Lecture Demonstrations in Modern Physics: Quality Vs. Quantity

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Demonstrations in Modern Physics: Quality Vs. Quantity Lecture Demonstrations in Modern Physics: Quality vs. Quantity Homeyra Sadaghiani and Lei Bao Physics Department, The Ohio State University, 174 W. 18th Ave. Columbus, OH 43210 [email protected] In a study conducted in modern physics courses, our investigation shows that inappropriate and an excessive number of demonstrations can lead to ineffective results. We carefully observed and recorded the activities done in all lectures in two modern physics classes throughout a quarter and analyzed students’ responses to the end of the quarter questionnaires. We found a significant number of students did not recall many of the in-class demonstrations and were confused about the results of different demonstrations they had seen in lectures. In this paper, we will explore the possible reasons for this outcome and discuss implications for instructors who use demonstrations in lectures. 1. Introduction encourage students to think about the physics of the problem. In addition, some teachers claim The findings of pedagogical research often demonstrations help students develop an intuitive favor the use of in-class demonstrations, and these feeling for the real world and can translate abstract demonstrations are becoming more common in ideas into a concrete and practical form. [1, 5] introductory physics courses. In large universities, A significant part of early studies on lecture easy access to a wide variety of demonstrations demonstrations focused on macroscopic topics with professional technical support and the such as Newtonian mechanics; very little work has popularity of demonstrations with students (from been done in the microscopic domain of modern course evaluations), encourage instructors to fill physics, where the macroscopic observation of their lectures with a large number of physical events is not enough to understand the demonstrations. processes that cause the final results. Early findings in pedagogical research often This study evolved during another modern favored the use of lecture demonstrations without physics research project.[7] The researcher, who many constraints and focused on causing more attended lectures for two modern physics classes excitement and producing “oohs” and “ahs” from observed an interesting result when analyzing students.[1,2] However, later studies indicate that students’ responses to the end-of-quarter surveys. the effectiveness of these demonstrations in Here we share these results, using examples of enhancement of learning strongly depends on the demonstrations on the photoelectric effect. degree of students’ interaction and 2. Research Methods involvement.[3] In most studies, the evaluations of lecture Our research methods in this study include demonstrations in physics class often rely mostly three approaches: class observations, an in-class on the students’ positive comments about these response system, and on-line surveys. demonstrations.[4] In fact, one of the most 2.1. Class Observations: important arguments in favor of in-class demonstrations in the literature of physics We observed every lecture throughout the ten- education is the overwhelming positive comments week quarter for two calculus-based modern on course evaluations. They indicate that physics classes at The Ohio State University and demonstrations are fun and exciting, making the paid close attention to students’ attitudes and lecture less dull and boring. [5, 6] behaviors and the lecture material. We took Furthermore, some physics teachers argue that detailed notes related to student learning processes lecture demonstrations can lead to a better and behaviors in class to see how these related to understanding of physics concepts and can class survey results. Lectures met three times a week, each for 48 students to participate in two online surveys. minutes. In addition, there were two recitations Students were told that their responses would be per week and seven laboratory sessions during the appreciated in helping with research and that the quarter. The lecture covered the topics of waves questions were ungraded and voluntary. (four weeks), geometrical optics (one week), The first survey was given in the seventh week interference and diffraction (one and a half of the quarter, and the second one during the last weeks), relativity (one and a half weeks), and week. Both contained multiple-choice and open introduction to quantum mechanics (two weeks). ended questions, mostly on the physics content Each class had about 45-50 attendants who were from the lectures. Since this was a voluntary task, scattered mostly at the back of a large classroom. only 57 (out of 112) students took the first survey The lecturer for both classes was a condensed and 69 students took the second one. matter experimental physicist, who, although an 3. Results experienced instructor, was teaching the modern physics class for the first time. His overall method Our observations indicate that the lecturer was was a traditional lecture; however, he included as knowledgeable about the content of the course and many demonstrations as possible in the 48 minutes had organized the topics and material well. The of each lecture. Some lectures had up to three or variety of different materials being used during the four demonstrations in addition to slides, lecture would seem impressive to an observer at simulations, and/or short video clips. the beginning. However, very little time was spent During the demonstrations, the instructor on explaining each demonstration and, more rarely asked questions, and of the questions he importantly, its connection with the physics asked, most were rhetorical or were answered by concepts intended to be taught. The instructor did the instructor before giving enough time for not seem to be concerned with the students’ students to explore their thoughts and to respond. engagement and did not ask students to make Students’ questions, if any, were limited to the end predictions about the experiments or any other of class. questions before or after the demonstrations. Therefore, the variety of demonstrations often did 2.2. In-Class Response System not attract students’ attention. At the beginning of the quarter, the instructor The use of the voting machine in the first few tried to use multiple-choice and short answer weeks of the quarter created some engagement on questions to get student feedback through a the students’ part. This tool might have provided computerized voting machine.[8] This in-class valuable feedback to the instructor if it was used response system served as both a research and an throughout the quarter. When the instructor assessment tool. We divided students into groups stopped using the voting machine in lecture, there of four.[9] Each group obtained a remote was no effective assessment of the students’ answering device to participate in in-class polling. learning and understanding of the concepts during After a few weeks, however, the instructor the lecture. (See Ref. 8) realized that the in-class response system did not The results of our on-line surveys confirm that give him enough time for all the demonstrations he students had very little to take home from all the had planned for the class. As a result, he stopped demonstrations they had observed in the class; and using the voting machine, and therefore, all they could remember were parts of an eliminated much of the feedback that he could get observation or fragments of a concept. For from the students during the class period. example, there was a demonstration in class on the topic of the photoelectric effect. The apparatus 2.3. Survey Questions consisted of an ultraviolet light shining on a The primary research methods were the voting negatively charged electroscope with a piece of machine and the class observations. However, metal attached to the top. Students had observed when the instructor stopped using the in-class that the leaves of the electroscope moved close response system, we replaced it with on-line together when an ultraviolet light was shone on the surveys to get feedback and collect data for our electroscope. Furthermore, the instructor had research. We asked 112 freshman engineering explained that the photons from the light can transfer enough energy to the electron in the metal and remove the electron from an atom in the metal. By removing the electrons, the electroscope would be discharged. In the second survey we had two questions on this topic. In the first question, we explained the exact setting of the demonstration explained above. Then we asked students to recall what Incorrect Confused Incomplete Correct happened when the instructor shined the light on the negatively charged electroscope and to explain Figure-1. Results of a survey question on what happened and why. The point was to see if effectiveness of an in-class demonstration. students could recall anything from this The results of the second question were not experiment, and also to remind students of the any better. More than 37% of the students stated experiment's setting so that we could ask a second that they did not know the answer, 13% confused question. This question asked students to predict this with demonstrations on light interference, and what would happen if the electroscope was 31% answered incorrectly (see Figure-2). charged positively. The students had not seen the results of shining the UV light on a positively charged electroscope in the class. Therefore, we were trying to see if these students could transfer any learned knowledge from one demonstration to a different but related context. We had expected that most students at least would answer the "what happened" part of the question correctly, even if they could not give a clear explanation for the "why" part of it. To our Dont know Incorrect Confused Incomplete Correct surprise, more than 42% of the 69 students Figure-2. Results of a survey question on transfer of surveyed did not even remember the experiment. in-class demonstration. Approximately 23% of the students confused this Below we include several students' statements experiment with many other ones they had seen to show details of their confusions.
Recommended publications
  • Statistical Mechanics
    3 d rB rB 3 d rA rA Statistical Mechanics Daniel F. Styer December 2007 Statistical Mechanics Dan Styer Department of Physics and Astronomy Oberlin College Oberlin, Ohio 44074-1088 [email protected] http://www.oberlin.edu/physics/dstyer December 2007 Although, as a matter of history, statistical mechanics owes its origin to investigations in thermodynamics, it seems eminently worthy of an independent development, both on account of the elegance and simplicity of its principles, and because it yields new results and places old truths in a new light. | J. Willard Gibbs Elementary Principles in Statistical Mechanics Contents 0 Preface 1 1 The Properties of Matter in Bulk 4 1.1 What is Statistical Mechanics About? . 4 1.2 Outline of Book . 4 1.3 Fluid Statics . 5 1.4 Phase Diagrams . 7 1.5 Additional Problems . 7 2 Principles of Statistical Mechanics 10 2.1 Microscopic Description of a Classical System . 10 2.2 Macroscopic Description of a Large Equilibrium System . 14 2.3 Fundamental Assumption . 15 2.4 Statistical Definition of Entropy . 17 2.5 Entropy of a Monatomic Ideal Gas . 19 2.6 Qualitative Features of Entropy . 25 2.7 Using Entropy to Find (Define) Temperature and Pressure . 34 2.8 Additional Problems . 44 3 Thermodynamics 46 3.1 Heat and Work . 46 3.2 Heat Engines . 50 i ii CONTENTS 3.3 Thermodynamic Quantities . 52 3.4 Multivariate Calculus . 55 3.5 The Thermodynamic Dance . 60 3.6 Non-fluid Systems . 67 3.7 Thermodynamics Applied to Fluids . 68 3.8 Thermodynamics Applied to Phase Transitions .
    [Show full text]
  • Verification, Validation, and Predictive Capability in Computational Engineering and Physics
    SAND REPORT SAND2003-3769 Unlimited Release Printed February 2003 Verification, Validation, and Predictive Capability in Computational Engineering and Physics William L. Oberkampf, Timothy G. Trucano, and Charles Hirsch Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Subject Benchmark Statement: Physics, Astronomy and Astrophysics
    QAA MEMBERSHIP Subject Benchmark Statement Physics, Astronomy and Astrophysics October 2019 Contents How can I use this document? ................................................................................................. 1 About the Statement ................................................................................................................ 2 Relationship to legislation ......................................................................................................... 2 Summary of changes from the previous Subject Benchmark Statement (2017) ....................... 2 1 Introduction ..................................................................................................................... 3 2 Nature and extent of physics, astronomy and astrophysics ............................................. 4 3 Subject-specific knowledge and understanding ............................................................... 6 4 Teaching, learning and assessment ................................................................................ 9 5 Benchmark standards ................................................................................................... 11 Appendix: Membership of the benchmarking and review groups for the Subject Benchmark Statement for Physics, Astronomy and Astrophysics ............................................................. 13 How can I use this document? This is the Subject Benchmark Statement for Physics, Astronomy and Astrophysics. It defines the academic standards that can be expected
    [Show full text]
  • Physics and Medicine: a Historical Perspective
    Series Physics and Medicine 1 Physics and medicine: a historical perspective Stephen F Keevil Nowadays, the term medical physics usually refers to the work of physicists employed in hospitals, who are concerned Lancet 2011; 379: 1517–24 mainly with medical applications of radiation, diagnostic imaging, and clinical measurement. This involvement in Published Online clinical work began barely 100 years ago, but the relation between physics and medicine has a much longer history. In April 18, 2012 this report, I have traced this history from the earliest recorded period, when physical agents such as heat and light DOI:10.1016/S0140- 6736(11)60282-1 began to be used to diagnose and treat disease. Later, great polymaths such as Leonardo da Vinci and Alhazen used See Comment pages 1463 physical principles to begin the quest to understand the function of the body. After the scientifi c revolution in the and 1464 17th century, early medical physicists developed a purely mechanistic approach to physiology, whereas others applied This is the fi rst in a Series of ideas derived from physics in an eff ort to comprehend the nature of life itself. These early investigations led directly fi ve papers about physics to the development of specialties such as electrophysiology, biomechanics, and ophthalmology. Physics-based medical and medicine technology developed rapidly during the 19th century, but it was the revolutionary discoveries about radiation and Department of Medical radioactivity at the end of the century that ushered in a new era of radiation-based medical diagnosis and treatment, Physics, Guy’s and St Thomas’ thereby giving rise to the modern medical physics profession.
    [Show full text]
  • NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771
    1 NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 This report covers the period from July 1, 2002 to June Stephen Henderson, Hans Krimm, John Krizmanic, Jeongin 30, 2003. Lee, John Lehan, James Lochner, Thomas McGlynn, Paul This Laboratory’s scientific research is directed toward McNamara, Alex Moiseev, Koji Mukai, James Reeves, Na- experimental and theoretical investigations in the areas of dine Saudraix, Chris Shrader, Steven Snowden, Yang Soong, X-ray, gamma-ray, gravitational wave and cosmic-ray astro- Martin Still, Steve Sturner, and Vigdor Teplitz. physics. The range of interests of the scientists includes the The following investigators are University of Maryland Sun and the solar system, stellar objects, binary systems, Scientists: Drs. Keith Arnaud, David Band ͑UMBC͒, Simon neutron stars, black holes, the interstellar medium, normal Bandler, Patricia Boyd ͑UMBC͒, John Cannizzo ͑UMBC͒, and active galaxies, galaxy clusters, cosmic ray particles, David Davis ͑UMBC͒, Ian George ͑UMBC͒, Masaharu gravitational wave astrophysics, extragalactic background ra- Hirayama ͑UMBC͒, Una Hwang, Yasushi Ikebe ͑UMBC͒, diation, and cosmology. Scientists and engineers in the Kip Kuntz ͑UMBC͒, Mark Lindeman, Michael Loewenstein, Laboratory also serve the scientific community, including Craig Markwardt, Julie McEnery ͑UMBC͒, Igor Moskalenko project support such as acting as project scientists and pro- ͑UMBC͒, Chee Ng, Patrick Palmeri, Dirk Petry ͑UMBC͒, viding technical assistance for various space missions. Also Christopher Reynolds, Ian Richardson, and Jane Turner at any one time, there are typically between ten and fifteen ͑UMBC͒. graduate students involved in Ph.D. research work in this Visiting scientists from other institutions: Drs. Hilary Laboratory.
    [Show full text]
  • A Cultural History of Physics
    Károly Simonyi A Cultural History of Physics Translated by David Kramer Originally published in Hungarian as A fizika kultûrtörténete, Fourth Edition, Akadémiai Kiadó, Budapest, 1998, and published in German as Kulturgeschichte der Physik, Third Edition, Verlag Harri Deutsch, Frankfurt am Main, 2001. First Hungarian edition 1978. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2012 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper Version Date: 20111110 International Standard Book Number: 978-1-56881-329-5 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowl- edged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Journal of Applied Physics Reference Format
    Journal Of Applied Physics Reference Format dismantledandDirk aversely,beseeched warningly, she amenably paralyses is Thor if ablesther witnessed phobia Haley retransferand fibs unvaried or churr. tiptoe. enough?At-home Shaw neverFerdinand perpetuates oversimplified any Malay ontogenically The resulted system is solved to give a approximate each to service problem. Sequences used by one part can be thankful for medical physics are the journal in the audience and future technologies published times new technologies: a variety of. These names of scientific audience includes copying text through space physics of journal applied physics research involving humans or that the style in supplementary files in! The journal also welcomes works showing connections between mathematical analysis and other domains of mathematics such as geometry, topology, logic and set theory. AREA DISCOVER issn SERVICES SEARCH OPEN RESOURCES. Code nach diesem Kommentar hinter dem abschließenden Schrägstrich ein. If irregular image manipulation is identified and confirmed after publication, we may correct or retract the paper. View all article recommendations from physics of journal applied reference list of this way to include discussion of the following documentstyle line only lines white extremes cannot provide, threatened or her email. Available beyond the Reference Desk, able and be checked out. This code will work else target. No distinction is food between electronic and print sources, except under the citation reference details. Open project option of bridge gap. Sometimes an acetate attached to articles submitted papers that created; her email address of physics significant new experimental and excluded reviewers, and high regard to. The content are technically correct and research ethics statements constitute unethical publishing staff appreciates your illustrations so forth in applied physics of format before they can! Separate search groups with parentheses and Booleans.
    [Show full text]
  • Statistical Mechanics
    Statistical Mechanics Henri J.F. Jansen Department of Physics Oregon State University October 12, 2008 II Contents 1 Foundation of statistical mechanics. 1 1.1 Introduction. 1 1.2 Program of statistical mechanics. 4 1.3 States of a system. 5 1.4 Averages. 10 1.5 Thermal equilibrium. 14 1.6 Entropy and temperature. 16 1.7 Laws of thermodynamics. 19 1.8 Problems for chapter 1 . 20 2 The canonical ensemble 23 2.1 Introduction. 23 2.2 Energy and entropy and temperature. 26 2.3 Work and pressure. 28 2.4 Helmholtz free energy. 31 2.5 Changes in variables. 32 2.6 Properties of the Helmholtz free energy. 33 2.7 Energy fluctuations. 35 2.8 A simple example. 37 2.9 Problems for chapter 2 . 39 3 Variable number of particles 43 3.1 Chemical potential. 43 3.2 Examples of the use of the chemical potential. 46 3.3 Di®erential relations and grand potential. 48 3.4 Grand partition function. 50 3.5 Overview of calculation methods. 55 3.6 A simple example. 57 3.7 Ideal gas in ¯rst approximation. 58 3.8 Problems for chapter 3 . 64 4 Statistics of independent particles. 67 4.1 Introduction. 67 4.2 Boltzmann gas again. 74 III IV CONTENTS 4.3 Gas of poly-atomic molecules. 77 4.4 Degenerate gas. 79 4.5 Fermi gas. 80 4.6 Boson gas. 85 4.7 Problems for chapter 4 . 87 5 Fermions and Bosons 89 5.1 Fermions in a box. 89 5.2 Bosons in a box.
    [Show full text]
  • Medical Physics
    AAPM.ORG MEDICAL PHYSICS edical Physics is an applied branch of physics involving the application of physics concepts and methods to the Mdiagnosis and treatment of human disease. It is an interdisciplinary field that integrates core knowledge in traditional physics disciplines with specific domain knowledge in: • the science of healthcare delivery, particularly in • data analysis and statistics; ensuring the accuracy and safety of medical diagnostic • clinical trial design, implementation and oversight; and therapeutic procedures; • quality assurance and quality improvement processes; • bioeffects related to exposures to ionizing and non- • electrical, mechanical, and biomedical engineering; ionizing electromagnetic radiation, ultrasonic energy, and strong magnetic fields; • control systems, including computer controlled, mechanical, and electronic systems; • optimization of imaging and therapeutic procedures to maximize benefit and minimize risk to the patient and • mathematics; healthcare provider; • computer science; • evaluation and communication of benefits and risks to • computational modeling; patients and healthcare providers; • detector design and fabrication. • image science and image analysis; AAPM.ORG WHAT DO MEDICAL PHYSICISTS DO? edical physicists are involved in a wide range of activities, including clinical service Mand consultation, research and development, education, radiation and magnetic resonance safety, and administration. Medical physicists are also involved in non-clinical careers, working in industry, governmental
    [Show full text]
  • Statistical Mechanics Methods for Discovering Knowledge from Modern Production Quality Neural Networks
    Statistical Mechanics Methods for Discovering Knowledge from Modern Production Quality Neural Networks Charles H. Martin Michael W. Mahoney Calculation Consulting ICSI and Department of Statistics San Francisco, CA 94122 University of California at Berkeley [email protected] Berkeley, CA 94720 [email protected] ABSTRACT recent failings of statistical learning theory and stochastic optimiza- There have long been connections between statistical mechanics tion theory at explaining even qualitative properties of deep neural and neural networks, but in recent decades these connections have networks in computer vision and natural language processing; de- withered. However, in light of recent failings of statistical learning scribe how one can use recent results in heavy tailed random matrix theory and stochastic optimization theory to describe, even qual- theory to construct a phenomenological theory of learning; use this itatively, many properties of production-quality neural network theory to operationalize certain aspects of the statistical mechanics models, researchers have revisited ideas from the statistical me- approach to learning and generalization, in order to make predic- chanics of neural networks. This tutorial will provide an overview tions for production-scale models; and highlight connections with of the area; it will go into detail on how connections with random other related works that in recent years have used techniques from matrix theory and heavy-tailed random matrix theory can lead to statistical mechanics. a practical phenomenological theory for large-scale deep neural Historical Overview. We will set the context by providing a brief networks; and it will describe future directions. overview of early work on the connections between statistical mechanics and neural networks [10, 18, 32].
    [Show full text]
  • PH 409: Introduction to Condensed Matter Physics
    i PH 409: Introduction to Condensed Matter Physics Course instructor : Kantimay Das Gupta Lectures are held: Mon (10.35-11.30), Tue (11.35-12.30), Thu (8.30-9.25) [IC 1] Course Contents: 1. Describing condensed matter microscopically structure factor • lattice and fourier transforming of densities. • Unit cell concept • Xray scattering • 2. The free electron gas in metals Drude theory of transport • Thermodynamic quantities • response to electromagnetic fields • 3. Bloch’s theorem Gap at zone boundaries and reduced zone scheme. Draw it with free electrons, show that in • the second zone, filled states are not near the zone center. Band structure as a perturbation problem. • Classification of metals/insulators/semiconductors • Kronig-Penny model of a solid. • 4. Tight binding method Linear Combination of Atomic Orbitals as the way to build a molecule from atoms. • ID example, 2D Graphene, 3D, some lattices like cubic/BCC/FCC. • What are the shortcomings. APW and then e-e interaction. • Mott insulators (NiO) if possible. • Revision of Brillouin zone. Drawing the free electron Fermi surface. The Fermi level in Alkali • metals, divalent/trivalent metals. Why some metals can give hole-like Hall voltage. • 5. semiclassical dynamics of electrons in a band. Introduce the equations, write Bloch oscillation condition, group velocity near zone boundary, • why k k-G flipping does not give unphysical results? → Concept of holes: what is the correct k vector of a hole, equation of motion, group velocity etc. • Concept of orbits in a magnetic field (electron like, hole like and open) • Concept of holes • de-Haas van Alphen oscillation mechanism.
    [Show full text]
  • History of Physics As a Tool for Teaching
    HISTORY OF PHYSICS AS A TOOL FOR TEACHING Igal Galili The Hebrew University of Jerusalem INTRODUCTION It became a commonplace to agree that physics teaching presents a complex and interdisciplinary activity. Among the areas of knowledge essentially contributing to this activity we name Physics, the History of Science, Philosophy of Science, Cognitive Science and Pedagogy. Our appreciation of the nature of contribution of each from these areas incessantly changes reflecting the growth of our understanding of teaching physics. This essay is dealt with the History of Physics (HoP) and the understanding of its role as a tool of teaching physics. First, I will mention the dimensions of contribution of the HoP to physics teaching as it became currently accepted, briefly elaborating on the relevant argumentation. I will, then, elaborate on the change in the perceived role of historical materials in light of the educational research and illustrate this change with examples from various domains of physics, optics in particular. Finally, I will describe the latest development in this subject, which suggests teaching physics as a discipline-culture. This step brought to the historical materials a new type of appreciation, as being an inherent part of physics contents also on our days. It is thus suggested that these contents could be taught in the regular instruction. The cardinal innovation of this approach is addressing the ideas and theories, which are normally considered as being obsolete and thus omitted from by the contemporary physics curriculum. WHY TO TEACH PHYSICS USING HISTORY? The discourse of advocating for using the HoP has a long history, starting from Mach1 and Duhem2 who argued, rather categorically, for so called historical method (or genetic approach) in teaching physics, already more than a century ago: The legitimate, sure and fruitful method of preparing a student to receive a physical hypothesis is the historical method.
    [Show full text]