offre toute ma reconnaissance et ma gratitude. Stéphane plus personnellement pour ton soutien moral, ton tempérament joyeux (tant que ta paillasse de manip est rangée), ta disponibilité dont j’ai ô combien abusé... Sarah, plus personnellement pour ton honnêteté, ta rigueur scientifique, tes remarques constructives et la patience dont tu as fait preuve. Cette thèse a eu lieu au sein des UMR 7144 Adaptation et Diversité en Milieu Marin et UMR 7205 Institut de Systématique, Ecologie et Biodiversité et ces lignes s’adressent également aux directeurs Philippe Grandcolas et François Lallier. Aux membres de mon comité de thèse, qui ont accepté les discussions en vidéo conférences, parfois à des heures tardives : Eric Panté, Frédérique Viard, Didier Jollivet. A vous, qui avez été présents lors de ces comités de pilotage et ponctuellement à d’autres moments, en cas de galères de manip, de questionnement durant l’analyse de résultats... A vous qui m’avez suivie et prodigué de sincères encouragements. Aux membres de mon jury : à Didier Aurelle, Wei-Jen Chen, Dominique Higuet et Marjolaine Matabos pour avoir accepté de relire et d’examiner mon travail, et de vous déplacer pour venir m’écouter. Egalement, les membres de mes deux équipes, à Roscoff et à Paris, qui m’ont accueillie pendant la durée de ma thèse et m’ont permis d’effectuer ces travaux, de discuter, de souffler, de partager. A Nicolas plus particulièrement pour son coaching rédaction ! A Erwan Corre pour ton accompagnement, ta bienveillance et ta bonne humeur. A toi, qui as eu le courage et la gentillesse de te plonger et de parler passionnément de données techniques et de métriques d’assemblages. A l’ensemble des membres du support ABiMS qui ont supporté mes « erreurs aléatoires » sans rechigner… A la chaleureuse triade du fond du couloir, Jawad, Régiset Julio. A Jawad, qui n’aime pas mes questions …. Mais les écoute quand même. A Régis, vif d’or perpétuel, pour ton dynamisme, ton bon entrain, tes conseils avisés que ce soit en manip ou pour des analyses, ou pour tenir debout sur un Mono-roue. A Julio, pour les initiations pseudo-code, les débogages (qui se résolvent souvent avec la même question : have you tried to turn it off and on again ?!), mais aussi pour les moments de perditions où tous les sujets à peu près possibles et imaginables sont abordés. 5 A la branche féminine du staff : Carole, Céline, Delphine, pour les cafés du matin, les papotages de couloir, pour me rappeler le soir que pour partir plus tôt là, c’est trop tard. A Laetitia, pour nos pauses café qui font tourner la montre… A Dame Agnès, pour son soutien, en particulier durant les durs mois d’août, désertés, avec toujours des fraises tagada, un gâteau ou simplement un sourire. Aux parents, amis, camarades, qui ont suivi cette thèse de plus loin, qui auraient je le sais, bien apprécié de me voir pointer le bout du nez un peu plus souvent ces dernières années. A mes parents qui ont été heureux pour moi, se sont inquiétés parfois, mais qui sont avant tout contents pour moi ! A Fluflu, qui est passé par là et qui, en toute connaissance de cause, posait quand même toujours la question de l’avancement, même en 3ème et PIRE en 4ème année … Quand bien même, pour nos soirées Whisky - Agnès Obel. A Sophie, toujours là depuis toutes ces années ; pour tes délires, tes joyeuses virevoltes qui me permettent de voyager à ta manière. A Noémi, pour nos moments et nos discussions phylogénomiques à minuit, de retour de soirée. A toi qui a eu de la patience et de l’attention d’un suricate aux aguets. A Mathias, Anthony Chloé, Lala, Marie, qui m’ont accompagnée tout le long de cette expérience. Pour ces soirées bars à jeux ou karaoké. A vous qui m’avez épaulée, et ce même avant la thèse. A l’ensemble des autres thésards, avec qui nous sommes ou avons été dans le même bateau : Mathilde, Ninon, Lucie, Morgane, Laetitia, à la bande de FT dans sa plus parfaite entièreté et l’ambiance souvent pailletée qu’ils entrainent avec eux. A Bérengère, à Claire, pour s’être bien tenu les coudes mutuellement ! A ceux avec qui j’ai partagé mes bureaux, CamTor et Bérénice à Roscoff, la carboglace comme substrat pour mille et une expérimentations. A Paul et Malcolm à la capitale, pour nos soirées Starmania à se demander en braillant, au dépend d’éventuels travailleurs tardifs du couloir, qu’est-ce qu’on pourra bien faire de nos vies demain…. A votre bonne humeur ; à vous qui avez aussi su savamment meubler mon étagère de bureau ! A Sophie, pour les moult discussions, débriefings, nos derniers instants de rédaction. A toi, que cette thèse m’a permis de rencontrer, contre tellement de probabilité. Toi qui es là jusque dans les tous derniers instants, à me dépanner, m’encourager me soutenir. Qui m’accompagne. A tous ces gens que j’ai rencontrés, entre ciel et mer : à bord de Belem ou les autres gabiers de l’Hermione à l’occasion d’aventures en mer ; au parachute, où le soleil brille toujours au-dessus des nuages. Et pour tous les autres qui, en ces tous derniers instants sont discrètement dans un coin de ma tête, trop discrets pour être couchés sur ce papier, mais qui savent ce qui leur revient … … A vous tous, je dis un très grand merci. 6 7 Table des matières : I. Introduction générale de la thèse ........................................................................................ 15 I.1 Contexte général : ................................................................................................................. 15 I.1.1 Une histoire de reconsidérations taxonomiques : les vers de la famille Siboglinidae ...... 17 I.1.2 Etude de la colonisation des sources hydrothermales : les moules de la sous-famille Bathymodiolinae ........................................................................................................................... 19 I.2 Stratégies d’étude de la thèse ............................................................................................... 21 II. La phylogénie par une approche multigène : le cas des vers de la famille Polynoidae ............ 27 II.1 Introduction ........................................................................................................................... 27 II.1.1 Les Polynoidae dans la faune des sources hydrothermales .......................................... 27 II.1.2 Diversité des Polynoidae ............................................................................................... 31 II.1.3 Etat des connaissances de la phylogénie des Polynoidae ............................................. 35 II.1.4 But de l’étude ................................................................................................................ 41 II.2 Matériel et méthodes ............................................................................................................ 43 II.2.1 Sélection des taxons pour l’étude ................................................................................. 43 II.2.2 Obtention et sélection des séquences moléculaire ...................................................... 45 II.2.3 Analyses phylogénétiques ............................................................................................. 48 II.3 Résultats - Discussion ............................................................................................................ 51 II.3.1 Echantillonnage final ..................................................................................................... 51 II.3.2 Analyses phylogénétiques ............................................................................................. 53 II.4 Conclusions et perspectives .................................................................................................. 73 III. Une approche NGS : le cas des crabes de la famille Bythograeidae ....................................... 80 III.1 Introduction ..........................................................................................................................
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • W7192e19.Pdf
    click for previous page 952 Shrimps and Prawns Sicyoniidae SICYONIIDAE Rock shrimps iagnostic characters: Body generally Drobust, with shell very hard, of “stony” grooves appearance; abdomen often with deep grooves and numerous tubercles. Rostrum well developed and extending beyond eyes, always bearing more than 3 upper teeth (in- cluding those on carapace); base of eyestalk with styliform projection on inner surface, but without tubercle on inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. 1 Carapace lacks both postorbital and postantennal spines, cervical groove in- distinct or absent. Exopod present only on first maxilliped. All 5 pairs of legs well devel- 2 oped, fourth leg bearing a single well-devel- 3rd and 4th pleopods 4 single-branched oped arthrobranch (hidden beneath 3 carapace). In males, endopod of second pair 5 of pleopods (abdominal appendages) with appendix masculina only. Third and fourth pleopods single-branched. Telson generally armed with a pair of fixed lateral spines. Colour: body colour varies from dark brown to reddish; often with distinct spots or colour markings on carapace and/or abdomen - such colour markings are specific and very useful in distinguishing the species. Habitat, biology, and fisheries: All members of this family are marine and can be found from shallow to deep waters (to depths of more than 400 m). They are all benthic and occur on both soft and hard bottoms. Their sizes are generally small, about 2 to 8 cm, but some species can reach a body length over 15 cm. The sexes are easily distinguished by the presence of a large copulatory organ (petasma) on the first pair of pleopods of males, while the females have the posterior thoracic sternites modified into a large sperm receptacle process (thelycum) which holds the spermatophores or sperm sacs (usually whitish or yellowish in colour) after mating.
    [Show full text]
  • Halosydna Brevisetosa Class: Polychaeta, Errantia
    Phylum: Annelida Halosydna brevisetosa Class: Polychaeta, Errantia Order: Phyllodocida, Aphroditiformia Family: Polynoidae, Lepitonotinae Taxonomy: Eastern Pacific polynoids are Trunk: often reported with wide distributions result- Posterior: Posterior three segments ing in numerous synonymies. Although oth- with dorsal cirri. Pygidium bears one pair of er synonyms are reported, the most com- anal cirri and anus is dorsal and between seg- mon and recent for H. brevisetosa is H. ments 35–36 (Salazar-Silva 2013). johnsoni. These two species have Parapodia: Biramous. Notopodia smaller overlapping ranges centrally, but the range than neuropodia (Fig. 3). Neuropodia with of H. brevisetosa extends more northerly rounded lobe near tip of acicula. Dorsal cirri into colder waters while H. johnsoni is more expanded distally with filiform tip and ventral common in warmer, southern regions. The cirri are short, with fine tip (Salazar-Silva variation in setal morphology between them 2013). was once believed to be temperature- Setae (chaetae): All setae simple. Notosetae induced and they were synonymized short and serrate. Neorsetae falcate, with (Gaffney 1973). However, after analyzing rows of spines toward the tips, which are en- type material from both species, Salazar- tire. Neurosetae more abundant than notose- Silva (2013) determined that the two are tae (Fig. 3) (Salazar-Silva 2013). different species based on the morphology Eyes/Eyespots: Two pairs of eyes present at of neurosetae and re-described them. posterior prostomium (Fig. 2). Anterior Appendages: Three anterior anten- Description nae (Fig. 2) and two palps (Halosynda, Sala- Size: Average size range is 40 to 100 mm in zar-Silva 2013). length (Hartman 1968).
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Appendix 1. Bodega Marine Lab Student Reports on Polychaete Biology
    Appendix 1. Bodega Marine Lab student reports on polychaete biology. Species names in reports were assigned to currently accepted names. Thus, Ackerman (1976) reported Eupolymnia crescentis, which was recorded as Eupolymnia heterobranchia in spreadsheets of current species (spreadsheets 2-5). Ackerman, Peter. 1976. The influence of substrate upon the importance of tentacular regeneration in the terebellid polychaete EUPOLYMNIA CRESCENTIS with reference to another terebellid polychaete NEOAMPHITRITE ROBUSTA in regard to its respiratory response. Student Report, Bodega Marine Lab, Library. IDS 100 ∗ Eupolymnia heterobranchia (Johnson, 1901) reported as Eupolymnia crescentis Chamberlin, 1919 changed per Lights 2007. Alex, Dan. 1972. A settling survey of Mason's Marina. Student Report, Bodega Marine Lab, Library. Zoology 157 Alexander, David. 1976. Effects of temperature and other factors on the distribution of LUMBRINERIS ZONATA in the substratum (Annelida: polychaeta). Student Report, Bodega Marine Lab, Library. IDS 100 Amrein, Yost. 1949. The holdfast fauna of MACROSYSTIS INTEGRIFOLIA. Student Report, Bodega Marine Lab, Library. Zoology 112 ∗ Platynereis bicanaliculata (Baird, 1863) reported as Platynereis agassizi Okuda & Yamada, 1954. Changed per Lights 1954 (2nd edition). ∗ Naineris dendritica (Kinberg, 1867) reported as Nanereis laevigata (Grube, 1855) (should be: Naineris laevigata). N. laevigata not in Hartman 1969 or Lights 2007. N. dendritica taken as synonymous with N. laevigata. ∗ Hydroides uncinatus Fauvel, 1927 correct per I.T.I.S. although Hartman 1969 reports Hydroides changing to Eupomatus. Lights 2007 has changed Eupomatus to Hydroides. ∗ Dorvillea moniloceras (Moore, 1909) reported as Stauronereis moniloceras (Moore, 1909). (Stauronereis to Dorvillea per Hartman 1968). ∗ Amrein reported Stylarioides flabellata, which was not recognized by Hartman 1969, Lights 2007 or the Integrated Taxonomic Information System (I.T.I.S.).
    [Show full text]
  • Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
    Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton.
    [Show full text]
  • Annotated Checklist of New Zealand Decapoda (Arthropoda: Crustacea)
    Tuhinga 22: 171–272 Copyright © Museum of New Zealand Te Papa Tongarewa (2011) Annotated checklist of New Zealand Decapoda (Arthropoda: Crustacea) John C. Yaldwyn† and W. Richard Webber* † Research Associate, Museum of New Zealand Te Papa Tongarewa. Deceased October 2005 * Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, New Zealand ([email protected]) (Manuscript completed for publication by second author) ABSTRACT: A checklist of the Recent Decapoda (shrimps, prawns, lobsters, crayfish and crabs) of the New Zealand region is given. It includes 488 named species in 90 families, with 153 (31%) of the species considered endemic. References to New Zealand records and other significant references are given for all species previously recorded from New Zealand. The location of New Zealand material is given for a number of species first recorded in the New Zealand Inventory of Biodiversity but with no further data. Information on geographical distribution, habitat range and, in some cases, depth range and colour are given for each species. KEYWORDS: Decapoda, New Zealand, checklist, annotated checklist, shrimp, prawn, lobster, crab. Contents Introduction Methods Checklist of New Zealand Decapoda Suborder DENDROBRANCHIATA Bate, 1888 ..................................... 178 Superfamily PENAEOIDEA Rafinesque, 1815.............................. 178 Family ARISTEIDAE Wood-Mason & Alcock, 1891..................... 178 Family BENTHESICYMIDAE Wood-Mason & Alcock, 1891 .......... 180 Family PENAEIDAE Rafinesque, 1815 ..................................
    [Show full text]
  • Polychaete Worms Definitions and Keys to the Orders, Families and Genera
    THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens.
    [Show full text]
  • Benvenuto, C and SC Weeks. 2020
    --- Not for reuse or distribution --- 8 HERMAPHRODITISM AND GONOCHORISM Chiara Benvenuto and Stephen C. Weeks Abstract This chapter compares two sexual systems: hermaphroditism (each individual can produce gametes of either sex) and gonochorism (each individual produces gametes of only one of the two distinct sexes) in crustaceans. These two main sexual systems contain a variety of alternative modes of reproduction, which are of great interest from applied and theoretical perspectives. The chapter focuses on the description, prevalence, analysis, and interpretation of these sexual systems, centering on their evolutionary transitions. The ecological correlates of each reproduc- tive system are also explored. In particular, the prevalence of “unusual” (non- gonochoristic) re- productive strategies has been identified under low population densities and in unpredictable/ unstable environments, often linked to specific habitats or lifestyles (such as parasitism) and in colonizing species. Finally, population- level consequences of some sexual systems are consid- ered, especially in terms of sex ratios. The chapter aims to provide a broad and extensive overview of the evolution, adaptation, ecological constraints, and implications of the various reproductive modes in this extraordinarily successful group of organisms. INTRODUCTION 1 Historical Overview of the Study of Crustacean Reproduction Crustaceans are a very large and extraordinarily diverse group of mainly aquatic organisms, which play important roles in many ecosystems and are economically important. Thus, it is not surprising that numerous studies focus on their reproductive biology. However, these reviews mainly target specific groups such as decapods (Sagi et al. 1997, Chiba 2007, Mente 2008, Asakura 2009), caridean Reproductive Biology. Edited by Rickey D. Cothran and Martin Thiel.
    [Show full text]
  • Crustacea: Decapoda: Bresiliidae) from Zanzibar
    VOLUME 51 PART 2 MEMOIRS OF THE QUEENSLAND MUSEUM BRISBANE 31 DECEMBER 2005 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qmuseum.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qmuseum.qld.gov.au/resources/resourcewelcome.html A Queensland Government Project Typeset at the Queensland Museum NOTE ON A NEW SPECIES OF BRESILIA (CRUSTACEA: DECAPODA: BRESILIIDAE) FROM ZANZIBAR A.J. BRUCE Bruce, A.J. 2005 12 31: Note on a new species of Bresilia (Crustacea: Decapoda: Bresiliidae) from Zanzibar. Memoirs of the Queensland Museum 51(2): 385-390. Brisbane. ISSN 0079-8835. A new species of bresilliid shrimp from Zanzibar is described and illustrated. The single specimen described is incomplete, lacking all pereiopods. It can be readily distinguished from the six previously known species of the genus and a key is provided for their identification. The record is the first for the Indian Ocean and confirms the occurrence of the genus, usually found in deep sea depths, in shallow water. ! Crustacea, Caridea, Bresiliidae, Bresilia sp.
    [Show full text]
  • Life Cycle of the Symbiotic Scaleworm Arctonoe Vittata (Polychaeta: Polynoidae)
    Ophelia Suppl. 5: 305-312 (February 1991) Life Cycle of the Symbiotic Scaleworm Arctonoe vittata (Polychaeta: Polynoidae) T A . Britayev A.N. Severtzov Institute of Animal Morphology and Ecology Lenin Avenue 33, Moscow W-71, U.S.S .R . ABSTRACT The reproductive biology, some stages of de velopment, size structure, distribution by hosts, behaviour and tr aumatism were studied in a population of Arctonoeoittata at Vostok Bay (Sea ofJapan). The species is associat­ ed with the starfish Asterias amurensis and the limpet A cmaea pallida. It is a polytelic species with an annual reproductive cycle. Spawning occu rs during June and July. Larval development is planktotrophic and lasts about a month. Distribution of young specimens is random as a result of settlement. Analysis of different size groups of sym bionts on starfish reveals a uniformity in their distribution, wh ich is increased due to the size of the pol ynoids. Intraspecific aggressive behaviour is characteri stic for thi s spe cies. Aggressive interactions among the worms stim ula te one or mor e of them to leave a host and move onto another host - mollu sc or starfish - result­ ing in a uniform distribution oflarge symbionts on the hosts . For at lea st part of the symbiont population, the starfish Astenas amurensis serv es as the intermediate host and the limpet Acmaea pallida as the definitive host. Keyword s: Polychaeta, Polynoid ae, Arctonoe, sym bionts, intraspecific aggression, distribution, reproduction. INTRODUCTION The genus ArctonoeChamberlin includes three species: the typ e speciesA. vittata (Grube), A . pulchra (johnson) and A . jragilis (Baird) (Pettibone 1953: 56-66 , pis.
    [Show full text]