CRISPR-Based Innovative Genetic Tools for Control of Anopheles Gambiae Mosquitoes

Total Page:16

File Type:pdf, Size:1020Kb

CRISPR-Based Innovative Genetic Tools for Control of Anopheles Gambiae Mosquitoes CRISPR-based innovative genetic tools for control of Anopheles gambiae mosquitoes The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Smidler, Andrea. 2019. CRISPR-based innovative genetic tools for control of Anopheles gambiae mosquitoes. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029729 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA CRISPR-based innovative genetic tools for control of Anopheles gambiae mosquitoes A dissertation presented by Andrea L. Smidler to The Committee on Higher Degrees in Biological Sciences in Public Health in partial fulfillment of the requirements for the degree of Doctor of Philosophy In the subject of Biological Sciences in Public Health Harvard University Cambridge, Massachusetts April 2019 i © 2019 – Andrea Smidler All rights reserved ii Dissertation Advisor: Dr. Flaminia Catteruccia, Dr. George Church Andrea Smidler CRISPR-based innovative genetic tools for control of Anopheles gambiae mosquitoes ABSTRACT Malaria and other mosquito-borne diseases pose an immense burden on mankind. Since the turn of the century, control campaigns have relied on the use of insecticide-impregnated bed nets and indoor residual sprays to stop Anopheles mosquitoes from transmitting the malaria parasite. Although these are our best strategies to control the spread of disease, wild mosquito populations are developing resistance to insecticides at an alarming rate, making disease control increasingly challenging. In the search for new powerful strategies aimed at controlling malaria-transmitting Anopheles populations, we can now exploit a suite of powerful genome engineering tools to control wild populations and monitor releases. In this dissertation we utilize CRISPR/Cas9 technology and other genetic engineering tools in Anopheles gambiae to generate genetically sterile males for population suppression, to assess the feasibility of developing evolutionarily stable gene drives for population replacement, and to expand the genetic toolkit for field releases of genetically modified mosquitoes. We develop CRISPR/Cas in A. gambiae for male genetic sterilization and for basic biological study. Using this system we generate a line of mutant mosquitoes with deletions in Zero Population Growth (ZPG), a gene critical for germ cell development. Resulting male mutants show no sperm in the testes and sterilize the females with which they mate, demonstrating that similar systems could be adapted for use in Sterile-Insect Technique (SIT)-like release campaigns. We also test whether CRISPR/Cas9 can facilitate the sustainable and stable spread of gene drives in natural mosquito populations. Specifically, we design gene drives that have the potential of being evolutionarily stable by insertion into haplolethal ribosomal genes. To facilitate this goal, we create gene drive docking lines via a novel knockin technology for insertion of complex DNA templates into genetically iii intractable loci. We identify multiple challenges associated with such systems, including the occurrence of Minute-like mutant phenotypes that present severe fitness costs when targeting haploinsufficient genes, a general decay in gRNA function over time that has consequences for all gene drives designed to date, and the critical need for precisely controlling Cas9 expression to avoid large fitness costs. Finally, we develop and validate a novel transgenic tool for monitoring GM field releases. We generate transgenic lines expressing a fusion of a fluorescent marker with a male seminal protein specifically in male reproductive tissues. Incorporation of this fluorescence fusion into the mating plug, which is transferred to the females during mating, allows the visual identification of successful mating events for a few hours after copulation. This transgenic tool enables effective monitoring of GM male mating competitiveness in field trials, overcoming current limitations. The work outlined here significantly expands the genetic toolkit for the manipulation of Anopheles mosquitoes, facilitating the implementation of genetic control strategies aimed at malaria-transmitting vector populations. iv TABLE OF CONTENTS ABSTRACT …………………………………..…………………………………………………………..………………………………………. iii TABLE OF CONTENTS ……………………………..…………………………..………………………………………………………….…. v LIST OF FIGURES AND TABLES …………..……………………………………………………………………………………….…… viii GENOTYPE NOMENCLATURE……………………………………………………………………………………………………………… x ACKNOWLEDGEMENTS ……………..………………..…………………………………………………………………………….…….. xi CHAPTER 1: Introduction …………..……………………………………………………………………………………………………… 1 1.1 The burden of malaria and its current control …………………………………………………………………. 2 1.2 A brief history of malaria and its eradication from Italy and the United States – a precedent for mosquito elimination to control malaria……………………………………………….. 4 1.3 Mosquito genetic control – An introduction …………………………………………..………………………. 6 1.4 Population suppression systems ……………….…………………………………………..……………………….. 8 1.4 A. Sterile Insect Technique for mosquito population suppression ………………..…………………..... 8 1.4 B. RIDL-based transgenic population suppression systems ………………………..………………………… 9 1.5 Population replacement systems ………………………………………………………..…………………….….. 10 1.5 A. Endonuclease gene drives – Mode of action and history of development .………….…..……. 11 1.5 B. TALEN and ZFN-mediated gene drives ………………………………………..………..…………….…………. 12 1.5 C. CRISPR-mediated gene drives …………………………………………………..………..……………………….... 13 1.5 D. Safety considerations concerning gene drive……………………………………….………………………….. 14 1.5 E. Anti-parasite cargoes for population replacement …………………………………………………..……. 15 1.6 The problem of drive-resistant alleles (DRAs) ..…………………………………………………………….. 16 1.7 Learning from other CRISPR gene drives ..……………………………………………………………………… 18 1.8 Fitness considerations for gene drives …………………………………………………………………………… 20 1.8 A. CRISPR off-target mutagenesis ..…………………………………………………………………………………… 21 1.8 B. Gene drive-imposed evolutionary selective pressures ..…………..……………………………………. 22 1.9 Designing evolutionarily stable gene drives for population replacement ..…………………….. 25 1.10 Mosquito genetic control strategies need more tools ..……………………………………………….. 26 1.11 Summary of Aims ..……………………………………………………………………………………………………… 28 1.12 References ..………………………………………………………………………………………………………………… 30 CHAPTER 2: CRISPR-mediated germline knockouts for genetic sterilization of male Anopheles gambiae ………………………………………………………..………………………………. 46 ABSTRACT …………………………………………………………………………………………………………………………… 47 INTRODUCTION ………………………………………………………………………………………………………………….. 48 RESULTS ……………………………………………………………………………………………………………………………… 49 2.1 Generation of transgenic CRISPR-expression lines …………………………………………….. 50 2.2 ZPG mutants fail to develop normal testes ……………………………………………………….. 51 v 2.3 Male ZPG mutants are highly sterile ……………………………………………………………….... 52 2.4 Characterization of fertile ZPG mutant males ……………………………………………………. 53 2.5 Female ZPG mutants display severe ovarian atrophy ………………………………………… 54 DISCUSSION ………………………………………………………………………………………………………………………… 56 FUTURE DIRECTIONS …………………………………………………………………………………………………………… 58 METHODS …………………………………………………………………………………………………………………………… 61 REFERENCES ……………………………………………………………………………………………………………………….. 65 CHAPTER 3: Advancement towards developing evolutionarily stable gene drives for Anopheles gambiae population replacement …………………………………………………………. 69 ABSTRACT …………………………………………………………………………………………………………………………… 70 INTRODUCTION ………………………………………………………………………………………………………………..... 71 RESULTS ………………………………………………………………………………………………………………………………. 72 3.1 Gene drive design ……………………………………………………………………………………………… 72 3.2 Gene drive docking site locus identification ………………………………………………………. 72 3.3 Designing two docking sites in RpL11-Rpt1 – benefits and drawbacks of each design …………………………………………………………….. 74 3.3 A. Designing dRPLT – a gene drive docking site with Rpt1 knocked-out …………..…… 76 3.3 B. Designing dRPLTu – a gene drive docking site with Rpt1 function maintained…. 77 3.4 Knockin of dRPLT docking line into RpL11-Rpt1 by HDR …………………………………….. 77 3.5 Developing transgenic Interlocus Gene Conversion (IGC) for knockin into genetically intractable loci ……………………………………………………….77 3.5 A. Generating dRPLT by CrIGCkid ………………………………………………………………………….. 79 3.5 B. Generating dRPLTu by CrIGCkid …………….…………………………………………………………. 80 3.5 C. CrIGCkid does not occur in females, and infertility phenotypes lessen over time. 84 3.6 Characterization of dRPLT and dRPLTu docking lines …………………………………………. 84 3.6 A. dRPLT is homozygous lethal, experiences proteasome dysfunction, and is likely a Rpt1 knockout ………………………………………………………………………………….. 84 3.6 B. dRPLTu homozygotes are viable but display Minute-like fertility phenotypes ..… 85 3.7 Gene drives in dRPLT and dRPLTu may be lethal ……………………………………………….. 87 3.7 A. Inserting B2GD into dRPLT or dRPLTu results in death of all transgenic individuals ……………………………………………………………………………………. 87 3.7 B. Lethality of gene drives in docking sites may be due to aberrant Cas9 overexpression ………………………………………………………………………….…… 89 3.8 Developing drive-enabling germline-Cas9 promoters independent of docking sites ……………………………………………………………………………. 92
Recommended publications
  • Malaria Journal Biomed Central
    Malaria Journal BioMed Central Review Open Access Sex separation strategies: past experience and new approaches Philippos A Papathanos1, Hervé C Bossin2, Mark Q Benedict3, Flaminia Catteruccia1, Colin A Malcolm4, Luke Alphey5,6 and Andrea Crisanti*1 Address: 1Imperial College London, Department of Biological Sciences, Imperial College Road, London SW7 2AZ, UK, 2Medical Entomology Laboratory, Institut Louis Malardé, BP 30, 98713 Papeete, Tahiti - French Polynesia, 3Entomology Unit, FAO/IAEA Agriculture and Biotechnology Laboratory, IAEA Laboratories, A-2444 Seibersdorf, Austria, 4School of Biological Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK, 5Oxitec Ltd, Milton Park, Abingdon, Oxford OX14 4RX, UK and 6Dept. of Zoology, University of Oxford, South Parks Road, Oxford OX1 2PS, UK Email: Philippos A Papathanos - [email protected]; Hervé C Bossin - [email protected]; Mark Q Benedict - [email protected]; Flaminia Catteruccia - [email protected]; Colin A Malcolm - [email protected]; Luke Alphey - [email protected]; Andrea Crisanti* - [email protected] * Corresponding author Published: 16 November 2009 <supplement>and Tropical Medicine. <title> <p>Development His scientific efforts of theto control sterile insectvector-borne technique diseases for African continually malaria focused vectors</p> on maximizing </title> <editor>Markhumanitarian o Qutcomes.</note> Benedict, Alan S </sponsor> Robinson and <note>Reviews</note> Bart GJ Knols</editor> </supplement> <sponsor> <note>This supplement is dedicated to Prof. Chris Curtis (1939-2008) of the London School of Hygiene Malaria Journal 2009, 8(Suppl 2):S5 doi:10.1186/1475-2875-8-S2-S5 This article is available from: http://www.malariajournal.com/content/8/S2/S5 © 2009 Papathanos et al; licensee BioMed Central Ltd.
    [Show full text]
  • September 29 & 30, 2020
    SALTIEL LIFE SCIENCES SYMPOSIUM BROADENING THE BIOSCIENCES: EXPLORING DIVERSE APPROACHES TO BIOLOGICAL AND BIOMEDICAL RESEARCH SEPTEMBER 29 & 30, 2020 NINETEENTH ANNUAL LSI SYMPOSIUM ZOOM WEBINAR #LSIsymposium2020 SCHEDULE TUESDAY, SEPTEMBER 29 2:00 P.M. TALK SESSION 2: SOCIAL BIOMIMICRY Welcome Roger D. Cone, Ph.D. 3:10 P.M. Vice Provost and Director, Biosciences Initiative; Towards living robots: Using biology to make better Mary Sue Coleman Director, Life Sciences Institute; machines Professor of Molecular and Integrative Physiology, Medical School; Professor of Molecular, Cellular, and Barry A. Trimmer, Ph.D. Developmental Biology, College of Literature, Science, Henry Bromfield Pearson Professor of Natural Sciences; and the Arts, University of Michigan Director, Neuromechanics and Biomimetic Devices Laboratory, School of Arts and Sciences, Tufts University Marschall S. Runge, M.D., Ph.D. Dean, Medical School, University of Michigan; Executive 4:05 P.M. Vice President, Medical Affairs, CEO, Michigan Medicine How the physics of slithering can teach multilegged robots to walk TALK SESSION 1: HUMAN ADAPTATION Shai Revzen, Ph.D. AND EVOLUTION Associate Professor of Electrical Engineering and Computer Science, College of Engineering, University of Michigan 2:10 P.M. Introduction of the Mary Sue and Kenneth Coleman Life 4:25 P.M. Sciences Lecturer What wasps can teach us about the evolution of Alan R. Saltiel, Ph.D. animal minds Professor and Director, Institute for Diabetes and Elizabeth Tibbetts, Ph.D. Metabolic Health, University of California San Diego Professor of Ecology and Evolutionary Biology, College School of Medicine; Director, Life Sciences Institute of Literature, Science, and the Arts, University of Michigan (2002–2015) 5:20 P.M.
    [Show full text]
  • Vector Control: a Cornerstone in the Malaria Elimination Campaign
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW 10.1111/j.1469-0691.2011.03664.x Vector control: a cornerstone in the malaria elimination campaign K. Karunamoorthi1,2 1) Unit of Medical Entomology & Vector Control, Department of Environmental Health Science, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia and 2) Research & Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India Abstract Over many decades, malaria elimination has been considered to be one of the most ambitious goals of the international community. Vector control is a cornerstone in malaria control, owing to the lack of reliable vaccines, the emergence of drug resistance, and unaffordable potent antimalarials. In the recent past, a few countries have achieved malaria elimination by employing existing front-line vector control interventions and active case management. However, many challenges lie ahead on the long road to meaningful accom- plishment, and the following issues must therefore be adequately addressed in malaria-prone settings in order to achieve our target of 100% worldwide malaria elimination and eventual eradication: (i) consistent administration of integrated vector management; (ii) identifi- cation of innovative user and environment-friendly alternative technologies and delivery systems; (iii) exploration and development of novel and powerful contextual community-based interventions; and (iv) improvement of the efficiency and efficacy of existing interven- tions and their combinations, such as vector control, diagnosis, treatment, vaccines, biological control of vectors, environmental man- agement, and surveillance. I strongly believe that we are moving in the right direction, along with partnership-wide support, towards the enviable milestone of malaria elimination by employing vector control as a potential tool.
    [Show full text]
  • The History and Ethics of Malaria Eradication and Control Campaigns in Tropical Africa
    Malaria Redux: The History and Ethics of Malaria Eradication and Control Campaigns in Tropical Africa Center for Historical Research Ohio State University Spring 2012 Seminars: Epidemiology in World History Prof. J.L.A. Webb, Jr. Department of History Colby College DRAFT: NOT FOR CITATION 2 During the 1950s, colonial malariologists, in conjunction with experts from the World Health Organization (WHO), set up malaria eradication pilot projects across tropical Africa. They deployed new synthetic insecticides such as DLD, HCH, and DDT, and new antimalarials, such as chloroquine and pyrimethamine, in an effort to establish protocols for eradication. These efforts ‘protected’ some fourteen million Africans. Yet by the early 1960s, the experts concluded that malaria eradication was not feasible, and the pilot projects were disbanded. The projects had achieved extremely low levels of infection for years at a time, but the experts had to accept with regret that their interventions were unable to reduce malaria transmission to zero. The projects had high recurrent costs, and it was understood that they were financially unsustainable. The pilot projects were allowed to lapse. The malaria eradication pilot projects had reduced the rates of infection to levels so low that the ‘protected’ populations lost their acquired immunities to malaria during the years of the projects. In the immediate aftermath of the projects, the Africans were subject to severe malaria, which sometimes afflicted entire communities in epidemic form, until they regained their immunities. How Should We Understand the Ethics of the Early Eradication Efforts? The ethics of malaria control in the 1950s and 1960s seemed self-evident to the interventionists.
    [Show full text]
  • Prediction of Mosquito Species and Population Age Structure Using Mid-Infrared Spectroscopy and Supervised Machine Learning
    JANUARY 2020 Contents Selected Recent Publications ...................................................................................................................................................... 1 Prediction of mosquito species and population age structure using mid-infrared spectroscopy and supervised machine learning .................................................................................................................................................................................... 1 Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. ................... 1 Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand ................................................................................................ 2 Efficacy of a spatial repellent for control of malaria in Indonesia: a cluster-randomized controlled trial ............................. 2 Cross-resistance profiles of malaria mosquito P450s associated with pyrethroid resistance against WHO insecticides ...... 2 Characterisation of Anopheles strains used for laboratory screening of new vector control ................................................ 3 Bacteria-mediated modification of insecticide toxicity in the yellow fever mosquito, Aedes aegypti ................................... 3 Open source 3D printable replacement parts for the WHO insecticide susceptibility bioassay system ...............................
    [Show full text]
  • Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: a Phase 2A Controlled Human Malaria Parasite Infection and Immunogenicity Study Jason A
    The Journal of Infectious Diseases MAJOR ARTICLE Fractional Third and Fourth Dose of RTS,S/AS01 Malaria Candidate Vaccine: A Phase 2a Controlled Human Malaria Parasite Infection and Immunogenicity Study Jason A. Regules,1,3,6 Susan B. Cicatelli,4 Jason W. Bennett,1,3,6 Kristopher M. Paolino,4 Patrick S. Twomey,2,3 James E. Moon,1,3 April K. Kathcart,1,3 Kevin D. Hauns,1,3 Jack L. Komisar,1,3 Aziz N. Qabar,1,3 Silas A. Davidson,5 Sheetij Dutta,1,3 Matthew E. Griffith,6 Charles D. Magee,6 Mariusz Wojnarski,2,3 Jeffrey R. Livezey,2,3 Adrian T. Kress,2,3 Paige E. Waterman,4 Erik Jongert,9 Ulrike Wille-Reece,7 Wayne Volkmuth,8 Daniel Emerling,8 William H. Robinson,8 Marc Lievens,9 Danielle Morelle,9 Cynthia K. Lee,7 Bebi Yassin-Rajkumar,7 Richard Weltzin,7 Joe Cohen,9 Robert M. Paris,3 Norman C. Waters,1,3 Ashley J. Birkett,9 David C. Kaslow,9 W. Ripley Ballou,9 Christian F. Ockenhouse,7 and Johan Vekemans9 1Malaria Vaccine Branch, 2Experimental Therapeutics Branch, 3Military Malaria Research Program, 4Clinical Trials Center, Translational Medicine Branch, 5Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, and 6Uniformed Services University of the Health Sciences, Bethesda, Maryland; 7PATH Malaria Vaccine Initiative, Seattle, Washington; 8Atreca, Redwood City, California; and 9GSK Vaccines, Rixensart, Belgium Background. Three full doses of RTS,S/AS01 malaria vaccine provides partial protection against controlled human malaria Downloaded from parasite infection (CHMI) and natural exposure. Immunization regimens, including a delayed fractional third dose, were assessed for potential increased protection against malaria and immunologic responses.
    [Show full text]
  • Staying the Course?
    FOR MORE INFORMATION: Staying the course? PATH Malaria Vaccine Initiative 455 Massachusetts Avenue NW MALARIA RESEARCH AND DEVELOPMENT Suite 1000 Washington, DC 20001 USA IN A TIME OF ECONOMIC UNCERTAINTY Phone: 202.822.0033 Fax: 202.457.1466 Email: [email protected] IC UNCERTAINTY IC M E OF ECONO OF E M ENT IN A TI A IN ENT M MALARIA RESEARCH AND DEVELOP AND RESEARCH MALARIA E? E? S STAYING THE THE COUR STAYING Staying the course? MALARIA RESEARCH AND DEVELOPMENT IN A TIME OF ECONOMIC UNCERTAINTY Copyright © 2011, Program for Appropriate Technology in Health (PATH). All rights reserved. The material in this document may be freely used for educational or noncommercial purposes, provided that the material is accompanied by an acknowledgment line. Photos: Anna Wang, MMV (cover, page 5, and page 43, bottom) and IVCC (page 32 and page 43, top). Illustration on page 11 by Lamont W. Harvey. Suggested citation: PATH. Staying the Course? Malaria Research and Development in a Time of Economic Uncertainty. Seattle: PATH; 2011. ISBN 978-0-9829522-0-7 ii Acknowledgements We extend our collective gratitude to the many people who gave their time and expertise during the course of this project. The staff at Policy Cures served as authors of the report, including Mary Moran, Javier Guzman, Lisette Abela-Oversteegen, Brenda Omune and Nick Chapman. The final report could not have been prepared without valuable input from the staff of the PATH Malaria Vaccine Initiative (MVI), in particular Theresa Raphael and Sally Ethelston. Information critical to the compilation of this report was obtained from the following organisations and individuals: MVI—Christian Loucq, Katya Spielberg and Ashley Birkett; Medicines for Malaria Venture—Julia Engelking, Matthew Doherty, Andrea Lucard, Jaya Banerji, Claude Oeuvray and Peter Potter-Lesage; Innovative Vector Control Consortium—Tom McLean and Robert Sloss; Foundation for Innovative New Diagnostics—Lakshmi Sundaram, Iveth Gonzalez, David Bell and Mark Perkins.
    [Show full text]
  • A Brief Historical Overview of the Antimalarials Chloroquine And
    Iowa State University Capstones, Theses and Creative Components Dissertations Spring 2021 A brief historical overview of the antimalarials chloroquine and artemisinin: An investigation into their mechanisms of action and discussion on the predicament of antimalarial drug resistance Ekaterina Ellyce San Pedro Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Chemicals and Drugs Commons Recommended Citation San Pedro, Ekaterina Ellyce, "A brief historical overview of the antimalarials chloroquine and artemisinin: An investigation into their mechanisms of action and discussion on the predicament of antimalarial drug resistance" (2021). Creative Components. 800. https://lib.dr.iastate.edu/creativecomponents/800 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. San Pedro 1 A Brief Historical Overview of the Antimalarials Chloroquine and Artemisinin: An Investigation into their Mechanisms of Action and Discussion on The Predicament of Antimalarial drug resistance By Ellyce San Pedro Abstract: Malaria is a problem that has affected humanity for millenia. As a result, two important antimalarial drugs, chloroquine and artemisinin, have been developed to combat Malaria. However, problems with antimalarial resistance have emerged. The following review discusses the history of Malaria and the synthesis of chloroquine and artemisinin. It discusses both drugs’ mechanisms of action and Plasmodium modes of resistance. It also further discusses the widespread predicament of antimalarial drug resistance, which is being combated by artemisinin-based combination therapy.
    [Show full text]
  • 20131114 D44001 Mosquito RCM1 Report
    FIRST RESEARCH CO-ORDINATION MEETING Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture Co-ordinated Research Programme on Explore mechanical, molecular, behavioural or genetic methods of sex separation in mosquitoes Scientific Secretary: Jeremie Gilles & Kostas Bourtzis IAEA Headquarters Vienna, Austria 30 September -4 October 2013 1 Contents PROPOSAL FOR A COORDINATED RESEARCH PROJECT (CRP) ................................ 3 Title .................................................................................................................................. 3 Budget Cycle..................................................................................................................... 3 Project ............................................................................................................................... 3 Division ............................................................................................................................ 3 Responsible Project Officer ............................................................................................... 3 Alternate Project Officer ................................................................................................... 3 Summary ........................................................................................................................... 3 Background Situation Analysis: ........................................................................................ 4 To explore irradiation and classical genetic approaches
    [Show full text]
  • A Comprehensive Review of Malaria with an Emphasis on Plasmodium Resistance
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Mississippi A COMPREHENSIVE REVIEW OF MALARIA WITH AN EMPHASIS ON PLASMODIUM RESISTANCE Lindsay Thomas A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the Sally McDonnell Barksdale Honors College. Oxford May 2014 Approved by: Advisor: Dr. Michael Warren Reader: Dr. Matthew Strum Reader: Dr. Donna West-Strum ii © 2014 Lindsay O’Neal Thomas ALL RIGHTS RESERVED iii ABSTRACT Malaria is a disease that is caused by the Plasmodium genus. It is endemic in tropical areas. There are multiple drugs used for prophylaxis and treatment. However, the parasites have developed resistance towards most antimalarial pharmaceuticals. The pharmaceutical industry is generating new antimalarial pharmaceuticals, but the rate of new Plasmodium resistance is much faster. iv TABLE OF CONTENTS List of Figures…………………………………………………………...v List of Abbreviations…………………………………………………....vi Introductions…………………………………………………………….1 Chapter I: Background…………………………………………………..4 Chapter II: Life cycle of Malaria ……………………………………......7 Chapter III: The Disease………………………………………………..11 Chapter IV: Blood Schizonticides……………………………………....15 Chapter V: Tissue Schizonticides……………………………………....25 Chapter VI: Hypnozoitocides…………………………………………...31 Chapter VII: Artemisinin……………………………………………….34 Chapter VIII: Future Resistance………………………………………...36 Conclusion………………………………………………………………38 Bibliography…………………………………………………………….40 v LIST OF FIGURES FIGURE 1:
    [Show full text]
  • A History of Malaria Protocols During World War II Rachel Elise Wacks
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2013 "Don't Strip Tease for Anophlese": A History of Malaria Protocols during World War II Rachel Elise Wacks Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES “DON’T STRIP TEASE FOR ANOPHLESE"¹: A HISTORY OF MALARIA PROTOCOLS DURING WORLD WAR II By RACHEL ELISE WACKS A Thesis submitted to the Department of History in partial fulfillment of the requirements for the degree of Master of Arts Degree Awarded: Spring, 2013 Rachel Elise Wacks defended this thesis on March 29, 2013. The members of the supervisory committee were: G. Kurt Piehler Professor Directing Thesis Jennifer L. Koslow Committee Member Richard Mizelle Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii Dedicated to my loving parents, who told me I could do anything I wanted to in life, as long as I didn't make a mess in the house. And for my grandfather, Benjamin Wacks, who served as a medical officer in the Sixth Combat Engineers in the Philippines during World War II. iii ACKNOWLEDGEMENTS I would like to thank Barbara and Daniel, who graciously took me into their home while I researched in Washington, D.C. In that one month, they tackled a toddler, infant, and graduate student, along with unbearable humidity and mosquitoes. Thank you for showing me how to get to the archives, introducing me to tofu, and the Takoma Park Farmers Market.
    [Show full text]
  • Immune Mechanisms in Malaria: New Insights in Vaccine Development Eleanor M Riley1 & V Ann Stewart2
    REVIEW FOCUS ON MALARIA Immune mechanisms in malaria: new insights in vaccine development Eleanor M Riley1 & V Ann Stewart2 Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination. During the 20th century, numerous highly effective vaccines with enor- exceeded 1.2 million in 2010 (refs. 2,3). The malaria burden is increased mous benefits for human and animal health were produced against further by enhanced susceptibility to other infections and lifelong health pathogens characterized by single or infrequent infection and lifelong effects of exposure to malaria before birth3. Moreover, a substantial num- immunity. Developing vaccines against pathogens that cause chronic ber of cases occur outside of Africa in densely populated countries of infections has been much more difficult.
    [Show full text]