Status Report

Total Page:16

File Type:pdf, Size:1020Kb

Status Report DAWN DISCOVERY MISSION: STATUS REPORT C. T. Russell 1, C. A. Raymond 2, T. C. Fraschetti 2, M. D. Rayman 2, J. McCarthy 3, A. C. Grandfield 3 1 IGPP & ESS, UCLA, Los Angeles, CA 90095, USA; E-mail: [email protected] 2 JPL, 4800 Oak Grove Dr., Pasad ena, CA 91109 ,USA 3Orbital Sciences Corporation, Dulles, VA 20166 , USA ABSTRACT temperature in the interior of planets is sufficiently high that they evolve thermally and differentiate over The Dawn mission is the ninth spacecraft in the the age of the sola r system. In order to understand the Discovery series, selected for study in January 2001 planet -forming process we wish to be able to resolve and approved for development in December 2001. It is the heliocentric gradient in the solar nebula. The now being readied for launch in late June 2006 to asteroid belt is the best region in which to explore this rendezvous with and orbit the two largest minor planets gradient, because shortly after the formation of the be lt, 4 Vesta and 1 Ceres. Dawn is the first purely science Jupiter condensed and began to stir the asteroids mission to use ion propulsion as an enabling gravitationally . This stirring was sufficient to stop technology and the first to orbit two planetary bodies accretion and to begin the collisional disruption of the other than E arth. This mission is well into its assembly protoplanets in the belt. The resultant, rather small test and launch operations phase. This paper gives an sizes of the asteroids kept thei r thermal evolution to a overview of the science objectives and payload, reports minimum. The largest of these bodies, especially 1 on the status of the mission, and provides pointers to Ceres and 4 Vesta, survived the collisions and seem the literature describing the Dawn mission in greater not to have moved greatly from their point of detail. formation. Dawn’s objective is to place constraints on the nature of the ea rly solar nebulae by learning as 1. INTRODUCTION much as we can about the two very different bodies. Planetary systems arise in cold clouds of dust and gas, Vesta, the closer to the Sun, lies at 2.34 Astronomical called nebulae. The dust forms from minerals that Units (AU). Telescopic observations show it to be precipitate as the gas cools. The dust then accretes into roughly a triaxial ellipsoid of dimensions 289 x 280 x ever larger bodies, or planetary embryos, eventuall y 229 km, with a large southern crater. Its surface has forming protoplanets, and then planets. Hot stars may the reflectance spectrum of basalt. This spectrum is also form in the nebula through gravitational very similar to the reflected spectrum of light from the instabilities, shine brightly, dissipate the gas, and leave Howardite -Eucrite -Diogenite class of meteorite only the orbiting bodies. The history of this process is (HEDs). Most asteroid researchers believe that the largely hidden from view by the d istance of these HED meteorites derive from the disruption of larger planet -forming regions, and in the case of our own bodies or v estoids, ejected from Vesta during the solar system, the thermal and dynamical evolution of southern cratering event. Some of this material now the system. resides near orbital resonances with Jupiter at which point they can be perturbed onto impact traj ectories The solar system consists of several distinct classes of with Earth, producing 5% of observed meteorite falls. bodies: the terrestrial planets that are largely silicate These HED meteorites, in turn, allow us to paint a mantle s surrounding iron cores; the gas giants that are picture of Vesta that is very consistent with the hydrogen -helium balls around rocky cores, some with inferences from the reflectance spectra. Vesta is a dry, thick water mantles between these two layers. There rocky body with an iron core. It has extensively are several belts of smaller bodies, the main asteroid melted, recrystallized, and formed a differentiated body belt between Mars and Jupiter, the Kuiper b elt beyond [1]. Neptune, closely related to Pluto, and the Oort cloud beyond that. It is difficult to learn much about the Ceres, the larger body, lies at 2.77 AU. Recent Hubble early solar nebula from the present -day planets. The observations show that Ceres is rotationally symmetric planets are well separated. The composition of each and oblate with dimensions 487 x 487 x 455 km [2]. planet is expected to be an av erage over the material The shape is not consistent with a homogeneous originally in a broad region of the solar nebula in the density but rather with a two -layer structure, a rocky approximate neighborhood of the planet. The core covered with a 100 -km ice mantle. Because ice is Fig. 1 Two assembled framing cameras, covered by thermal blankets, after successfully completing Fig. 2 The visible and infrared spectrometer (VIR) environmen tal testing mounted to the vibration test table with GSE fixturing not visible on the surface it must be covered by a thick Rosetta mission. The detector and readout electronics layer of dust. This surface is dark but has discernible are copies of the units implemented in the downward - features. Some of these features are circular but at this looking imager (ROLIS) from Rosetta. The camera is time we cannot be certain as to the source of these provided by the Max -Planck -Institut fur features [3]. Th ese observations are consistent with the Sonnensystemforschung (MPS) in Lindau Germany earlier modeling predictions [4]. under the leadership of H. Uwe Keller with assist ance from the Institut fur Plane tenforsch ung of the Improvement in our understanding of Vesta and Ceres Deutsches Zentrum fur Luft -und Raumfahrt (DLR) in has paralleled the development of the flight system. Berlin. The DPU is fabricated by the Institut fur This evolution has proceeded not just through the Datentechnik und Kommunikationsnetze of the efforts of the Dawn sci ence team, but as a concerted Technische Universitat Braunschweig. The two effort of the members of the science community, both redundant framing cameras have been delivered to the inside and outside the Dawn family. It occurs both in spacecraft. collaborations with Dawn team members and in independent studies. The existence of a mission to The mapping spectrometer, illustrated in Figure 2, targets such as Ve sta and Ceres does much to focus combines two data channels in one compact instrument attention, and provide direction to the efforts of the with a visible channel from 0.25 to 1.0 microns and an scientific community [5]. infrared channel from 1 to 5 microns. The instantaneous field of view is 500 m/pix el at 200 km 2. SCIENTIFIC PAYLOAD with a full field of view of 64 mrad. The spectrometer is a modification of the Rosetta mapping spectrometer The spacecraft carries three scientific instruments: a (VIRTIS) that in turn derives much heritage from the framing camera, a visible and infrared spectrometer, Cassini VIMS spectrometer. The spectrometer is and a gamma ray and neutron spectrometer. In provided to Dawn by the Agenzia Spaziale Italiana addition gravity measurements will be obtained (ASI) under the direction of Angioletta Coradini of the through analysis of the radio transmissions and other Instituto Nazionale Di Astrofisica (INAF). The navigational measurements. The camera, illustrated in spectrometer was designed, built and tested at Galileo Figure 1, has two identical (and redundant) units and Avionica. At this writing the main electronics has been obtai ns images on a frame transfer CCD with 1024 x delivered to Orbital a nd returned to Galileo Avionica 1024 sensitive pixels. The camera samples the surface for refurbishment. It is expected to be returned to of the bodies with a resolution of 18.6 m/pixel a Orbital and installed by the end of the ICLCPM distance of 200 km. The camera serves to provide conference. optical navigation data as well as scientific data. Th e camera includes a filter wheel with one clear filter and The gamma ray and neutron spectrometer (GRaND), 7 spectral filters. The heritage of the camera is based illustrated in Figure 3, maps the abundance of rock on several previous missions, including a data forming el ements (O, Si, Fe, Ti, Mg, Al, and Ca) as processing unit from the Venus Monitoring Camera on well as radioactive elements (K, U, Th) and elements the Venus Express Mission, with an oper ating system such as H, C and N that are major constituents of ices. developed for the science imager (OSIRIS) from the The instrument draws on decades of experience in 2 The solar array is 19.7 m tip -to -tip and prov ides approximately 10 kW of power at 1 AU. During launch the two five -paneled solar array wings are folded against the sides of the spacecraft, and are deployed after successful injection into the launch trajectory. The solar array is Dawn’s only deploy able appendage. Figure 5 shows one wing of Dawn’s solar array, deployed at the manufacturer’s facility. Other mechanical systems include gimbals for the thrusters and covers for the optical instruments. The core of the spacecraft is a central thrust tu be inside of which are the two fuel tanks, one for hydrazine used by the reaction control system and one for the ion propulsion system’s xenon. The external panels are Fig. 3 The gamma ray neutron spectrometer prior t o mounted to the thrust tube forming the bus structure. thermal blanket installation The thrust tube also supports the solar array that rotates around its longitudinal axis so that the solar panels can measuring neutrons and energetic photons.
Recommended publications
  • EJSM Origins White Document Recommendations by the Origins Working Group for EJSM Mission – JGO and JEO Spacecrafts
    EJSM ORIGINS WORKING GROUP EJSM Origins White Document Recommendations by the Origins Working Group for EJSM Mission – JGO and JEO spacecrafts A. Coradini, D. Gautier, T. Guillot, G. Schubert, B. Moore, D. Turrini and H. J. Waite Document Type: Scientific Report Status: Final Version Revision: 4 Issued on: 1 April 2010 Edited by: Angioletta Coradini and Diego Turrini EJSM Origins White Document EJSM Origins White Document A. Coradini, D. Gautier, T. Guillot, B. Moore, G. Schubert, D. Turrini and H. Waite In the ESA Cosmic Vision 2015-2025 program the investigation of the conditions for planetary formation and that of the evolution of the Solar System were among the leading themes. These two themes, in fact, are strictly interlinked, since a clear vision of the origins of the Solar System cannot be achieved if we cannot discern those features which are due to the secular evolution from those which are primordial legacies of the formation time. In the context of the EJSM/Laplace proposal for a mission to Jupiter and the Jovian system, the Origins working group tried to identify the measurements to be performed in the Jovian system that could hold clues to unveil the formation histories of Jupiter and the Solar System. As we anticipated, part of the aspects to be investigated is entwined with the study of the evolution of the Solar and Jovian systems. The identified measures and their scientific domains can be divided into three categories, which will be described in the next sessions. Jupiter and the origins of giant planets As concerns the origin of Jupiter, the main interest of the EJSM mission lies in the investigation of Jupiter's composition and internal structure.
    [Show full text]
  • The JIRAM (Jovian Infrared Auroral Mapper) Experiment
    Lunar and Planetary Science XXXVII (2006) 1564.pdf The JIRAM (Jovian InfraRed Auroral Mapper) Experiment. A. Coradini1 , A. Adriani1, G. Filacchione2, J.Lunine1,3, G. Magni2 , M. Cosi4 and L. Tommasi4, 1 INAF-IFSI, Via Fosso del Cavaliere, 100, Rome, Italy, [email protected], 2INAF-IASF, Via Fosso del Cavaliere, 100, 00133, Rome, Italy, 3Lunar and Pla- netary Lab, University of Arizona, Tucson, AZ, USA, 4 Selex-Galileo Avionica, Via Albert Einstein 35, 50013 Campi Bisenzio (FI), Italy. + Introduction: The atmosphere of Jupiter requires aurora, the H3 is optimal for study. This molecule is multiple techniques at a variety of wavelengths. The formed at the base of the exosphere through the reac- + + present Juno payload is well-suited to a study of the tion H2 + H2 → H3 + H. The main roto-vibrational magnetic field and interior structure of Jupiter, as well band is around 4 µm and it is composed of more than as its plasma environment, but it will be strongly im- 200 possible transitions in the range 3.0 to 4.5 µm [1]. + proved by adding the capability to (a) image and make The H3 auroral spectrum was observed by Cassini spectra with high contrast of the Jovian aurora and (b) VIMS from a large distance in 2000, at much lower explore the region between roughly 1-10 bars where spatial resolution and signal-to-noise than that poten- water—Jupiter’s principal condensable because of the tially available from JIRAM. Figure 1 shows the capa- relatively high interior abundance of oxygen and ap- bility of imaging spectrometers to obtain excellent data propriate conditions in the 1-10 bar region—forms on emission features from which time-variability and clouds and aids energy transport by moist convection.
    [Show full text]
  • Imaging Asteroid 4 Vesta Using the Framing Camera
    Submission Completed Page 1 of 4 Your abstract submission has been received Click here to print this page now. You have submitted the following abstract to 2011 GSA Annual Meeting in Minneapolis (9–12 October 2011). Receipt of this notice does not guarantee that your submission was complete, free of errors, or accepted for presentation. IMAGING ASTEROID 4 VESTA USING THE FRAMING CAMERA KELLER, H. Uwe1, NATHUES, Andreas2, CORADINI, Angioletta3, JAUMANN, Ralf4, JORDA, Laurent5, LI, Jian-Yang6, MITTLEFEHLDT, David W.7, MOTTOLA, Stefano8, RAYMOND, C.A.9, and SCHRÖDER, Stefan E.2, (1) University Braunschweig, IGEP, Mendelssohnstrasse 3, Braunschweig, 38106, Germany, [email protected], (2) Max-Planck-Institut für Sonnensystemforschung, Max- Planck-Str. 3, Katlenburg-Lindau, 37191, Germany, (3) Istituto di Astrofisica Spaziale e Fisica Cosmica, Area Ricerca - Roma 2 Tor Vergata, Via Fosso del Cavaliere, 100, Rome, 00133, Italy, (4) German Aerospace Center (DLR) Berlin, Institute of Planetary Research, Rutherfordstrasse 2, Berlin, D-12489, Germany, (5) Laboratoire d'Astrophysique de Marseille, 38 rue Frederic Joliot-Curie, Marseille, F-13013 f, France, (6) Department of Astronomy, University of Maryland at College Park, College Park, MD 20742-242, (7) NASA, Johnson Space Center, mail code KR, 2101 NASA Parkway, Houston, TX 77058, (8) Dlr, Institute of Planetary Exploration, Rutherfordstr. 2, Berlin, 12489, Germany, (9) Jet Propulsion Laboratory, Pasadena, CA 91109 The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters.
    [Show full text]
  • INFORMATION BULLETIN JUNE 2004 95 INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE IAU Executive Committee
    INFORMATION BULLETIN JUNE 2004 INTERNATIONAL ASTRONOMICAL UNION UNION ASTRONOMIQUE INTERNATIONALE 95 IAU Executive Committee PRESIDENT VICE-PRESIDENTS Robert E. Williams Ronald D. Ekers Beatriz Barbuy STScI CSIRO / ATNF IAG 3700 San Martin Dr PO Box 76 University of São Paulo US - Baltimore MD 21218 AU - Epping NSW 1710 Rua do Matao 1226 USA Australia Cidade Universitaria Tel: +1 410 338 4963 Tel: +61 2 9372 4600 (Butantan) Fax: +1 410 338 2617 Fax: +61 2 9372 4450 BR - São Paulo SP 05508 900 [email protected] [email protected] Brazil Tel: +55 11 3091 2810 ADVISERS PRESIDENT-ELECT Fax: +55 11 3091 2860 Franco Pacini [email protected] Catherine Cesarsky (Outgoing President) Director General Cheng Fang Dpt di Astronomia ESO Astronomy Dept Università Degli Studi Karl Schwarzschildstr 2 Nanjing University Largo E. Fermi 5 DE - 85748 Garching Hankou Rd 22 IT - 50125 Firenze Germany CN - Nanjing 210093 Italy Tel: +49 893 200 6227 China PR Tel: +39 055 275 21/2232 Fax: +49 893 202 362 Tel: +86 258 359 6817 Fax: +39 055 220 039 [email protected] Fax: +86 258 359 6817 [email protected] [email protected] Hans Rickman GENERAL SECRETARY Kenneth A. Pounds (Outgoing General Oddbjørn Engvold Dept Physics & Astronomy Secretary) IAU University of Leicester Uppsala University 98 bis, bd Arago University Rd Astronomical Observatory FR - 75014 Paris GB - Leicester LE1 7RH Box 515 France United Kingdom SE - 751 20 Uppsala Tel: +33 1 43 25 83 58 Tel: +44 116 252 3509 Sweden Fax: +33 1 43 25 26 16 Fax: +44 116 252 3311 Tel: +46 184 715 971 [email protected] [email protected] Fax: +46 184 715 999 [email protected] Home Institute Silvia Torres-Peimbert Inst.Theoretical Astrophysics Instituto de Astronomía Box 1029 UNAM Blindern Apt Postal 70 264 NO - 0315 Oslo MX - Mexico DF 04510 Norway Mexico Tel: +47 22 856 521 Tel: +52 55 5622 3925/3906 Fax: +47 22 856 505 Fax: +52 55 5616 0653 [email protected] [email protected] ASSISTANT GENERAL Brian Warner SECRETARY Astronomy Dept Karel A.
    [Show full text]
  • Vesta and Ceres: Crossing the History of the Solar System
    VESTA AND CERES: CROSSING THE HISTORY OF THE SOLAR SYSTEM Coradini A. 1*, Turrini D. 1, Federico C. 2, Magni G. 3 1Institute for Physics of Interplanetary Space, INAF, Rome, Italy 2Department of Earth Sciences, University of Perugia, Perugia, Italy 3Institute for Space Astrophysics and Cosmic Physics, INAF, Rome, Italy *Corresponding author: [email protected] Abstract The evolution of the Solar System can be schematically divided into three different phases: the Solar Nebula, the Primordial Solar System and the Modern Solar System. These three periods were characterized by very different conditions, both from the point of view of the physical conditions and from that of the processes there were acting through them. Across the Solar Nebula phase, planetesimals and planetary embryos were forming and differentiating due to the decay of short-lived radionuclides. At the same time, giant planets formed their cores and accreted the nebular gas to reach their present masses. After the gas dispersal, the Primordial Solar System began its evolution. In the inner Solar System, planetary embryos formed the terrestrial planets and, in combination with the gravitational perturbations of the giant planets, depleted the residual population of planetesimals. In the outer Solar System, giant planets underwent a violent, chaotic phase of orbital rearrangement which caused the Late Heavy Bombardment. Then the rapid and fierce evolution of the young Solar System left place to the more regular secular evolution of the Modern Solar System. Vesta, through its connection with HED meteorites, and plausibly Ceres too were between the first bodies to form in the history of the Solar System.
    [Show full text]
  • Structure and Evolution of Kuiper Belt Objects and Dwarf Planets
    McKinnon et al.: Kuiper Belt Objects and Dwarf Planets 213 Structure and Evolution of Kuiper Belt Objects and Dwarf Planets William B. McKinnon Washington University in St. Louis Dina Prialnik Tel Aviv University S. Alan Stern NASA Headquarters Angioletta Coradini INAF, Istituto di Fisica dello Spazio Interplanetario Kuiper belt objects (KBOs) accreted from a mélange of volatile ices, carbonaceous matter, and rock of mixed interstellar and solar nebular provenance. The transneptunian region, where this accretion took place, was likely more radially compact than today. This and the influence of gas drag during the solar nebula epoch argue for more rapid KBO accretion than usually considered. Early evolution of KBOs was largely the result of heating due to radioactive de- cay, the most important potential source being 26Al, whereas long-term evolution of large bod- ies is controlled by the decay of U, Th, and 40K. Several studies are reviewed dealing with the evolution of KBO models, calculated by means of one-dimensional numerical codes that solve the heat and mass balance equations. It is shown that, depending on parameters (principally rock content and porous conductivity), KBO interiors may have reached relatively high tempera- tures. The models suggest that KBOs likely lost ices of very volatile species during early evo- lution, whereas ices of less-volatile species should be retained in cold, less-altered subsurface layers. Initially amorphous ice may have crystallized in KBO interiors, releasing volatiles trapped in the amorphous ice, and some objects may have lost part of these volatiles as well. Gener- ally, the outer layers are far less affected by internal evolution than the inner part, which in the absence of other effects (such as collisions) predicts a stratified composition and altered po- rosity distribution.
    [Show full text]
  • 20170930 NSSC.Xlsx
    Active International Space Act Agreements by Signature Date (as of September 30, 2017) Execution NASA (Signature) Expiration No. Installation(s) Partner Name Country Title/Purpose Type of Agreement Activity Description Date Date Goddard Space Japan Aerospace Japan (JA) Geotail Scientific Satellite Program Project-Specific MOU implementing exchange of diplomatic notes 12/19/1989 12/31/2018 Flight Center Exploration Agency Agreement (PSA) agreement JA-0134 of 09/25/1989 for the development, (GSFC) (JAXA) launch, and operation of a scientific satellite, designated the Geotail Satellite, to investigate the geomagnetic tail regions of the magnetosphere JA-0134 deleted - dip notes included here. 1 Goddard Space National Centre for France (FR) WIND Mission OPEN Project-Specific Participation by three CNES scientists as Co- 10/15/1990 12/31/2018 Flight Center Space Studies (CNES) Geomagnetic Tail Agreement (PSA) Investigators in the investigation "An Experiment to (GSFC) Measure 3-D Plasma and Energetic Particle Distribution in the OPEN Geomagnetic Tail and the Interplanetary Physics Laboratories" during the development, mission operations, and data analysis phases of the Wind mission of the Global Geospace Science (GGS) element of the International Solar-Terrestrial Physics 2 Program (ISTP) Goddard Space German Aerospace Germany (GM) Solar Wind and Suprathermal Ion Project-Specific Participation by three MPI scientists as Co-Investigators 10/18/1990 12/31/2018 Flight Center Center (DLR) Composition Studies Agreement (PSA) on the Solar Wind and Suprathermal Ion Composition (GSFC) (WIND)/WIND mission Studies investigation of the Global Geospace Science (GGS) element of the International Solar Terrestrial Physics Program (ISTP) Max Planck Institut (MPI), GM 3 Goddard Space German Aerospace Germany (GM) WIND Mission/Experiment to Project-Specific Participation by G.
    [Show full text]
  • VIR COPUOS VIENNA 5Feb20
    VISUAL INFRARED SPECTROMETERS THE ITALIAN SEARCH FOR THE ORIGIN OF THE SOLAR SYSTEM ItalianAgency Space Rosetta 2014-2016 Mario Salatti Unit «Exploration and Observation of the Universe» Agenzia Spaziale Italiana (ASI) 52nd STSC , UN-COPUOS , Vienna, February 5th 2015 VIS-NIR Spectrometers VIMS-V Cassini VIRTIS-M Rosetta VIRTIS-M Venus Express Visual and Infrared Visible and InfraredThermal Mapping Spectrometer (VIS Channel) Imaging Spectrometer (Mapping channel) ItalianAgency Space Spectral range: 300-1050 nm (96 bands) Spectral range VIS 250-1050 nm, IR 1000-5000 nm (432 bands each) 1997 2004 2005 2007 2011 2013 VIR-MS Dawn JIRAM Juno SIMBIO-SYS/VIHI Visible and Infrared JIRAM Jovian InfraRed BepiColombo Mapping Spectrometer Auroral Mapper Visible Infrared Hyperspectral Imager 5 February 2015 52nd STSC, 52ndSTSC, Standalone realization of VIRTIS-M Spectral range: : 2000-5000 nm (432 bands) Spectral range 400-2200 nm (256 bands) 2 without -H channel Unveil the secrets? Comets and Asteroids are minor bodies of the Solar System, unchanged by geological processes, thus retaining the memory of the building blocks making up the proto-Solar disk 4.6 Byrs ago ItalianAgency Space Comets have abundant chemical compounds that vaporize when heated, e.g. water, and more elliptical orbits; they originate from the Oort Cloud or the Kluiper Belt Asteroids are essentially rocky, the majority of them lie in the Asteroid Belt betwen Mars and Jupiter 5 February 2015 Both were responsible for taking water to Earth later on 52nd STSC, 52ndSTSC, …and maybe
    [Show full text]
  • Preliminary Results on the Composition of Jupiter's Troposphere in Hot Spot
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Preliminary results on the composition of Jupiter’s 10.1002/2017GL072841 troposphere in hot spot regions from Special Section: the JIRAM/Juno instrument Early Results: Juno at Jupiter D. Grassi1 , A. Adriani1 , A. Mura1 , B. M. Dinelli1,2 , G. Sindoni1 , D. Turrini1,3 , G. Filacchione1 , A. Migliorini1 , M. L. Moriconi1,4 , F. Tosi1 , R. Noschese1, A. Cicchetti1 , Key Points: 1 2,5 1 1 6 7 8 • Hot spots are confirmed as very dry F. Altieri , F. Fabiano , G. Piccioni , S. Stefani , S. Atreya , J. Lunine , G. Orton , regions in the atmosphere of Jupiter A. Ingersoll9 , S. Bolton10 , S. Levin8 , J. Connerney11 , A. Olivieri12, and M. Amoroso12 • Consistent spatial patterns are found in the distributions of water and 1Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy, 2Istituto di Scienze dell’Atmosfera e del Clima, CNR, Bologna, phosphine Italy, 3Departamento de Fisica, Universidad de Atacama, Copiapò, Chile, 4Istituto di Scienze dell’Atmosfera e del Clima, CNR, • Ammonia shows local enhancements 5 6 in the southern parts of hot spots Rome, Italy, Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy, Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA, 7Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York, USA, 8Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Supporting Information: California, USA, 9California Institute of Technology, Pasadena, California, USA, 10Southwest Research Institute, San Antonio, • Text S1 Texas, USA, 11NASA Goddard Space Flight Center, Greenbelt, Maryland, USA, 12Agenzia Spaziale Italiana, Matera, Italy Correspondence to: D. Grassi, [email protected] Abstract The Jupiter InfraRed Auroral Mapper (JIRAM) instrument on board the Juno spacecraft performed observations of two bright Jupiter hot spots around the time of the first Juno pericenter passage on 27 August 2016.
    [Show full text]
  • Gravity: Where Do We Stand?
    Gravity: Where Do We Stand? The logo of the SIGRAV School “Gravity: Where Do We Stand?” has been composed from a number of pictures from internet and the Group of Experimental Gravitation at IAPS-INAF. It is meant to symbolize various facets in gravitational physics research. Roberto Peron thanks Andrea Reale for his help in putting together the material. Roberto Peron • Monica Colpi • Vittorio Gorini Ugo Moschella Editors Gravity: Where Do We Stand? Editors Roberto Peron Vittorio Gorini Istituto di Astrofisica e Planetologia Spaziali Dipartimento di Scienza e Alta Tecnologia Istituto Nazionale di Astrofisica Università degli Studi dell’Insubria Roma Como Italy Italy Monica Colpi Ugo Moschella Dipartimento di Fisica G. Occhialini Dipartimento di Scienza e Alta Tecnologia Università degli Studi di Milano-Bicocca Università degli Studi dell’Insubria Milano Como Italy Italy ISBN 978-3-319-20223-5 ISBN 978-3-319-20224-2 (eBook) DOI 10.1007/978-3-319-20224-2 Library of Congress Control Number: 2015949236 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • ESSC-ESF Position Paper—Science-Driven Scenario For
    ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2007.1226 News & Views ESSC-ESF Position Paper Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC) Jean-Claude Worms,1 Helmut Lammer,2 Antonella Barucci,3 Reta Beebe,4 Jean-Pierre Bibring,5 Jacques Blamont,6 Michel Blanc,7 Roger Bonnet,8 John R. Brucato,9 Eric Chassefière,10 Angioletta Coradini,11 Ian Crawford,12 Pascale Ehrenfreund,13 Heino Falcke,14 Rupert Gerzer,15 Monica Grady,16 Manuel Grande,17 Gerhard Haerendel,18 Gerda Horneck,15 Bernhard Koch,15 Andreï Lobanov,19 José J. Lopez-Moreno,20 Roberto Marco,21 Peter Norsk,22 Dave Rothery,16 Jean-Pierre Swings,1,25 Cam Tropea,23 Stephan Ulamec,15 Frances Westall,24 and John Zarnecki16 Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation’s (ESF) European Space Sciences Committee (ESSC) to exam- ine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stake- holders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Min- isterial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA’s budget that was taking place at that time; e.g., the postponement sine 1ESSC-ESF, Strasbourg, France.
    [Show full text]
  • Draft for Programmatic Review
    Two rovers to the same site on Mars, 2018: Possibilities for Cooperative Science1 Prepared by the MEPAG 2-Rover International Science Analysis Group (2R-iSAG): John Grant (Smithsonian Institution; co-chair), Frances Westall (CNRS, Orléans; co-chair), Dave Beaty (Mars Program Office, JPL/Caltech), Sherry Cady (Portland State University), Mike Carr (U.S. Geological Survey, retired), Valérie Ciarletti (LATMOS-IPSl, Velizy), Angioletta Coradini (INAF, Rome), Anders Elfving (ESA), Danny Glavin (Goddard Space Flight Center), Fred Goesmann (MPI for Solar Sys. Res., Lindau), Joel Hurowitz (JPL/Caltech), Gian Gabriele Ori (IRSPS, Pescara), Roger Phillips (Southwest Research Institute), Chris Salvo (Mars Program Office, JPL/Caltech), Mark Sephton (Imperial College, London), Marguerite Syvertson (JPL/Caltech), Jorge Vago (ESA) July 10, 2010 Recommended bibliographic citation: MEPAG 2R-iSAG (2010). Two rovers to the same site on Mars, 2018: Possibilities for Cooperative Science, 46 pp., posted July 21, 2010, by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports/ Or: Grant, J., Westall, F., and the MEPAG 2R-iSAG team (2010). Two rovers to the same site on Mars, 2018: Possibilities for Cooperative Science, 46 pp., posted July 21, 2010, by the Mars Exploration Program Analysis Group (MEPAG) at http://mepag.jpl.nasa.gov/reports/ Inquiries regarding this report should be directed to John Grant ([email protected]), Frances Westall (westall@cnrs- orleans.fr), David Beaty ([email protected]), or Jorge Vago ([email protected]).
    [Show full text]