November 2020 Newsletter in This Edition

Total Page:16

File Type:pdf, Size:1020Kb

November 2020 Newsletter in This Edition Westville Conservancy Transforming the Ugly and Neglected November 2020 Newsletter In This Edition: Stop The Invasion – Plant This Instead Common Caterpillars of the Highway Area Plant Sale Feedback M13 STOP THE INVASION! YOU CAN MAKE A DIFFERENCE by taking out and removing IAPs from your garden and verge and replacing with some of our beautiful locally indigenous plants. Barbados Gooseberry, Pereskia aculeate Pereskia comes from the West Indies, and South and Central America and is classed as a category 1b invasive species having escaped from gardens where it was introduced as an ornamental barrier plant. This creeper has shiny green succulent leaves that turn yellowish, superficially resembling bougainvillea and produces clusters of lemon scented white to cream flowers and edible yellow berries about the size of grapes which are armed with spines. It clambers up into trees forming dense canopies that block out light and smother indigenous species and can even cause trees to collapse under the sheer weight of plant matter. The most distinguishing features are the spines. The younger shoots have pairs of hooked thorns along the stems and the older, thick woody stems have clusters of hard, vicious, straight spines, 30-40mm long, Any piece of the plant that falls to the ground has the ability to take root and produce a new plant and this feature, plus the extremely vicious spines and the density of growth make it one of the most difficult IAP’s to remove and control. To eradicate this creeper: cut off the thick wooded stems at the base and paint immediately with a suitable herbicide. Leave the plant to hang in the tree to die back but watch for stems falling to the ground which should ideally be gathered up and taken to a safe place to burn. New growth and leaves that are reachable can be sprayed with a suitable herbicide. This creeper requires constant follow up as any piece of the plant that falls to the ground – even sections that look dried up and dead, have the potential to regrow. For advice on eradicating Invasive Alien Plants and information on specific herbicides, please contact: Clive 072 8385834 or Rob 083 7770872 PLANT THIS INDIGENOUS ALTERNATIVE INSTEAD…. Cat thorn, Scutia myrtina This is a hardy, fast growing drought resistant, scambling shrub, which uses thorns to clamber through surrounding vegetation but it can be pruned to make an attractive, impenetrable barrier hedge. The leaves are glossy green and the new growth is a bronze colour. It has small, fragrant white flowers from October to January which attract insects, followed by edible pea-sized fruits that are enjoyed by birds. This plant also feeds the caterpillars of 16 species of moth and 4 species of butterfly. Choose from these other indigenous alternatives: Coast climbing thorn - Acacia kraussiana, Kei-apple – Dovyalis caffra For advice of Indigenous Alternatives contact: Jenni 082 4874939 Last month we produced an article on the Amaryllis caterpillar, but thanks to a few of our dedicated readers, it has been highlighted to us that some of the information we included was incorrect. We are always willing to learn and we are so grateful that we have some very passionate and knowledgeable members amongst us. One such member is Suncana Bradley and she has written an article for us on some of the common caterpillars found in our area. Common Caterpillars of the Highway Area by Suncana Bradley When faced with caterpillars in their garden, many will wonder whether to leave or not to leave. If you’re a nature lover that appreciates biodiversity, the answer is leave. Caterpillars may cause some damage to the plants, but it is almost never permanent and the plants will actually thrive after being trimmed by mother nature’s own little gardeners. Here are some of the caterpillars commonly seen around the Highway area. Lily borer, Brithys crini Our most infamous and misunderstood moth larva is definitely the dreaded Lily Borer, or Amaryllis caterpillar (Brithys crini). A common misconception is that they are an alien invasive species. However, that is not true. They are a cosmopolitan species that is widely distributed and is native to Southern Africa, amongst other regions. Basically, they are found wherever Amaryllidaceae grow (our representatives being Crinums, Clivias etc). Another common myth is that they don’t have any natural predators, which they very much do. Flies, wasps and Darkling beetles all prey on caterpillars, and the Lily Borer is no exception. Brithys crini after being fed on by parasitic larva The Borer larvae can be destructive, but you will find that infestations which result in a lot of damage are usually in gardens abundant with their food plants. In nature you would not encounter the plants at such density, which means there would be less moths attracted to them and in the end less larvae. Planting more variety and matching your garden to the wilderness as much as possible will eventually lead to normal numbers of caterpillars. If you must, best control is to manually remove the caterpillars off your plants and dispose of them away from your garden. Rhenea michii Another very common caterpillar that often causes panic is Rhenea michii. They appear in such large numbers that they seemingly “rain” off trees. They are rather voracious larvae and will regularly defoliate whole trees. However, give it a couple of weeks and the trees will bounce back more lush and healthier than they were before. It’s important to note that this is a natural process and it encourages healthy growth of foliage. The caterpillars don’t cause any kind of permanent damage to trees and their frass is a great natural fertilizer. Once they start coming off the trees and moving about, they are ready to pupate and will soon turn into lovely colorful pupas. The moths are beautiful and delicate; certainly well worth a bunch of leaves. Their prefered trees are Ekebergia capensis and Harpephyllum caffrum. Wahlberg's Emperor (Nudaurelia wahlbergii) This rather intimidating looking caterpillar belongs to a large moth that we frequently see swarming around our outside lights this time of the year. They are, however, completely harmless and those spikes aren’t spikey at all. You won’t often see them on trees, but you will encounter them on the ground either looking for a spot to pupate or dying due to being hosts to parasites. They feed on a variety of plants, including Mangifera indica, Prunus persica, Psidium guajava, Ricinus communis, Schinus molle, Trema bracteolata, Trema orientalis, Acacia mearnsii, Ekebergia capensis, Halleria lucida and Maerua. Edible Monkey Moth (Striphnopteryx edulis) Edible Monkey Moth caterpillars are large and hairy, and though they are harmless, they can make you itch. They don’t sting, but they will leave behind small hairs lodged in your skin if not handled gently. The hairs can cause skin irritation. If it does happen, rub the affected area with a wash cloth until there are no more hairs left and generously apply a soothing cream. They are not at all picky when it comes to food plants and will eat almost anything, but we most often find them on our Osteospermum moniliferum bushes. Common Striped Hawkmoth (Hippotion eson) Hawkmoths (Sphingidae) are easily identifiable by a small horn at their rear end that resembles a tail. They are often large in size, vary in color depending on the species and some even sport false eyes that make them look like small, fat snakes. They are, of course, harmless. One of the most commonly encountered species in the area is the Common Striped Hawkmoth. Hippotion eson larvae are polyphagous, which means that they feed on a large variety of plants, some of which are Impatiens balsamina, Vigna, Amorphophallus, Ampelopsis, Anchomanes difformis, Arum, Bougainvillea, Caladium, Cissus, Colocasia, Coprosma baueri, Fuchsia, Ipomoea cairica, Ipomoea involucrata, Paullinia pinnata, Pentas, Richardia, Vitis hederacea, Vitis vinifera, and Zantedeschia aethiopica There are of course many, many more species and I will happily identify them for you if you email me photos on [email protected]. The very last thing I would like to point out is that the worst thing that you can do to your garden is apply any kind of a pesticide, even one of the so-called "organic" ones. There is simply no such thing as good poison, no matter what story the manufacturers are spinning. Pesticide may be a necessary evil if you’re a farmer and your livelihood depends on your crop, but on a small scale like an urban garden, there is simply no excuse. Pesticide is not selective. It will kill not only caterpillars, but all other insects as well, including the ones that prey on caterpillars. What that will cause is a knock-on effect of losing the natural balance in your garden. With less predators, your caterpillars will be too many, and will thus defoliate more than is usual. If nature is left to its own devices, you will have your wasp, flies, spiders, beetles etc keeping your larvae numbers in check. There may be certain products that guarantee they will get rid of only lepidoptera larvae, but that means every single one of them, including the butterfly larvae. Listen to Sir David Attenborough; poison is not the answer - rewilding your garden is. Let nature be and you will be surprised how quickly it bounces back to being more than just a green desert. Who knows, you may even start seeing chameleons again... *************************************** Plant Sale Feedback Many thanks to everyone (our regular customers and new faces) who supported our plant sale on 23rd and 24th October. We had a fantastic turnout and we hope you enjoyed your planting over the weekend! If you need any assistance or advice, please email us: [email protected] Next Sale: December Our sincere thanks go to Leisel Muhl from RM Promo who supplied our banners, bumper stickers and vests printed with our Conservancy logo and she assisted with promoting our sale on social media.
Recommended publications
  • New Insights Into the Microbiota of Moth Pests
    International Journal of Molecular Sciences Review New Insights into the Microbiota of Moth Pests Valeria Mereghetti, Bessem Chouaia and Matteo Montagna * ID Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, 20122 Milan, Italy; [email protected] (V.M.); [email protected] (B.C.) * Correspondence: [email protected]; Tel.: +39-02-5031-6782 Received: 31 August 2017; Accepted: 14 November 2017; Published: 18 November 2017 Abstract: In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition. Keywords: symbiosis; bacterial communities; crop pests; forest pests; Lepidoptera; next generation sequencing (NGS) technologies; diet; developmental stages 1. Introduction Insects represent the most successful taxa of eukaryotic life, being able to colonize almost all environments, including Antarctica, which is populated by some species of chironomids (e.g., Belgica antarctica, Eretmoptera murphyi, and Parochlus steinenii)[1,2]. Many insects are beneficial to plants, playing important roles in seed dispersal, pollination, and plant defense (by feeding upon herbivores, for example) [3]. On the other hand, there are also damaging insects that feed on crops, forest and ornamental plants, or stored products, and, for these reasons, are they considered pests.
    [Show full text]
  • Pests and Diseases
    Clivia assassins – pests and diseases Clivia is really quite a resistant little genus, with only a few serious pests and diseases that can be life threatening . Others, though not lethal, can seriously affect a plant’s appearance and growth . General hygienic culture conditions like good drainage, removal of infected plants and material and a spray programme can successfully prevent these pests and diseases from becoming a serious problem . Just a note of caution when working with toxic chemicals: Read the instructions of all chemicals before use! Make sure that chemicals can be mixed without detrimental effects to treated plants – if not stated as mixable, test it first on a few plants before you treat your whole collection . Plant pests Lily borer (Brithys crini, Brithys pancratii) Brithys species, also known as Amaryllis caterpillars, are serious pests amongst members of the Amaryllidaceae. They target Crinum, Cyrthanthus, Haemanthus, Nerine, Amaryllis and Clivia, to name a few. This destructive pest has three to four generations in nature annually and if a severe infestation occurs it can destroy plants within a few days. The caterpillar Breakfast! The yellow and brown-black banding is easily distinguishable with its yellow and black or brown pattern of the Brithys caterpillar makes it easy to recognise . Only a mushy pseudo stem remains banding pattern. Young larvae emerge from a cluster of after Mr Caterpillar’s visit . Growing clivias eggs, usually on the underside (abaxial side) of leaves, and then start to tunnel into the leaf. Once inside, the larvae eat the soft tissue between the outer two epidermal cell layers, tunnelling their way towards the base of the leaf.
    [Show full text]
  • 106Th Annual Meeting of the German Zoological Society Abstracts
    September 13–16, 2013 106th Annual Meeting of the German Zoological Society Ludwig-Maximilians-Universität München Geschwister-Scholl-Platz 1, 80539 Munich, Germany Abstracts ISBN 978-3-00-043583-6 1 munich Information Content Local Organizers: Abstracts Prof. Dr. Benedikt Grothe, LMU Munich Satellite Symposium I – Neuroethology .......................................... 4 Prof. Dr. Oliver Behrend, MCN-LMU Munich Satellite Symposium II – Perspectives in Animal Physiology .... 33 Satellite Symposium III – 3D EM .......................................................... 59 Conference Office Behavioral Biology ................................................................................... 83 event lab. GmbH Dufourstraße 15 Developmental Biology ......................................................................... 135 D-04107 Leipzig Ecology ......................................................................................................... 148 Germany Evolutionary Biology ............................................................................... 174 www.eventlab.org Morphology................................................................................................ 223 Neurobiology ............................................................................................. 272 Physiology ................................................................................................... 376 ISBN 978-3-00-043583-6 Zoological Systematics ........................................................................... 416
    [Show full text]
  • Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus Sp
    fmicb-07-01005 June 24, 2016 Time: 16:20 # 1 ORIGINAL RESEARCH published: 28 June 2016 doi: 10.3389/fmicb.2016.01005 The Generalist Inside the Specialist: Gut Bacterial Communities of Two Insect Species Feeding on Toxic Plants Are Dominated by Enterococcus sp. Cristina Vilanova1,2, Joaquín Baixeras1, Amparo Latorre1,2,3* and Manuel Porcar1,2* 1 Cavanilles Institute of Biodiversity and Evolutionary Biology, Universitat de València, Valencia, Spain, 2 Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain, 3 Unidad Mixta de Investigación en Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, Spain Some specialist insects feed on plants rich in secondary compounds, which pose a major selective pressure on both the phytophagous and the gut microbiota. However, microbial communities of toxic plant feeders are still poorly characterized. Here, we Edited by: Mark Alexander Lever, show the bacterial communities of the gut of two specialized Lepidoptera, Hyles ETH Zürich, Switzerland euphorbiae and Brithys crini, which exclusively feed on latex-rich Euphorbia sp. and Reviewed by: alkaloid-rich Pancratium maritimum, respectively. A metagenomic analysis based on Virginia Helena Albarracín, CONICET, Argentina high-throughput sequencing of the 16S rRNA gene revealed that the gut microbiota Jeremy Dodsworth, of both insects is dominated by the phylum Firmicutes, and especially by the common California State University, gut inhabitant Enterococcus sp. Staphylococcus sp. are also found in H. euphorbiae San Bernardino, USA though to a lesser extent. By scanning electron microscopy, we found a dense ring- *Correspondence: Manuel Porcar shaped bacterial biofilm in the hindgut of H. euphorbiae, and identified the most [email protected]; prominent bacterium in the biofilm as Enterococcus casseliflavus through molecular Amparo Latorre [email protected] techniques.
    [Show full text]
  • Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier Area, Swellendam
    Biodiversity and Ecology of Critically Endangered, Rûens Silcrete Renosterveld in the Buffeljagsrivier area, Swellendam by Johannes Philippus Groenewald Thesis presented in fulfilment of the requirements for the degree of Masters in Science in Conservation Ecology in the Faculty of AgriSciences at Stellenbosch University Supervisor: Prof. Michael J. Samways Co-supervisor: Dr. Ruan Veldtman December 2014 Stellenbosch University http://scholar.sun.ac.za Declaration I hereby declare that the work contained in this thesis, for the degree of Master of Science in Conservation Ecology, is my own work that have not been previously published in full or in part at any other University. All work that are not my own, are acknowledge in the thesis. ___________________ Date: ____________ Groenewald J.P. Copyright © 2014 Stellenbosch University All rights reserved ii Stellenbosch University http://scholar.sun.ac.za Acknowledgements Firstly I want to thank my supervisor Prof. M. J. Samways for his guidance and patience through the years and my co-supervisor Dr. R. Veldtman for his help the past few years. This project would not have been possible without the help of Prof. H. Geertsema, who helped me with the identification of the Lepidoptera and other insect caught in the study area. Also want to thank Dr. K. Oberlander for the help with the identification of the Oxalis species found in the study area and Flora Cameron from CREW with the identification of some of the special plants growing in the area. I further express my gratitude to Dr. Odette Curtis from the Overberg Renosterveld Project, who helped with the identification of the rare species found in the study area as well as information about grazing and burning of Renosterveld.
    [Show full text]
  • Katydid (Orthoptera: Tettigoniidae) Bio-Ecology in Western Cape Vineyards
    Katydid (Orthoptera: Tettigoniidae) bio-ecology in Western Cape vineyards by Marcé Doubell Thesis presented in partial fulfilment of the requirements for the degree of Master of Agricultural Sciences at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriSciences Supervisor: Dr P. Addison Co-supervisors: Dr C. S. Bazelet and Prof J. S. Terblanche December 2017 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: December 2017 Copyright © 2017 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za Summary Many orthopterans are associated with large scale destruction of crops, rangeland and pastures. Plangia graminea (Serville) (Orthoptera: Tettigoniidae) is considered a minor sporadic pest in vineyards of the Western Cape Province, South Africa, and was the focus of this study. In the past few seasons (since 2012) P. graminea appeared to have caused a substantial amount of damage leading to great concern among the wine farmers of the Western Cape Province. Very little was known about the biology and ecology of this species, and no monitoring method was available for this pest. The overall aim of the present study was, therefore, to investigate the biology and ecology of P. graminea in vineyards of the Western Cape to contribute knowledge towards the formulation of a sustainable integrated pest management program, as well as to establish an appropriate monitoring system.
    [Show full text]
  • Lepidoptera Fauna of Namibia. I. Seasonal Distribution of Moths of the Koakoland (Mopane) Savanna in Ogongo, Northern Namibia
    FRAGMENTA FAUNISTICA 57 (2): 117–129, 2014 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2014.57.2.117 Lepidoptera fauna of Namibia. I. Seasonal distribution of moths of the Koakoland (Mopane) Savanna in Ogongo, northern Namibia Grzegorz KOPIJ Department of Wildlife Management, University of Namibia, Katima Mulilio Campus, Private Bag 1096, Katima Mulilo, Namibia; e-mail: [email protected] Abstract: During the years 2011–2013, moths were collected in Koakoland (Mopane) Savanna in the Cuvelai Drainage System, Ovamboland, northern Namibia. In total, 77 species from 13 families have been identified. Their seasonal occurrence in this habitat was also investigated, with most species recorded in wet season between September and April, but with clear peak in February and March. The family Noctuidae was by far the most speciose (38 recorded species), followed by Crambidae (8 spp.), Sphingidae (6 spp.) and Arctiidae (4 spp.). All other families were represented by 1–3 species. For each species listed date of collection is given, and data on its global distribution. Key words: Lepidoptera, check-list, biodiversity, distribution, moths, Ovamboland INTRODUCTION According to recent quite precise estimate, there are 15 5181 species, 16 650 genera and 121 families of Lepidoptera worldwide (Pouge 2009). Lepidoptera fauna of Namibia has recently attracted attention of European entomologists. However, thorough surveys were conducted hitherto in a few areas only, such as Brandberg and Hobatere. The northern regions of the country were especially badly neglected. In southern Africa (south of Zambezi and Kunene Rivers) – 8 511 species, 2 368 genera and 89 families were recently catalogued (Vári et al.
    [Show full text]
  • How the Energy Sensor, AMPK, Impact the Testicular Function Pascal Froment, Mélanie Faure, Edith Guibert, Jean-Pierre Brillard
    How the energy sensor, AMPK, impact the testicular function Pascal Froment, Mélanie Faure, Edith Guibert, Jean-Pierre Brillard To cite this version: Pascal Froment, Mélanie Faure, Edith Guibert, Jean-Pierre Brillard. How the energy sensor, AMPK, impact the testicular function. 27. Conference of European Comparative Endocrinologists, Aug 2014, Rennes, France. 2014. hal-02742016 HAL Id: hal-02742016 https://hal.inrae.fr/hal-02742016 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright 27th Conference of European Comparative Endocrinologists CECE 2014 25-29 August 2014 Rennes, France 3 27th Conference of European Comparative Endocrinologists Organized with the generous support and help of our sponsors Université de Rennes 1 European Society for Comparative Endocrinology (Grants) European Union INTEREG TC2N Rennes Métropole European Society of Endocrinology (Grants) Institut National de la Recherche Agronomique Société de Neuroendocrinologie (Grants) Institut National de l'Environnement Industriel et des Risques !"#$%$&$'()'*)+,)*+,)'#&*'-.'#."$/
    [Show full text]
  • Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of Their Expanding Medical Use
    Int. J. Mol. Sci. 2013, 14, 11713-11741; doi:10.3390/ijms140611713 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Towards a Molecular Understanding of the Biosynthesis of Amaryllidaceae Alkaloids in Support of Their Expanding Medical Use Adam M. Takos and Fred Rook * Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +45-3533-3343; Fax: +45-3533-3300. Received: 28 April 2013; in revised form: 26 May 2013 / Accepted: 27 May 2013 / Published: 31 May 2013 Abstract: The alkaloids characteristically produced by the subfamily Amaryllidoideae of the Amaryllidaceae, bulbous plant species that include well know genera such as Narcissus (daffodils) and Galanthus (snowdrops), are a source of new pharmaceutical compounds. Presently, only the Amaryllidaceae alkaloid galanthamine, an acetylcholinesterase inhibitor used to treat symptoms of Alzheimer’s disease, is produced commercially as a drug from cultivated plants. However, several Amaryllidaceae alkaloids have shown great promise as anti-cancer drugs, but their further clinical development is restricted by their limited commercial availability. Amaryllidaceae species have a long history of cultivation and breeding as ornamental bulbs, and phytochemical research has focussed on the diversity in alkaloid content and composition. In contrast to the available pharmacological and phytochemical data, ecological, physiological and molecular aspects of the Amaryllidaceae and their alkaloids are much less explored and the identity of the alkaloid biosynthetic genes is presently unknown. An improved molecular understanding of Amaryllidaceae alkaloid biosynthesis would greatly benefit the rational design of breeding programs to produce cultivars optimised for the production of pharmaceutical compounds and enable biotechnology based approaches.
    [Show full text]
  • BRUNSVIGIA ORIENTALIS Candelabra flower, Koningskandelaar, Perdespookbossie Amaryllidaceae
    SNR FACT SHEET BRUNSVIGIA ORIENTALIS Candelabra flower, Koningskandelaar, Perdespookbossie Amaryllidaceae Late summer in Steenbok Park sees the emergence of the spectacular crimson Candelabra flower or Brunsvigia orientalis which grows in scattered colonies in coastal sand. The bud of this large bulb pushes up through the sand on its sturdy stem before a leaf can be seen, and produces up to 40 flowers in a head shaped like a rounded candelabra. As the flowers fade the ovaries enlarge and become papery and eventually the flower stem breaks away and the flower head is blown about, tumbling over the ground and scattering its seeds. These ‘balls’ blowing in the wind no doubt give rise to the Afrikaans name Perdespookbossie. The plant was initially called Amaryllis orientalis, but in 1753 Lorenz Heister, a botanist and professor of medicine at the University of Helmstädt, renamed it Brunsvigia in honour of his patron the Duke of Brunswick. Karl Wilhelm Ferdinand (1735-1806), a cultured and benevolent despot, promoted the study of plants. The bulb had been sent to Germany in 1748 by Cape Governor, Ryk Tulbagh, who was very interested in the flora and fauna of the Cape and regularly sent plants and stuffed animals to Europe. Brunsvigias are deciduous and have adapted to the dry period of the year by resting underground. The large flower heads appear shortly before the rainy season. Sunbirds searching for nectar in the tubular flowers are their chief pollinators. Once the seeds have been scattered they germinate very quickly, giving the seedling a full rainy season to develop sufficiently to withstand its first dry season underground.
    [Show full text]
  • Geo-Eco-Trop., 2014, 38, 2 : 339-372
    Geo-Eco-Trop., 2014, 38, 2 : 339-372 Human consumption of Lepidoptera in Africa : an updated chronological list of references (370 quoted!) with their ethnozoological analysis La consommation humaine de Lépidoptères en Afrique : une liste chronologique actualisée des références (370 citées !) avec leur analyse ethnozoologique François MALAISSE1 & Paul LATHAM2 Résumé : La consommation humaine d’insectes ou “lépideroptérophagie” connaît un intérêt croissant. Dans le présent article 370 références abordant ce thème pour l’Afrique sont citées. Des accès à cette information par ordre chronologique ainsi que par ordre alphabétique des noms d’auteurs sont fournies. Une liste systématique des noms scientifiques des espèces consommées en Afrique est encore établie. L’importance de l’information disponible pour divers groupes ethnolinguistiques est signalée. L’évolution des thèmes approchés est analysée et commentée. Mots clés: Consommation, Lépidoptères, Afrique, Campéophagie. Abstract : Human consumption of insects or « lepidopterophagy » is becoming increasingly important. In the present paper 370 references dealing with this subject in Africa are quoted. Access to this information is provided both, by chronological and alphabetic order of authors. A systematic list of scientific names of edible Lepidoptera in Africa is also provided. The importance of the information available for various ethnolinguidstic groups is presented. The evolution of issues covered is analyzed and discussed. Keywords : Consumption, Lepidoptera, Africa, Campeophagy. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (SHOCKLEY & DOSSEY, 2014). In particular, human consumption of Lepidoptera receives an increasing interest (MALAISSE et al., 2015). Several terms have been suggested to describe this consumption, notably regarding caterpillars, “campeophagy” (MALAISSE, 2002, 2004; MALAISSE et al.
    [Show full text]
  • Research Article
    Ecologica Montenegrina 35: 45-77 (2020) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2020.35.5 A contribution to the knowledge of the Sphingidae fauna of Mozambique MAREK BĄKOWSKI1*, GYULA M. LÁSZLÓ2, HITOSHI TAKANO2 1Department of Systematic Zoology, Adam Mickiewicz University, Collegium Biologicum, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland 2The African Natural History Research Trust (ANHRT), Street Court Leominster-Kingsland, HR6 9QA, United Kingdom *Corresponding author - [email protected] Received 15 September 2020 │ Accepted by V. Pešić: 8 October 2020 │ Published online 10 October 2020. Abstract A list of 74 species of the Sphingidae (Lepidoptera) recently sampled at sites in Maputo, Gorongosa, Manica, Cabo Delgado and Zambezia provinces of Mozambique is provided. All species are illustrated of which fourteen are recorded for the first time from Mozambique. Key words: Faunistics, new distributional records, Gorongosa National Park, Quirimbas National Park, Chimanimani National Reserve, Maputo Special Reserve. Introduction Aside from recent studies on the Rhopalocera of Mozambique (Congdon et al. 2010; van Velzen et al. 2016; Bayliss et al. 2018) the entomological fauna of this country has been relatively poorly explored due mainly to its vast area, much of it difficult to access, and the prolonged civil war in the final quarter of the 20th Century. The most recent efforts to explore the insect biodiversity of Mozambique were undertaken by the Adam Mickiewicz University, Poznań, Poland (AMU) and the African Natural History Research Trust, Leominster, UK (ANHRT) in close collaboration with a number of local institutions. All sampling expeditions were conducted between April 2015 and December 2019.
    [Show full text]