Juno Launch Press

Total Page:16

File Type:pdf, Size:1020Kb

Juno Launch Press PRESS KIT/AUGUST 2011 Juno Launch Media Contacts Dwayne Brown Policy/Program 202-358-1726 NASA Headquarters Management [email protected] Washington DC Agle Juno Mission 818-393-9011 Jet Propulsion [email protected] Laboratory Pasadena, Calif. Maria Martinez Science Investigation 210-522-3305 Southwest Research Institute [email protected] San Antonio Gary Napier Spacecraft 303-971-4012 Lockheed Martin Space Systems [email protected] Denver Juno Launch 2 Press Kit Contents Media Services Information. 5 Quick Facts .................................................................6 Jupiter at a Glance ............................................................7 Why Juno? . 8 Mission Overview . 9 Mission Phases . 10 Spacecraft . .15 Science Overview ............................................................21 Missions to Jupiter ...........................................................23 Program/Project Management ..................................................24 Juno Launch 3 Press Kit Media Services Information NASA Television Transmission Launch Status The NASA TV Media Channel is available on an MPEG-2 Recorded status reports will be available beginning two digital C-band signal accessed via satellite AMC-6, at 72 days before launch at 321-867-2525 and 301-286- degrees west longitude, transponder 17C, 4040 MHz, NEWS. vertical polarization. In Alaska and Hawaii, it’s available on AMC-7 at 137 degrees west longitude, transpon- Internet Information der 18C, at 4060 MHz, horizontal polarization. A Digital Video Broadcast compliant Integrated Receiver Decoder More information on the Juno mission, including an is required for reception. For digital downlink information electronic copy of this press kit, news releases, status for NASA TV’s Media Channel, access to NASA TV’s reports and images, can be found at http://missionjuno. Public Channel on the Web and a schedule of program- swri.edu/ and http://www.nasa.gov/juno/ . ming for Juno activities, visit http://www.nasa.gov/ntv . Media Credentialing News media representatives who wish to cover the Juno launch must contact NASA Kennedy Space Center Public Affairs in advance at: 321-867-2468. Briefings A pre-launch news conference will be held at the Kennedy Space Center Press Site at 1 p.m. EDT on Aug. 3, 2011. The news conference will be televised on NASA TV. Juno Launch 5 Press Kit Quick Facts Mission Name Juno Mission Milestones and Distances Traveled The Juno spacecraft will, for the first time, see below Launch period: Aug. 5–26, 2011 (22 days) Jupiter’s dense cover of clouds. This is why the mis- sion was named after the Roman goddess, who was Launch location: Pad SLC-41, Cape Canaveral Air Force Jupiter’s wife, and who could also see through clouds. Station, Fla. Earth–Jupiter distance at time of launch: 445 million Spacecraft miles (716 million kilometers) Dimensions: 11.5 feet (3.5 meters) high, 11.5 feet Time it takes light to travel from Earth to Jupiter on (3.5 meters) in diameter. Aug. 5, 2011: 39 minutes, 50 seconds Solar Arrays: length of each solar array 29.5 feet (9 me- Earth gravity assist flyby: October 9, 2013 ters) by 8.7 feet (2.65 meters). Total surface area of Distance Juno travels launch to Earth gravity assist: solar arrays: more than 650-feet (60-meters) squared. 994 million miles (1,600 million kilometers) Total number of individual solar cells: 18,698. Total power output (Earth distance from sun): approximately Juno’s altitude over Earth’s surface at closest point dur- 14 kilowatts; (Jupiter distance from sun): approximately ing gravity assist: 311 miles (500 kilometers) 400 watts. Jupiter arrival: July 4, 2016, 7:29 p.m. (PDT) Weight: 7,992 pounds (3,625 kilograms) total at launch, Distance of Jupiter to Earth at time of Jupiter orbit inser- consisting of 3,513 pounds (1,593 kilograms) of space- tion: 540 million miles (869 million kilometers) craft, 2,821 pounds (1,280 kilograms) of fuel and 1,658 pounds (752 kilograms) of oxidizer. One-way speed-of-light time from Jupiter to Earth in July 2016: 48 minutes, 19 seconds Launch Vehicle Total distance traveled, launch to Jupiter orbit insertion: Type: Atlas V551 (Atlas first stage with five solid rocket 1,740 million miles (2,800 million kilometers) boosters, Centaur upper stage) End of mission (deorbit): October 16, 2017 Height with payload: 197 feet (60 meters) Distance traveled in orbit around Jupiter: 348 million miles (560 million kilometers) Mass fully fueled: 1,265,255 pounds (574,072 kilo- grams) Total distance, launch through Jupiter impact: 2,106 mil- lion miles (3,390 million kilometers) Program The Juno mission investment is approximately $1.1 bil- lion in total. This cost includes spacecraft develop- ment, science instruments, launch services, mission operations, science processing and relay support for 74 months. Juno Launch 6 Press Kit Jupiter at a Glance If you take everything else in the solar system (not including the sun), it would all fit inside Jupiter… The largest and most massive of the planets was tapers into a windsock-shaped tail extending more than named after the king of the gods, called Zeus by the 600 million miles (1 billion kilometers) behind Jupiter, as Greeks and Jupiter by the Romans; he was the most far as Saturn’s orbit. important deity in both pantheons. On Jan. 7, 1610, using his primitive telescope, astrono- As the most massive inhabitant of our solar system, mer Galileo Galilei saw four small “stars” near Jupiter. and with four large moons of its own and many smaller He had discovered Jupiter’s four largest moons, now moons, Jupiter forms its own kind of miniature solar called Io, Europa, Ganymede and Callisto. These four system. In fact, Jupiter resembles a star in composi- moons are known today as the Galilean satellites. Not tion, and if it had been about 80 times more massive, it including the “temporary” moons, Jupiter has 64 con- would have become a star rather than a planet. firmed moons. (Temporary moons are comets that have been temporarily captured by Jupiter’s massive gravity Jupiter’s appearance is a tapestry of beautiful colors field. These temporary satellites may circle Jupiter for and atmospheric features. Most visible clouds are years before continuing on their way through the solar composed of ammonia. Water clouds exist deep below system or burn up as they enter its atmosphere.) Jupiter and can sometimes be seen through clear spots in the has three thin rings around its equator, which are much clouds. The planet’s “stripes” are created by strong fainter than the rings of Saturn. Jupiter’s rings appear to east-west winds in Jupiter’s upper atmosphere. Within consist mostly of fine dust particles and may be formed these belts and zones are storm systems that can rage by dust kicked up as interplanetary meteoroids smash for years. The Great Red Spot, a giant spinning storm, into the giant planet’s four small inner moons. They were has been observed for more than 300 years. In recent discovered in 1979 by NASA’s Voyager 1 spacecraft. years, three storms merged to form the Little Red Spot, about half the size of the Great Red Spot. The composition of Jupiter is similar to that of the sun — Significant Dates in Jovian History mostly hydrogen and helium. Deep in the atmosphere, the pressure and temperature increase, compressing • 1610: Galileo Galilei makes the first detailed the hydrogen gas into a liquid. At depths of about a third observations of Jupiter. of the way down, the hydrogen becomes a liquid that • 1973: NASA’s Pioneer 10 becomes the first conducts electricity like a metal. It is in this metallic layer spacecraft to cross the asteroid belt and fly that scientists think Jupiter’s powerful magnetic field is past Jupiter. generated by electrical currents driven by Jupiter’s fast • 1979: NASA’s Voyager 1 and 2 discover rotation. At the center, the immense pressure may sup- Jupiter’s faint rings, several new moons and port a core of heavy elements much larger than Earth. volcanic activity on Io’s surface. Jupiter’s enormous magnetic field is nearly 20,000 • 1994: Astronomers and NASA’s Galileo space- times as powerful as Earth’s. Trapped within Jupiter’s craft observe as pieces of comet Shoemaker- magnetosphere (the vast area of space that the planet’s Levy 9 collide with Jupiter’s southern hemi- magnetic field dominates) are swarms of charged par- sphere. ticles. The magnetic field traps some of these electrons • 1995: The Galileo spacecraft and probe arrive and ions in an intense radiation belt that bathes Jupiter’s at Jupiter to explore Jupiter’s atmosphere rings and moons. The Jovian magnetosphere, compris- directly for the first time and to conduct an ing these particles and fields, balloons 600,000 to 2 mil- extended study of the giant planet system. lion miles (1 to 3 million kilometers) toward the sun and Juno Launch 7 Press Kit Why Juno? Jupiter is by far the largest planet in the solar system. Juno’s primary goal is to reveal the story of the formation Humans have been studying it for hundreds of years, and evolution of the planet Jupiter. Using long-proven yet still many basic questions about the gas world technologies on a spinning spacecraft placed in an el- remain. In 1995, NASA’s Galileo mission made the voy- liptical polar orbit, Juno will observe Jupiter’s gravity and age to Jupiter. One of its jobs was to drop a probe into magnetic fields, atmospheric dynamics and composi- Jupiter’s atmosphere. The data returned from that probe tion, and the coupling between the interior, atmosphere showed us that Jupiter’s composition was different than and magnetosphere that determines the planet’s prop- scientists thought, indicating that our theories of plan- erties and drives its evolution.
Recommended publications
  • Hayabusa2 and the Formation of the Solar System PPS02-25
    PPS02-25 JpGU-AGU Joint Meeting 2017 Hayabusa2 and the formation of the Solar System *Sei-ichiro WATANABE1,2, Hayabusa2 Science Team2 1. Division of Earth and Planetary Sciences, Graduate School of Science, Nagoya University, 2. JAXA/ISAS Explorations of small solar system bodies bring us direct and unique information about the formation and evolution of the Solar system. Asteroids may preserve accretion processes of planetesimals or pebbles, a sequence of destructive events induced by the gas-driven migration of giant planets, and hydrothermal processes on the parent bodies. After successful small-body missions like Rosetta to comet 67P/Churyumov-Gerasimenko, Dawn to Vesta and Ceres, and New Horizons to Pluto, two spacecraft Hayabusa2 and OSIRIS-REx are now traveling to dark primitive asteroids.The Hayabusa2 spacecraft journeys to a C-type near-earth asteroid (162173) Ryugu (1999 JU3) to conduct detailed remote sensing observations and return samples from the surface. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on 3 Dec. 2014 by the H-IIA Launch Vehicle and performed an Earth swing-by on 3 Dec. 2015 to set it on a course toward its target. The spacecraft will reach Ryugu in the summer of 2018, observe the asteroid for 18 months, and sample surface materials from up to three different locations. The samples will be delivered to the Earth in Nov.-Dec. 2020. Ground-based observations have obtained a variety of optical reflectance spectra for Ryugu. Some reported the 0.7 μm absorption feature and steep slope in the short wavelength region, suggesting hydrated minerals.
    [Show full text]
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • Juno Telecommunications
    The cover The cover is an artist’s conception of Juno in orbit around Jupiter.1 The photovoltaic panels are extended and pointed within a few degrees of the Sun while the high-gain antenna is pointed at the Earth. 1 The picture is titled Juno Mission to Jupiter. See http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA13087 for the cover art and an accompanying mission overview. DESCANSO Design and Performance Summary Series Article 16 Juno Telecommunications Ryan Mukai David Hansen Anthony Mittskus Jim Taylor Monika Danos Jet Propulsion Laboratory California Institute of Technology Pasadena, California National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California October 2012 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. DESCANSO DESIGN AND PERFORMANCE SUMMARY SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Articles in This Series Article 1—“Mars Global
    [Show full text]
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • Atlas V Juno Mission Overview
    Mission Overview Atlas V Juno Cape Canaveral Air Force Station, FL United Launch Alliance (ULA) is proud to be a part of NASA’s Juno mission. Following launch on an Atlas V 551 and a fi ve-year cruise in space, Juno will improve our understanding of the our solar system’s beginnings by revealing the origin and evolution of its largest planet, Jupiter. Juno is the second of fi ve critical missions ULA is scheduled to launch for NASA in 2011. These missions will address important questions of science — ranging from climate and weather on planet earth to life on other planets and the origins of the solar system. This team is focused on attaining Perfect Product Delivery for the Juno mission, which includes a relentless focus on mission success (the perfect product) and also excellence and continuous improvement in meeting all of the needs of our customers (the perfect delivery). My thanks to the entire ULA team and our mission partners, for their dedication in bringing Juno to launch, and to NASA making possible this extraordinary mission. Mission Overview Go Atlas, Go Centaur, Go Juno! U.S. Airforce Jim Sponnick Vice President, Mission Operations 1 Atlas V AEHF-1 JUNO SPACECRAFT | Overview The Juno spacecraft will provide the most detailed observations to date of Jupiter, the solar system’s largest planet. Additionally, as Jupiter was most likely the fi rst planet to form, Juno’s fi ndings will shed light on the history and evolution of the entire solar system. Following a fi ve-year long cruise to Jupiter, which will include a gravity-assisting Earth fl y-by, Juno will enter into a polar orbit around the planet, completing 33 orbits during its science phase before being commanded to enter Jupiter’s atmosphere for mission completion.
    [Show full text]
  • Mars Express Orbiter Radio Science
    MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • Lessons Learned from the Juno Project
    Lessons Learned from the Juno Project Presented by: William McAlpine Insoo Jun EJSM Instrument Workshop January 18‐20, 2010 © 2010 All rights reserved. Pre‐decisional, For Planning and Discussion Purposes Only Y‐1 Topics Covered • Radiation environment • Radiation control program • Radiation control program lessons learned Pre‐decisional, For Planning and Discussion Purposes Only Y‐2 Juno Radiation Environments Pre‐decisional, For Planning and Discussion Purposes Only Y‐3 Radiation Environment Comparison • Juno TID environment is about a factor of 5 less than JEO • Juno peak flux rate is about a factor of 3 above JEO Pre‐decisional, For Planning and Discussion Purposes Only Y‐4 Approach for Mitigating Radiation (1) • Assign a radiation control manager to act as a focal point for radiation related activities and issues across the Project early in the lifecycle – Requirements, EEE parts, materials, environments, and verification • Establish a radiation advisory board to address challenging radiation control issues • Hold external reviews for challenging radiation control issues • Establish a radiation control process that defines environments, defines requirements, and radiation requirements verification documentation • Design the mission trajectory to minimize the radiation exposure Pre‐decisional, For Planning and Discussion Purposes Only Y‐5 Approach for Mitigating Radiation (2) • Optimize shielding design to accommodate cumulative total ionizing dose and displacement damage dose and instantaneous charged particle fluxes near Perijove
    [Show full text]
  • An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
    An Impacting Descent Probe for Europa and the other Galilean Moons of Jupiter P. Wurz1,*, D. Lasi1, N. Thomas1, D. Piazza1, A. Galli1, M. Jutzi1, S. Barabash2, M. Wieser2, W. Magnes3, H. Lammer3, U. Auster4, L.I. Gurvits5,6, and W. Hajdas7 1) Physikalisches Institut, University of Bern, Bern, Switzerland, 2) Swedish Institute of Space Physics, Kiruna, Sweden, 3) Space Research Institute, Austrian Academy of Sciences, Graz, Austria, 4) Institut f. Geophysik u. Extraterrestrische Physik, Technische Universität, Braunschweig, Germany, 5) Joint Institute for VLBI ERIC, Dwingelo, The Netherlands, 6) Department of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands 7) Paul Scherrer Institute, Villigen, Switzerland. *) Corresponding author, [email protected], Tel.: +41 31 631 44 26, FAX: +41 31 631 44 05 1 Abstract We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (< 100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes (~1 km), during the probe’s fast (~km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data.
    [Show full text]
  • The Acceler the Accelerating Circulation of Jupiter's Great Red
    The accelerating circulation of Jupiter’s Great Red Spot John H. Rogers A report of the Jupiter Section (Director: John H. Rogers) Jupiter’s Great Red Spot (GRS) has been evolving, with fluctuations, since it was first observed in the 19th century. It has shown trends of decreasing length, decelerating drift rate, and possibly accelerating internal circulation. This paper documents how these trends have pro- gressed since the time of the Voyager encounters in 1979, up to 2006, from ground-based amateur observations.1 The trends in length and drift rate have continued; the GRS is now smaller than ever before.2 The internal circulation period was directly measured in 2006 for the first time since the Voyager flybys, and is now 4.5 days, which confirms that the period is shortening.3 In contrast, the 90-day oscillation of the GRS in longitude continues unchanged, and may be accompanied by a very small oscillation in latitude. Introduction =–110, +105°/month: the mean speed of the SEBs and STBn jets) through 63 m/s (DL2 = +130°/month: the mean speed of the SEBs jet when a STropD is present) to 110–140 m/s (the The Great Red Spot (GRS) is a giant anticyclone in Jupiter’s maximum internal wind speed recorded in the Voyager im- atmosphere, circulating anticlockwise, with winds that are ages: Table 1a). Images by the Galileo Orbiter in 2000 re- among the most rapid in the solar system (see reference 1, corded a further acceleration to ~145–190 m/s.11,12 pp.188-197). The circulation was already suspected in the These wind speeds were derived by tracking small cloud early 20th century (ref.1, p.256), and the first tentative obser- tracers over short intervals in spacecraft images.
    [Show full text]
  • Juno Spacecraft Description
    Juno Spacecraft Description By Bill Kurth 2012-06-01 Juno Spacecraft (ID=JNO) Description The majority of the text in this file was extracted from the Juno Mission Plan Document, S. Stephens, 29 March 2012. [JPL D-35556] Overview For most Juno experiments, data were collected by instruments on the spacecraft then relayed via the orbiter telemetry system to stations of the NASA Deep Space Network (DSN). Radio Science required the DSN for its data acquisition on the ground. The following sections provide an overview, first of the orbiter, then the science instruments, and finally the DSN ground system. Juno launched on 5 August 2011. The spacecraft uses a deltaV-EGA trajectory consisting of a two-part deep space maneuver on 30 August and 14 September 2012 followed by an Earth gravity assist on 9 October 2013 at an altitude of 559 km. Jupiter arrival is on 5 July 2016 using two 53.5-day capture orbits prior to commencing operations for a 1.3-(Earth) year-long prime mission comprising 32 high inclination, high eccentricity orbits of Jupiter. The orbit is polar (90 degree inclination) with a periapsis altitude of 4200-8000 km and a semi-major axis of 23.4 RJ (Jovian radius) giving an orbital period of 13.965 days. The primary science is acquired for approximately 6 hours centered on each periapsis although fields and particles data are acquired at low rates for the remaining apoapsis portion of each orbit. Juno is a spin-stabilized spacecraft equipped for 8 diverse science investigations plus a camera included for education and public outreach.
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]