Introduction to R in IBM SPSS Modeler

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to R in IBM SPSS Modeler Introduction to R in IBM SPSS Modeler: A guide for SPSS Users Wannes Rosius/Belgium/IBM Goal of this guide Although there are several very good articles and blogs related to IBM SPSS Modeler, in my role as technical professional for IBM Analytical solutions, we still see lots of people struggling with both R and the integration between IBM SPSS Modeler and R. The idea of this document is certainly not to replace these very useful links listed below, but to enhance these in a way that people knowing IBM SPSS Modeler, with only a very limited knowledge of R, can use this integration. Going through sections 2, 3 and 4, the reader should be able to understand at a high level the R integration within SPSS and to (re)create some very basic R models within SPSS, even if you have only a basic knowledge of R. In section 5 you will learn more detailed tips, tricks and other things. This part is for the experienced user and can be interpreted as a list of loose things which might help you get up to speed with some more detailed functionalities of the integration, and understand some pitfalls. At every point in the document, we try to include R examples to the reader that could be easily copied into the appropriate R node in IBM SPSS Modeler. Unless specied otherwise, these code snippets are always based on the telco.sav dataset which can be found in the demo folder of your SPSS Modeler installation. After the source node, attach a type node, and thereafter the appro- priate R node. However, sometimes there are just abstracts of code to show you the idea. It will be clearly mentioned when the code is incomplete. You will nd these codes back into several code frames throughout this document. Furthermore, all the SPSS streams and assets are embedded in the pdf symbolized by . You can access them by right clicking within this pdf document. Some useful links • Essentials for R - Installation Instructions • User Guide: IBM SPSS Modeler 18 R Nodes • Modeler essentials for R Downloads • SPSS Modeler and R integration - Getting started IBM SPSS Modeler and R Contents 1 System Setup 3 1.1 Installing R ........................................3 1.2 Enabling the R nodes . .3 2 R basics 3 3 The basics of R nodes in IBM SPSS Modeler 5 3.1 The R nodes........................................5 3.2 Simple R code example . .5 3.2.1 modelerData . .6 3.2.2 modelerDataModel . .7 3.2.3 modelerModel . .8 3.3 Some general remarks . 10 3.4 Read data options . 11 4 Custom Dialog builder 11 4.1 Tools............................................ 12 4.2 Custom dialog . 12 4.3 Simple example . 12 5 Tips & tricks: Some more detailed 14 5.1 R code........................................... 14 5.1.1 ibmspsscf70 library . 14 5.1.2 Some useful parts of R code........................... 15 5.2 Custom Dialog builder . 17 5.2.1 How to save and share a custom dialog? . 17 5.2.2 Link to dialog and script . 17 5.3 What about SQL Pushback? Hadoop pushback? . 18 5.4 What about real-time scoring? and Solution Publisher? . 19 5.5 Something more about the metadata in modeler and the consequences on R integration 19 Page 2 of 20 IBM SPSS Modeler and R 1 System Setup Let us start with the setup of your system. For now, we assume that you have a valid installation of IBM SPSS Modeler on your machine. For more installation topics we refer to the Installation Instructions. 1.1 Installing R Depending on the version of your IBM SPSS Modeler, you will now have to install dierent versions of R: SPSS Version R version R download link 16.0 2.15.2 https://cran.r-project.org/bin/windows/base/old/2.15.2/ 17.0 3.1 https://cran.r-project.org/bin/windows/base/old/3.1.0/ 17.1 3.1 https://cran.r-project.org/bin/windows/base/old/3.1.0/ 18.0 3.2 https://cran.r-project.org/bin/windows/base/old/3.2.0/ Once you downloaded and installed, you will have a working R instance on your machine/server. Like SPSS Modeler, you can have several versions of R installed on your machine without any problem. 1.2 Enabling the R nodes You will need to install the IBM SPSS Modeler essentials for R. You can nd these here, on the SPSS Community Downloads page. Click 2. "Get Essentials for SPSS" and then click the button "Get R Essentials for SPSS Modeler". This will take you to github and you will be able to select and download the Modeler 18 Essentials for R for a variety of platforms. If you require Essentials for R for earlier Modeler versions, there is also a link to legacy versions. Run this execution le. The installation will ask you the path of your R installation, and the path to the bin les of your SPSS Modeler installation. (Note that in the prelled path, it is the default path to a ModelerServer, and you will need to change this if you want to congure your client). This installation will place the R nodes in your SPSS Modeler node palette, and it will also include necessary R libraries in your R installation folder. 2 R basics There is already an overow of R courses (publicly) available through several channels, so we would certainly not want to replace these. In it also not very important that you are an R expert to follow this document. However, there are still some basics of R code and R terminology users need to understand in order to exploit the integration of R and IBM SPSS Modeler. For this section, let us open R in its original GUI. Therefore go to the R installation folder and open \bin\x64\RGUI.exe. A window will be opened looking like this: Page 3 of 20 IBM SPSS Modeler and R This is the R console ready for commands to run. You might often hear the term RStudio, which is nothing more than a development environment on top of this R gui. Installation of RStudio is not required for this introduction, but might be handy for further use. We will start the R introduction by stating R is a powerful programming language and environment for statistical computing and graphics. An important part within that last phrase is that R is a programming language, unlike IBM SPSS Modeler. That means, it is built on objects that are dened by the user. As an example, assume the following R code (feel free to type it within the R console to see the R outputs): 1 x <- 1+1 2 y <-2*x 3 xyVector <-c(x,y) 4 z <- mean(xyVector) 5 print(z) Here x is an object. This statement will ll the object x with the value of the evaluated formula 1 + 1, being 2. So whenever the program refers to x, it will be interpreted as 2. In the second line we will dene y as twice the value of x. In the third line, we create a vector containing the content of x and y, to calculate the mean of these 2 objects and place it in an object z. The operator "<-" could also be replaced by "=", but for various reasons, lots of R users pre- fer this way of writing (actually it is not exactly the same, but that could be ignored for the purpose of this document). If you feel more comfortable in using "=", please do so. Like we lled x, y and z with some numbers, any R object can be lled with a variety of types. Here is a list of the most important for our purposes: Vector is a sequence of data elements of the same type (eg. numeric or character). This includes vectors of length 1, which can be interpreted as just being numbers. You can create a vector with the R function c(). So in the example code above, all the values of x, y and z are vectors of length one. xyVector is a vector of length 2, containing the values of (the vector) x followed by (the vector) y. Trying to link it back to SPSS, you can interpret a vector as the values of a single data column. Data frame is a list of vectors of equal length. If you look at a vector as the values of a variable, a data frame could be interpreted as a 2-dimensional dataset with columns (the number of vectors) and lines (the size of each vector). 1 n <-c(2, 3, 5, 3, 9)#A first vector of5 numeric values 2 n2 <-c(1, 3, 2, 5, 4)#A second vector of5 numeric values 3 s <-c("aa","bb","cc","aa","zz")#A third vector of5 string values 4 b <-c(TRUE, FALSE, TRUE, TRUE, TRUE)#A fourth vector of5 flag values 5 Data <- data.frame(n, s, b, New = n+n2)#A data frame containing4 vectors Page 4 of 20 IBM SPSS Modeler and R 6 #Noten+n2 will bea new vector called"New" with the sum of then+ n2:c(3, 6, 7, 8, 13) 7 8 dim(Data)#Will show you it isa5x4 dataset. 9 Data[2,4]#Will give back the value on the2nd line, the3rd column 10 colnames(Data)#Will give the column names asa vector("n","s","b","New") 11 Data$n[1]#Will give back the first value of the vectorn within the data frame.
Recommended publications
  • Date Created Size MB . تماس بگیر ید 09353344788
    Name Software ( Search List Ctrl+F ) Date created Size MB برای سفارش هر یک از نرم افزارها با شماره 09123125449 - 09353344788 تماس بگ ریید . \1\ Simulia Abaqus 6.6.3 2013-06-10 435.07 Files: 1 Size: 456,200,192 Bytes (435.07 MB) \2\ Simulia Abaqus 6.7 EF 2013-06-10 1451.76 Files: 1 Size: 1,522,278,400 Bytes (1451.76 MB) \3\ Simulia Abaqus 6.7.1 2013-06-10 584.92 Files: 1 Size: 613,330,944 Bytes (584.92 MB) \4\ Simulia Abaqus 6.8.1 2013-06-10 3732.38 Files: 1 Size: 3,913,689,088 Bytes (3732.38 MB) \5\ Simulia Abaqus 6.9 EF1 2017-09-28 3411.59 Files: 1 Size: 3,577,307,136 Bytes (3411.59 MB) \6\ Simulia Abaqus 6.9 2013-06-10 2462.25 Simulia Abaqus Doc 6.9 2013-06-10 1853.34 Files: 2 Size: 4,525,230,080 Bytes (4315.60 MB) \7\ Simulia Abaqus 6.9.3 DVD 1 2013-06-11 2463.45 Simulia Abaqus 6.9.3 DVD 2 2013-06-11 1852.51 Files: 2 Size: 4,525,611,008 Bytes (4315.96 MB) \8\ Simulia Abaqus 6.10.1 With Documation 2017-09-28 3310.64 Files: 1 Size: 3,471,454,208 Bytes (3310.64 MB) \9\ Simulia Abaqus 6.10.1.5 2013-06-13 2197.95 Files: 1 Size: 2,304,712,704 Bytes (2197.95 MB) \10\ Simulia Abaqus 6.11 32BIT 2013-06-18 1162.57 Files: 1 Size: 1,219,045,376 Bytes (1162.57 MB) \11\ Simulia Abaqus 6.11 For CATIA V5-6R2012 2013-06-09 759.02 Files: 1 Size: 795,893,760 Bytes (759.02 MB) \12\ Simulia Abaqus 6.11.1 PR3 32-64BIT 2013-06-10 3514.38 Files: 1 Size: 3,685,099,520 Bytes (3514.38 MB) \13\ Simulia Abaqus 6.11.3 2013-06-09 3529.41 Files: 1 Size: 3,700,856,832 Bytes (3529.41 MB) \14\ Simulia Abaqus 6.12.1 2013-06-10 3166.30 Files: 1 Size: 3,320,102,912 Bytes
    [Show full text]
  • Primena Statistike U Kliničkim Istraţivanjima Sa Osvrtom Na Korišćenje Računarskih Programa
    UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET Dušica V. Gavrilović Primena statistike u kliničkim istraţivanjima sa osvrtom na korišćenje računarskih programa - Master rad - Mentor: prof. dr Vesna Jevremović Beograd, 2013. godine Zahvalnica Ovaj rad bi bilo veoma teško napisati da nisam imala stručnu podršku, kvalitetne sugestije i reviziju, pomoć prijatelja, razumevanje kolega i beskrajnu podršku porodice. To su razlozi zbog kojih želim da se zahvalim: . Mom mentoru, prof. dr Vesni Jevremović sa Matematičkog fakulteta Univerziteta u Beogradu, koja je bila ne samo idejni tvorac ovog rada već i dugogodišnja podrška u njegovoj realizaciji. Njena neverovatna upornost, razne sugestije, neiscrpni optimizam, profesionalizam i razumevanje, predstavljali su moj stalni izvor snage na ovom master-putu. Članu komisije, doc. dr Zorici Stanimirović sa Matematičkog fakulteta Univerziteta u Beogradu, na izuzetnoj ekspeditivnosti, stručnoj recenziji, razumevanju, strpljenju i brojnim korisnim savetima. Članu komisije, mr Marku Obradoviću sa Matematičkog fakulteta Univerziteta u Beogradu, na stručnoj i prijateljskoj podršci kao i spremnosti na saradnju. Dipl. mat. Radojki Pavlović, šefu studentske službe Matematičkog fakulteta Univerziteta u Beogradu, na upornosti, snalažljivosti i kreativnosti u pronalaženju raznih ideja, predloga i rešenja na putu realizacije ovog master rada. Dugogodišnje prijateljstvo sa njom oduvek beskrajno cenim i oduvek mi mnogo znači. Dipl. mat. Zorani Bizetić, načelniku Data Centra Instituta za onkologiju i radiologiju Srbije, na upornosti, idejama, detaljnoj reviziji, korisnim sugestijama i svakojakoj podršci. Čak i kada je neverovatno ili dosadno ili pametno uporna, mnogo je i dugo volim – skoro ceo moj život. Mast. biol. Jelici Novaković na strpljenju, reviziji, bezbrojnim korekcijama i tehničkoj podršci svake vrste. Hvala na osmehu, budnom oku u sitne sate, izvrsnoj hrani koja me je vraćala u život, nes-kafi sa penom i transfuziji energije kada sam bila na rezervi.
    [Show full text]
  • Overview-Of-Statistical-Analytics-And
    Brief Overview of Statistical Analytics and Machine Learning tools for Data Scientists Tom Breur 17 January 2017 It is often said that Excel is the most commonly used analytics tool, and that is hard to argue with: it has a Billion users worldwide. Although not everybody thinks of Excel as a Data Science tool, it certainly is often used for “data discovery”, and can be used for many other tasks, too. There are two “old school” tools, SPSS and SAS, that were founded in 1968 and 1976 respectively. These products have been the hallmark of statistics. Both had early offerings of data mining suites (Clementine, now called IBM SPSS Modeler, and SAS Enterprise Miner) and both are still used widely in Data Science, today. They have evolved from a command line only interface, to more user-friendly graphic user interfaces. What they also share in common is that in the core SPSS and SAS are really COBOL dialects and are therefore characterized by row- based processing. That doesn’t make them inherently good or bad, but it is principally different from set-based operations that many other tools offer nowadays. Similar in functionality to the traditional leaders SAS and SPSS have been JMP and Statistica. Both remarkably user-friendly tools with broad data mining and machine learning capabilities. JMP is, and always has been, a fully owned daughter company of SAS, and only came to the fore when hardware became more powerful. Its initial “handicap” of storing all data in RAM was once a severe limitation, but since computers now have large enough internal memory for most data sets, its computational power and intuitive GUI hold their own.
    [Show full text]
  • GPL Reference Guide for IBM SPSS Statistics
    GPL Reference Guide for IBM SPSS Statistics Note Before using this information and the product it supports, read the information in “Notices” on page 415. Product Information This edition applies to version 162261647161, release 0, modification 0 of IBM SPSS Modeler BatchIBM SPSS ModelerIBM SPSS Modeler ServerIBM SPSS StatisticsIBM SPSS Statistics ServerIBM SPSS AmosIBM SPSS SmartreaderIBM SPSS Statistics Base Integrated Student EditionIBM SPSS Collaboration and Deployment ServicesIBM SPSS Visualization DesignerIBM SPSS Modeler Text AnalyticsIBM SPSS Text Analytics for Surveys IBM Analytical Decision ManagementIBM SPSS Modeler Social Network AnalysisIBM SPSS Analytic Server and to all subsequent releases and modifications until otherwise indicated in new editions. Contents Chapter 1. Introduction to GPL .....1 color.hue Function (For GPL Guides) .....90 The Basics ...............1 color.saturation Function (For GPL Graphic GPL Syntax Rules.............3 Elements) ..............90 GPL Concepts ..............3 color.saturation Function (For GPL Guides) . 91 Brief Overview of GPL Algebra .......3 csvSource Function ...........92 How Coordinates and the GPL Algebra Interact . 6 dataMaximum Function .........92 Common Tasks .............14 dataMinimum Function .........93 How to Add Stacking to a Graph ......14 delta Function ............93 How to Add Faceting (Paneling) to a Graph . 15 density.beta Function ..........93 How to Add Clustering to a Graph .....17 density.chiSquare Function ........96 How to Use Aesthetics .........18 density.exponential
    [Show full text]
  • Used.Html#Sbm Mv
    http://www.kdnuggets.com/2015/05/poll-analytics-data-mining-data-science-software- used.html#sbm_mv Vote in KDnuggets 16th Annual Poll: What Analytics, Data Mining, Data Science software/tools you used in the past 12 months for a real project?. We will clean and analyze the results and publish our trend analysis afterward What Analytics, Data Mining, Data Science software/tools you used in the past 12 months for a real project (not just evaluation)? 4 categories: Platforms, Languages, Deep Learning, Hadoop. Analytics / Data Mining Platforms / Suites: Actian Alpine Data Labs Alteryx Angoss Amazon Machine Learning Ayasdi BayesiaLab BigML Birst C4.5/C5.0/See5 Datameer Dataiku Dato (former Graphlab) Dell (including Statistica) FICO Model Builder Gnu Octave GoodData H2O (0xdata) IBM Cognos IBM SPSS Modeler IBM SPSS Statistics IBM Watson Analytics JMP KNIME Lavastorm Lexalytics MATLAB Mathematica Megaputer Polyanalyst/TextAnalyst MetaMind Microsoft Azure ML Microsoft SQL Server Microsoft Power BI MicroStrategy Miner3D Ontotext Oracle Data Miner Orange Pentaho Predixion Software QlikView RapidInsight/Veera RapidMiner Rattle Revolution Analytics (now part of Microsoft) SAP (including former KXEN) SAS Enterprise Miner Salford SPM/CART/Random Forests/MARS/TreeNet scikit-learn Skytree SiSense Splunk/ Hunk Stata TIBCO Spotfire Tableau Vowpal Wabbit Weka WordStat XLSTAT for Excel Zementis Other free analytics/data mining tools Other paid analytics/data mining/data science software Languages / low-level tools: C/C++ Clojure Excel F# Java Julia Lisp Perl Python R Ruby SAS base SQL Scala Unix shell/awk/gawk WPS: World Programming System Other programming languages Deep Learning tools Caffe Cuda-convnet Deeplearning4j Torch Theano Pylearn2 Other Deep Learning tools Hadoop-based Analytics-related tools Hadoop HBase Hive Pig Spark Mahout MLlib SQL on Hadoop tools Other Hadoop/HDFS-based tools.
    [Show full text]
  • IBM SPSS Modeler Data Sheet
    IBM Analytics IBM SPSS Modeler Data sheet IBM SPSS Modeler Accelerate time to value with visual data science and machine learning Overview Highlights In a business environment, the main objective of analytics is to improve a business outcome. These outcomes can include: • Exploit the power of visual and programmatic data science with IBM® SPSS® Modeler for IBM Data • Acquiring and retaining customers Science Experience, or get started with • Driving operational efficiency a subscription standalone deployment • Minimizing and mitigating fraud of IBM SPSS Modeler • Optimizing hiring processes and reducing attrition • Harness the value and find patterns in more data sources including text, flat • Creating new business models files, databases, data warehouses and Hadoop distributions in a multi-cloud When you apply data science and machine learning to improve a environment decision, the result is likely to be a better outcome. • Put 40+ out-of-box machine learning algorithms to work for ease of model development and management Data science is the process of using analytical techniques to uncover patterns in data and applying the results for business value. Descriptive • Integrate with Apache Spark for fast in-memory computing analysis, predictive modeling, text analytics, geospatial analytics, entity • Optimize productivity of data science analytics, decision management and optimization are used to identify and business teams with programmatic, patterns and deploy predictive models into operational systems. visual and other skills Systems and people can use these patterns and models to derive insights • Speed data analysis with in-database that enable them to consistently make the right decision at the point of performance and minimized data impact.
    [Show full text]
  • Statistický Software
    Statistický software 1 Software AcaStat GAUSS MRDCL RATS StatsDirect ADaMSoft GAUSS NCSS RKWard[4] Statistix Analyse-it GenStat OpenEpi SalStat SYSTAT The ASReml GoldenHelix Origin SAS Unscrambler Oxprogramming Auguri gretl language SOCR UNISTAT BioStat JMP OxMetrics Stata VisualStat BrightStat MacAnova Origin Statgraphics Winpepi Dataplot Mathematica Partek STATISTICA WinSPC EasyReg Matlab Primer StatIt XLStat EpiInfo MedCalc PSPP StatPlus XploRe EViews modelQED R SPlus Excel Minitab R Commander[4] SPSS 2 Data miningovýsoftware n Cca 20 až30 dodavatelů n Hlavníhráči na trhu: n Clementine, IBM SPSS Modeler n IBM’s Intelligent Miner, (PASW Modeler) n SGI’sMineSet, n SAS’s Enterprise Miner. n Řada vestavěných produktů: n fraud detection: n electronic commerce applications, n health care, n customer relationship management 3 Software-SAS n : www.sas.com 4 SAS n Společnost SAS Institute n Vznik 1976 v univerzitním prostředí n Dnes:největšísoukromásoftwarováspolečnost na světě (více než11.000 zaměstnanců) n přes 45.000 instalací n cca 9 milionů uživatelů ve 118 zemích n v USA okolo 1.000 akademických zákazníků (SAS používávětšina vyšších a vysokých škol a výzkumných pracovišť) 5 SAS 6 SAS 7 SAS q Statistickáanalýza: Ø Popisnástatistika Ø Analýza kontingenčních (frekvenčních) tabulek Ø Regresní, korelační, kovariančníanalýza Ø Logistickáregrese Ø Analýza rozptylu Ø Testováníhypotéz Ø Diskriminačníanalýza Ø Shlukováanalýza Ø Analýza přežití Ø … 8 SAS q Analýza časových řad: Ø Regresnímodely Ø Modely se sezónními faktory Ø Autoregresnímodely Ø
    [Show full text]
  • Stručný Návod K Ovládání IBM SPSS Statistics a IBM SPSS Modeler Autor Doc
    STRUČNÝ NÁVOD K OVLÁDÁNÍ IBM SPSS Statistics 19 a IBM SPSS Modeler 14 Pavel PETR Ústav systémového inženýrství a informatiky Fakulta ekonomicko – správní UNIVERZITA PARDUBICE 2012 Obsah 1. Základní informace o programu IBM SPSS Statistics .............................................. 4 1.1. Základní moduly IBM SPSS Statistics 19 ........................................................ 4 2. Program IBM SPSS Statistics ................................................................................... 6 2.1. Prostředí programu IBM SPSS Statistics.......................................................... 6 2.2. Okna v programu IBM SPSS Statistics ............................................................ 8 2.2.1. Datové okno .............................................................................................. 8 2.2.2. Výstupové okno ...................................................................................... 13 2.3. Základní ovládání programu IBM SPSS Statistics ......................................... 19 2.3.1. Soubor (File) ........................................................................................... 20 2.3.2. Úpravy (Edit) .......................................................................................... 22 2.3.3. Pohled (View) ......................................................................................... 24 3. Základní informace o programu IBM SPSS Modeler ............................................ 26 3.1. Fáze CRISP-DM ............................................................................................
    [Show full text]
  • Comparison of Commonly Used Statistics Package Programs
    Black Sea Journal of Engineering and Science 2(1): 26-32 (2019) Black Sea Journal of Engineering and Science Open Access Journal e-ISSN: 2619-8991 BSPublishers Review Volume 2 - Issue 1: 26-32 / January 2019 COMPARISON OF COMMONLY USED STATISTICS PACKAGE PROGRAMS Ömer Faruk KARAOKUR1*, Fahrettin KAYA2, Esra YAVUZ1, Aysel YENİPINAR1 1Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Animal Science, 46040, Onikişubat, Kahramanmaraş, Turkey 2Kahramanmaraş Sütçü Imam University, Andırın Vocational School, Computer Technology Department, 46410, Andırın, Kahramanmaras, Turkey. Received: October 17, 2018; Accepted: December 04, 2018; Published: January 01, 2019 Abstract The specialized computer programs used in the collection, organization, analysis, interpretation and presentation of the data are known as statistical software. Descriptive statistics and inferential statistics are two main statistical methodologies in some of the software used in data analysis. Descriptive statistics summarizes data in a sample using indices such as mean or standard deviation. Inferential statistics draws conclusions that are subject to random variables such as observational errors and sampling variation. In this study, statistical software used in data analysis is examined under two main headings as open source (free) and licensed (paid). For this purpose, 5 most commonly used software were selected from each groups. Statistical analyzes and analysis outputs of this selected software have been examined comparatively. As a result of this study, the features of licensed and unlicensed programs are presented to the researchers in a comparative way. Keywords: Statistical software, Statistical analysis, Data analysis *Corresponding author: Kahramanmaraş Sütçü Imam University, Faculty of Agriculture, Department of Animal Science, 46040, Onikişubat, Kahramanmaraş, Turkey E mail: [email protected] (Ö.
    [Show full text]
  • The R Project for Statistical Computing a Free Software Environment For
    The R Project for Statistical Computing A free software environment for statistical computing and graphics that runs on a wide variety of UNIX platforms, Windows and MacOS OpenStat OpenStat is a general-purpose statistics package that you can download and install for free. It was originally written as an aid in the teaching of statistics to students enrolled in a social science program. It has been expanded to provide procedures useful in a wide variety of disciplines. It has a similar interface to SPSS SOFA A basic, user-friendly, open-source statistics, analysis, and reporting package PSPP PSPP is a program for statistical analysis of sampled data. It is a free replacement for the proprietary program SPSS, and appears very similar to it with a few exceptions TANAGRA A free, open-source, easy to use data-mining package PAST PAST is a package created with the palaeontologist in mind but has been adopted by users in other disciplines. It’s easy to use and includes a large selection of common statistical, plotting and modelling functions AnSWR AnSWR is a software system for coordinating and conducting large-scale, team-based analysis projects that integrate qualitative and quantitative techniques MIX An Excel-based tool for meta-analysis Free Statistical Software This page links to free software packages that you can download and install on your computer from StatPages.org Free Statistical Software This page links to free software packages that you can download and install on your computer from freestatistics.info Free Software Information and links from the Resources for Methods in Evaluation and Social Research site You can sort the table below by clicking on the column names.
    [Show full text]
  • Machine Learning
    1 LANDSCAPE ANALYSIS MACHINE LEARNING Ville Tenhunen, Elisa Cauhé, Andrea Manzi, Diego Scardaci, Enol Fernández del Authors Castillo, Technology Machine learning Last update 17.12.2020 Status Final version This work by EGI Foundation is licensed under a Creative Commons Attribution 4.0 International License This template is based on work, which was released under a Creative Commons 4.0 Attribution License (CC BY 4.0). It is part of the FitSM Standard family for lightweight IT service management, freely available at www.fitsm.eu. 2 DOCUMENT LOG Issue Date Comment Author init() 8.9.2020 Initialization of the document VT The second 16.9.2020 Content to the most of chapters VT, AM, EC version Version for 6.10.2020 Content to the chapter 3, 7 and 8 VT, EC discussions Chapter 2 titles 8.10.2020 Chapter 2 titles and Acumos added VT and bit more to the frameworks Towards first full 16.11.2020 Almost every chapter has edited VT version First full version 17.11.2020 All chapters reviewed and edited VT Addition 19.11.2020 Added Mahout and H2O VT Fixes 22.11.2020 Bunch of fixes based on Diego’s VT comments Fixes based on 24.11.2020 2.4, 3.1.8, 6 VT discussions on previous day Final draft 27.11.2020 Chapters 5 - 7, Executive summary VT, EC Final draft 16.12.2020 Some parts revised based on VT comments of Álvaro López García Final draft 17.12.2020 Structure in the chapter 3.2 VT updated and smoke libraries etc.
    [Show full text]
  • V/ E211 'Igl't8 Ged0w191
    INSTITUTO COLOMBIANO PARA LA EVALUACION DE LA EDUCACION ICFES INVITACION DIRECTA A PRESENTAR OFERTA IDENTIFICACION DE LA INVITACION ICFES- SD- FECHA DE INVITACION 1 23/09/2013 Bogotá D.0 Señor (a) ARIAS ROBLEDO CARLOS ANDRES CALLE 186 C BIS NO. 15 69 INT 1 APTO 503 Tel: 3202275273 La Ciudad Cordial Saludo, El Instituto Colombiano para la Evaluación de la Educación - ICFES, lo invita a presentar oferta dentro del proceso de la referencia, conforme los siguientes requerimientos - OBJETO Prestación de servicios profesionales para apoyar a la Subdirecci ón de Estadística en la sistematización de datos y la estandarización de procesos en los programas y software estad isticos, la elaboración de rutinas estad isticas para el análisis de la información y el procesamientos de datos para la generación de reportes de resultados y análisis. d' . cumpirrn-Enin tre ra5---nurrgactUTILMte este contrato currusp-onoe a una oota por &bkl-dbhá - •r -13; ' lltr . Wi -reaSí • ' - - - • - - - I • -. •se-a•... se - si: . ea „ e. • - • ..e - instrucciones del ICFFS y por su cuenta y riesgo Por ende todos In derechos. E211011118 1148110CoY)ts0111411,1111°In81 eAffirlea 'igl't8Moged0W191/5ryllncIS11011VoSxclelvea alb_k__. 91.V/ _ la presente invitaci ón, ó pueden ser consultados en el link , http://www.icfes.gov.cor En el caso de que el adjudicatario sea persona natural y el contrato a suscribir sea de prestación de servicios personales, deber á diligenciar la hoja de vida y la declaración de bienes y rentas, a través del sistema dispuesto por el SIGEP, conforme a lo dispuesto en el decreto 2842 de 2010, antes de suscribir contrato.
    [Show full text]