Sustainable Aggregates from Secondary Materials for Innovative Lightweight Concrete Products

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Aggregates from Secondary Materials for Innovative Lightweight Concrete Products Sustainable aggregates from secondary materials for innovative lightweight concrete products Agnese Attanasio 1, Alessandro Largo 1, Iñigo Larraza Alvarez 2, Francesco Sonzogni 3, Lucian Balaceanu 4 1 CETMA - Engineering, Design & Materials Technologies Center, Italy 2 ACCIONA Infrastructure, Spain 3 Magnetti Building Spa, Italy 4 IRIDEX Group Plastic Srl, Romania Large quantities of waste materials are generated from manufacturing processes, industries and municipal solid wastes. As a result, waste management has become one of the major environmental concerns in the world. The increasing awareness about waste management and environment-related issues has led to substantial progress in the utilization of wastes or by-products like plastics as an attractive alternative to disposal. The use of post-consumer plastics in the concrete manufacturing represents an effective solution both to the problem of reducing their environmental impact and to the development of sustainable building industry. The production of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. In this paper the viability of some secondary plastic materials as aggregates for concrete is assessed. Three different types of plastic scraps (polyurethane foams, tyre rubber and scraps resulting from the sorting of recycled plastics from solid urban wastes) were processed in order to allow their use as aggregates for non-structural concretes. Several mixtures based on recycled aggregates and Portland cement were then manufactured; a large characterization campaign was performed checking how the different amounts of the investigated recycled materials influence the final performances in terms of density, workability, mechanical strength and insulation. The obtained results confirmed that the examined sustainable aggregates could be used for the manufacturing of innovative lightweight concretes products. The potential benefits for industries and society are three: reducing the landfill disposal of several types of solid waste, providing new cost-effective building materials and ensuring the environmental sustainability of the new products. HERON Vol. 60 (2015) No. 1/2 5 Key words: Aggregates from secondary plastics, lightweight concretes, thermal insulation, innovative construction components 1 Introduction A substantial growth in the consumption of plastic is observed all over the world in recent years; this has led to huge quantities of plastic-related wastes [Saikia et al, 2012]. Recycling of plastic waste to produce new materials such as concretes aggregates has economic and ecological advantages and is considered one of the best solution for disposing of plastic waste. The development of new construction materials using recycled plastics is significant for both the construction and the plastic recycling industries. Moreover, post-consumer plastic aggregates can be successfully and effectively used to replace traditional aggregates [Siddique et al, 2008]. Recent studies have reported the promising use of polymers (polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), expanded polystyrene (PS) and others) in the production process of concrete. In particular, the large growth in the use of plastic materials has generated a growing interest worldwide in reusing recycled polymers [Liguori et al, 2014]. Although several studies have demonstrated that waste plastics can be beneficially incorporated in concrete, it is important to observe that not all waste materials are suitable for such use [Zanaib et al, 2008]. The research reported in this paper is focused on the assessment of the viability of secondary plastics as aggregates for concretes. Plastic scraps explored in this study are rigid polyurethane (PU) foams, Mixed Plastic Waste (MPW) coming from the sorting process of Municipal Solid Waste (MSW) and exhausted rubber tyres. The research on the use of rigid PU foam waste as aggregate for concrete, despite the relatively low cost and good chemical compatibility with cement, is very poor and some limitations have been also evidenced [Mounanga P. et al, 2008]; however it has been demonstrated its suitability for non-structural lightweight concretes [Verdolotti et al, 2008]. With respect to aggregate from MPW tested in this research it has a mixed composition (it mainly consists of PE and PP but also PET), therefore its behaviour in concrete might differ from similar plastics tested in other studies. Previous research activities1 have demonstrated the feasibility, processing 1 Carried out by CETMA in collaboration with a company operating in the materials recycling sector. 6 specific mixed plastic scraps, to obtain recycled aggregates (referred to as “Remix”) in both lower and higher density (NUMIX project “High performance lightweight aggregate for concrete from recycling of plastic waste”, CIP-ECOINNOVATION 2008, Project n. ECO/08/239110/SI2.535262); however their potential for concretes manufacturing still need to be fully validated. As far as concerns the use of recycled tyre rubber aggregates some practical applications have been proposed but it was also evidenced that their incorporation into concretes was not always successful due to rubber-cement paste incompatibility [Shu et al, 2014]. In other studies the use of recycled rubber tyres for concretes with good thermal insulation performance has been demonstrated [Cairns et al, 2004]. These three waste materials have been selected since they are available in quantities large enough for feeding the concrete industry and, at the same time, represent a socio- economic problem as there are low chances for their re-use in more added-values applications. The availability, across Europe, of these waste streams to be converted into aggregates has been quantified in [Arena et al., 2015] together with the analysis of rules for re-use and integration of recycled aggregates in concrete at European level. The use of sustainable aggregates from specific secondary materials in conventional cement binder systems is one of the goal of the SUS-CON project (“SUStainable, innovative and energy-efficient CONcrete, based on the integration of all-waste materials”, FP7/2007- 2013, Grant Agreement No. 285463). The main outcomes related to the development of these aggregates and their integration within lightweight concretes are reported in this paper. The first part of this work is focused on the secondary materials investigated, their processing to obtain eco – friendly lightweight aggregates and the relevant characterizations to assess their suitability for concretes production. The second part of the work deals with the use of the sustainable aggregates with traditional binders to make lightweight concretes. Several mixtures have been studied and the relation among design parameters and concretes performance (i.e. workability, mechanical and insulating behaviour) have been discussed. The concretes have been developed first on the lab scale and then, for assessing their integration in traditional production cycles, on the industrial level. On the basis of the performances achieved, real non-structural applications have been proposed for these lightweight eco – friendly concretes with recycled plastic aggregates; their performances have been finally compared with those of similar commercial products. 7 2 Production of lightweight aggregates from secondary materials 2.1 Rigid Polyurethane foams aggregates Recycled Polyurethane (PU) aggregates are made from rejected, non-conform parts or scraps of rigid polyurethane foams. A typical manufacturing process basically consists in mechanical breaking the material to allow size reduction. The first step consists in crushing the raw material into small pieces and then feeding them into the shredding mill. Finally, the material is sieved and separated in different grades. 2.2 Mixed plastics aggregates The remaining plastic debris from the sorting of plastics from Municipal Solid Waste (MSW), commonly defined Mixed Plastic Waste (MPW), are the basis of these aggregates that mainly consist of PE and PP but also PET. Aggregates, herein referred as Remix (RX), have been produced in two different forms, Remix HD (high density) and Remix LD (light density) respectively. Remix HD is obtained by an extrusion process, while Remix LD by an extrusion/foaming process (using foaming agents also from waste) applied on Remix HD. 2 Polyurethane Mixed plastic waste Tyre rubber Figure 1: Secondary raw materials for producing aggregates 2.3 End-of-life rubber tyres aggregates Recycled tyre rubber (TR) recycled aggregates are fabricated trough the processing of scraps resulting from the sorting of end-of-life vehicles tyres. A typical production process begins with the removal of metallic and textile fibers from the tyres, followed by mechanical fragmentation. The tyres are firstly crushed with a system of knives and then enter to a granulator where are processed into aggregates of different gradings. 2 The process for producing expanded granules (Remix LD) has been patented by CETMA, these aggregates, in combination with extruded aggregates (Remix HD), have been never tested in other studies. 8 3 Characterization of lightweight aggregates from secondary materials In order to assess the suitability of the lightweight aggregates from secondary materials (PU, RX, TR) for concretes manufacturing, physical, mechanical and chemical characterizations have been carried out according to specific standards3 (Table 1): • loose
Recommended publications
  • Vermiculite Concrete Introduction Vermiculite Concrete Is a Low Density Non-Structural Construction Product
    Vermiculite Concrete Introduction Vermiculite concrete is a low density non-structural construction product. It is insulating (both thermally and acoustically) and intrinsically fire resistant. It is normally made simply by mixing exfoliated vermiculite as the aggregate, with cement and water, plus additives such as plasticisers if required. The ratio of exfoliated vermiculite aggregate to cement and the vermiculite grade can be varied to the properties such as strength and insulation as required for the concrete. The applications for vermiculite concrete are however, all non-structural. Vermiculite concretes can also be produced containing other lightweight aggregates, such as expanded perlite, to give differing physical properties. Normally the type of cement used in these mixes is Ordinary Portland Cement (O.P.C), although a higher initial strength may be obtained using Rapid Hardening Portland Cement (R.H.P.C). For high temperature refractory applications, high alumina (luminate in the USA) cements may be used with great success to manufacture lightweight in-situ cast insulation mixes and back up insulation products. However, these applications are beyond the scope of this specific application note. Applications for Vermiculite Concrete The principal applications for vermiculite concrete are for in-situ site mixed applications such as: • Floor and roof screeds • Void filling insulation mixes around chimneys, back boilers and fire backs • Blocks and slabs • Swimming pool bases [see separate application note for this application] Vermiculite concrete can be easily cut, sawed, nailed or screwed. The lower density vermiculite concrete screeds are usually covered with a denser topping mix of 4:1 or 5:1 sand to cement mix to a minimum depth of 25mm (1 inch); the screed and denser more load distributing topping should ideally be laid monolithically to prevent dis-bonding and shear fracturing between the screed and the topping.
    [Show full text]
  • Recycling of Autoclaved Aerated Concrete in Screed and Stabilized Sand
    RECYCLING OF AUTOCLAVED AERATED CONCRETE IN SCREED AND STABILIZED SAND Jef Bergmans1, Peter Nielsen2, Kris Broos3, Ruben Snellings4, Mieke Quaghebeur5 1 Researcher, VITO, [email protected] 2 Senior Researcher, VITO, [email protected] 3 Team Leader, VITO, [email protected] 4 Researcher, VITO, [email protected] 5 Program Manager, VITO, [email protected] ABSTRACT Autoclaved aerated concrete (AAC) is a lightweight cellular concrete that has been used for more than 80 years. Currently, however, no good recycling options for AAC from construction and demolition waste exist. The amount of AAC waste that can be recycled in the production of new AAC is limited because of quality issues. Furthermore, recycling AAC into traditional concrete or as unbound aggregate causes both technical and environmental problems because of the low compressive strength (2-8 MPa) of AAC and its high amount of leachable sulfate: typically > 10,000 mg/kg dm (L/S = 10). In this paper, recycled AAC waste was evaluated as a replacement of sand in a traditional screed (subfloor) and in cement stabilized sand products. A range of cements (CEM I, CEM II and CEM III), were used in combination with the crushed AAC waste aggregate (0-8 mm). During hydration a reaction of the AAC leachable sulfate and the aluminate contained in the cement resulted in the formation of (insoluble) ettringite. The main conditions influencing the formation of ettringite, and hence the leaching of sulfate, were examined in cement stabilized sand products. A sufficiently high pH was found to be crucial to meet sulfate leaching standards.
    [Show full text]
  • Chapter 8 - Concrete
    Chapter 8 - Concrete Chapter 8 - Concrete Chapter 8 - Concrete Concrete is formed from a hardened mixture of cement, water, sand, rock, air and certain admixtures through the chemical reaction called Hydration. Chapter 8 - Concrete Nearly every structure constructed in SD will utilize concrete in one form or another. The chapter will cover concrete from the point it is delivered to the construction site in its plastic state to its use in its final position. Inspection at Plant: This is covered in the Concrete Plants Manual Haul ticket Project Material Date Truck Number Water: Maximum Water: Actual Batch Size Time Start Mix Inspector: Plant Revolution: Initial Inspection at Delivery Your inspection of the concrete begins when the concrete reaches the structure site. Your inspection focuses on items that affect the strength and durability of the concrete. You will be tasked with performing the fresh concrete testing and also to closely monitor the operations of the pour. Inspection at Delivery Time Limits Inspection items Amount of Mixing which ultimately Slump affect strength and durability of concrete Air Content Temperature Concrete Cylinders Unit Weight Time Limits If concrete placement takes too long, it will start to “set up”. The following limits have been specified: Concrete mixed in hauling unit (Redi-mix truck) 50 – 80o F Discharge within 90 min. & screed within 105 min. 80 – 90o F Discharge within 45 min. & screed within 60 min. Concrete not mixed in hauling unit (uncommon for structures) 50 – 80o F - Discharge within 45 min. & screed within 60 min. 80 – 90o F - Discharge within 30 min. & screed within 45 min.
    [Show full text]
  • Sand-Cement Floor Screeds and Concrete Toppings
    sand-cement screeds and concrete toppings for floors 1. introduction 3. specification Screeds and toppings are commonly used as a means of 3.1 Suitability of screeds and toppings providing smooth flat floors in residential, commercial and Screeds are essentially light-duty flooring elements and are industrial buildings. Toppings may also be used to increase the suitable for: structural depth and strength of the base slab. • Wearing surfaces of floors of utility rooms in domestic premises (e.g. store rooms, garages) The aim of this publication is to provide the information • Floors covered with carpets, plastic tiles or linoleum, needed by architects, engineers and contractors for specifying etc and subjected to relatively light traffic such as in offices, and laying floor screeds and toppings of acceptable quality. shops and hospitals Information is provided on monolithic, bonded and unbonded screeds and toppings. Screeds are generally not suitable as wearing surfaces in commercial buildings, schools etc. or in industrial premises. 2. definitions Preferred methods of floor construction for such premises The following definitions are used in this document. are full-thickness trowelled concrete or a topping on a Screed: concrete base. A layer of well compacted material, commonly a mixture of cement and fine aggregate, that is applied to a base at the Screeds and toppings should be specified only where appropriate thickness and that has a surface suitable for placing and finishing the concrete floor to acceptable standards receiving a floor finish. is impracticable. Topping: 3.2 Surface finish A layer of high-strength concrete designed: Screeds a) to provide a dense, abrasion-resistant surface on a The surface of the screed should be finished according to the concrete base, or type of wearing surface or flooring that is to be laid.
    [Show full text]
  • Forming Accessories Handbook Concrete Construction Products
    BUILDING STRENGTH™ FORMING ACCESSORIES HANDBOOK CONCRETE CONSTRUCTION PRODUCTS Table of Contents General and Technical Information.............. 1 Medium/Heavy Forming ............................47 General Slabwork .......................................77 Definitions ....................................................................... 1 B1 Two Strut Coil Tie and B2 Four Strut Coil Tie ......... 47 C1B and C1C Wedge Hangers .....................................77 Safety Notes and Product Application ........................ 1 B1B3 and B2B3 Screw-On Coil Tie .......................... 48 C2 Coil Hanger Saddle Type ...................................... 78 Dayton Superior Technical Services ......................... 1 Coils ............................................................................... 49 C3 Coil Half Hanger .................................................... 79 Usage Affecting a Product’s Safe Working Load .............2 B6 Welding Coil Tie ..................................................... 49 C13 Plate Saddle Hanger ............................................ 79 Induced Tension Loads ................................................. 6 B7 and B22 Inserts (Crimp) ...................................... 49 C13A All-Wire Saddle Hanger ...................................80 Induced Shear Loads .................................................... 6 B11 Flat Washers ..........................................................50 C14 Channel Hanger.....................................................81 Combined Shear and
    [Show full text]
  • Pro Screed Eco
    PRO SCREED ECO BRAND/PRODUCT NAME PRO SCREED ECO MANUFACTURER PROTEC GREEN PTE LTD NO. 3 Sungei Kadut Street 6 Singapore 728851 Tel: 62695395 Fax: 63671008 SGBP 2018-1469 PRODUCT DESCRIPTION PRO SCREED ECO is an environmentally friendly premixed floor screed comprising of Portland Cement, carefully selected additives, aggregates and sand. PRO SCREED ECO needs only to be mixed with potable water to provide good workability and ease of use. PRO SCREED ECO mortar can be mixed with PRO BOND 202 latex admixture to produce a latex Portland Cement mortar that has exceptional high compressive and adhesion strength, shock proof and other enhanced physical properties. PRO SCREED ECO and PRO BOND 202 latex admixture mortar mix is also suitable for industrial and heavy vehicular traffic uses. ADVANTAGES • Factory blended pre-packed ensures high quality product • Easy mixing and application • Excellent compressive and adhesion strength • Weather resistant and durable • Economical – saves time, labour and money • High performance USES PRO SCREED ECO is designed to be use as a finishing floor screed or medium and thick levelling bed to receive tile/stone finishes. It can also be use for worn-out concrete and screed surface repair application. PRO SCREED ECO is suitable for interior or exterior application and is excellent for residential and industrial use. PSE - 1805 INSTALLATION TECHNICAL DATA Performance Properties: Surface Preparation TEST/TEST METHOD RESULTS Surfaces receiving PRO SCREED ECO must be Compressive Strength ≥ 25 N/mm2 clean and free of dust, oil and all impurities/ ASTM C109/109M : 2013 ≤ 40 N/mm2 contaminants that might inhibit bonding. Good Flow 80% - 120% construction practices like washing of ASTM C1437 : 2013 substrate a day before screeding is highly Water Absorption < 5% encouraged.
    [Show full text]
  • Agilia Screed A
    ’17 Technical Guide AGILIA™ SCREED A: A PUMP-APPLIED FREE-FLOWING FLOOR SCREED LAFARGE RMX EASTERN CANADA ARCHITECTS ENGINEERS DEVELOPERS CONTRACTORS INTRODUCTION Introducing: Agilia™ Screed A Lafarge is proud to introduce the innovative technology of Agilia™ Screed A, a pump- applied, free-flowing, self-consolidating synth- etic anhydrite screed. This guide has been developed by Lafarge to provide both practical and technical knowledge on Agilia™ Screed A, including direction for the application of this easily placed floor topping, and insight to the unique characteristics of this newly developed concrete product. The following material is compiled with the intention of acting as a resourceful tool when working with the product, Agilia™ Screed A, or simply just learning about it’s advantages in the world of ready mix concrete. 2 PAGE | LA FARGE CONCRETE LAFARGE GROUP A company of more than 170 years of tradition and experience, Lafarge is the world’s leader in building materials, extracting resources from the heart of the earth and bringing them to life. Present in 78 countries, Lafarge responds to the world’s demands driven by the needs of the customer, the shareholder and the local communities. At a global level, Lafarge is: n° 1 in Cement, n° 2 in Aggregates, n° 3 in Concrete, n° 3 in Gypsum. Lafarge is dedicated to developing advanced solutions for our customer’s challenges. On major leap in the ready mix concrete sector is the develop- ment of our innovative, value-added products. Agilia, the self-consolidating concrete, Chronolia, a high-early strength concrete, Extensia, a low shrinkage concrete, Artevia architectural concrete collection, and Hydromedia, permeable concrete.
    [Show full text]
  • How to Avoid Screed Failure
    WHITEPAPER Contact the Flooring Specialist +60 3 6277 9575 [email protected] How To Avoid Screed Failure Screeds provide a vital layer in a floor that bonds the finish people see and walk across to the concrete substrate of the building’s construction. If properly applied and maintained then most screeds need never be seen until the building comes to the end of its life and is dismantled. However failures in the planning, application, curing or drying processes can lead to later, potentially very costly, problems. Why Install a Screed? Generally speaking there are two types of Screeds are required when a colourful or screed, a semi-dry formula which is hand functional floor is needed rather than a bare applied and then trowelled to a finish and a concrete surface. For industrial purposes, or liquid, free-flowing mixture that is pumped to commercial locations which will undergo a prescribed depth. frequent traffic, a more robust screed is required than is used in residential projects. Of these types there are several different identifiable screeds with different properties Most screeds are used for internal purposes which will thrive or fail in various environments only, often covering heating systems, acoustic and which can be applied in varying thicknesses: or thermal insulation. Polymer-modified screeds can be installed in external locations as they 1. Modified Semi-Dry Cementitious are hard-wearing, water resistant and able to 2. Modified Self Levelling Cementitious withstand a more rigorous environment. 3. Modified Self Levelling Non Cementitious 4. Anhydrite Traditionally screeds are sand and cement 5. Wearing Granolithic mixtures, blended and applied on site.
    [Show full text]
  • Understanding Self-Leveling Underlayment Formulation and Usage
    Technical White Paper SELF-LEVELING FORMULATIONS Understanding Self-Leveling Underlayment Formulation and Usage Self-leveling underlayments (SLUs) are the go-to technology for preparing a floor to receive tile, stone, resilient and wood finishes. More stringent requirements for floor flatness, floor levelness and smoothness — as well as the needs of fast-track construction — have led to the increased use of SLUs. From residential remodels to tenant By Will White improvements to new high-rise construction, SLUs provide value to Director of Technical the owner, designer/architect and contractor. The CustomTech® line Communications and Training for Custom of flooring preparation products includes a range of SLUs is designed Building Products, to provide the right product for a variety of floor leveling needs. Technical White Paper SELF-LEVELING FORMULATIONS Today, floor flatness is more important than ever with luxury vinyl planks and large format ceramic tiles. A deeper discussion of floor flatness can be reviewed in Custom Building Products' White Paper WP125 “Achieving Resilient and Wood Floor Covering Flatness Requirements with High Performance, Cementitious Self-Leveling Underlayments”. Most floor covering manufacturers require a high degree of flatness. The flatness of the floor is most important when the full expanse of the floor is viewed. Any waviness or variation in the floor can easily distract from the beauty of the floor covering itself. ASTM / American Society for Testing and Materials, practice F710 – "Standard Practice for Preparing Concrete Floors to Receive Reslient Flooring" defines the requirements for a flat floor that will receive resilient floor covering. It requires that the variation in floor flatness be no more than 3/16" in 10' and 1/32" in 12".
    [Show full text]
  • Degruyter Rams Rams-2021-0044 553..566 ++
    Reviews on Advanced Materials Science 2021; 60: 553–566 Research Article Xiaoyong Zhang, Chang Xia, and Yu Chen* Research on nano-concrete-filled steel tubular columns with end plates after lateral impact https://doi.org/10.1515/rams-2021-0044 received March 16, 2021; accepted June 16, 2021 1 Introduction Abstract: This paper presents thirteen square columns to Normal concrete is widely used in civil engineering struc- study the behavior of nano-concrete-filled steel tubular tures because of ubiquitous availability and low cost. columns with end plates after lateral impact. The failure However, the low tensile strength, brittle behavior, and modes of the square columns subjected to lateral impact low strain capacity of normal concrete still exist. The damage or not subjected to lateral impact damage were application of nano-materials in many engineering fields - compared. The lateral impact loading height, steel tub has shown a new way to improve the performance of ular thickness, and column height were set as the test nominal concrete. Nano-SiO2 is one of the most widely ff parameters in these tests. The e ects of test parameters used supplements in nano-concrete because of its special ff on the ultimate capacity, initial sti ness, and ductility of surface and interface effects [1], which could greatly columns are discussed in this paper. The bearing capacity improve the property of concrete to achieve the high eco- of square columns is decreased because of the lateral nomic efficiency [2]. The application of nano-concrete in impact loading which can also be concluded from the concrete structure was studied by the scholars [3], indi- test results.
    [Show full text]
  • Blue Book 2014
    1 The Blue Book 2014 THE BLUE BOOK Property and Construction Handbook International Edition 2014 AECOM 1 FOREWORD The world is looking towards a new era of growth, and a new economic and political context in which to deliver it. This follows the economic turmoil of recent years — of a scale not seen since the1930s. As global business and construction trends rebound, our industry needs to take an active role in how this new era will be formed. Enhancing productivity is now of paramount importance to realizing sustainable economic growth. As an industry we are faced with challenges such as shifting demographics, limited public funding, tightening of credit terms and a lack of sufficient investment in infrastructure. However, we also see Jason Prior great opportunities in integrating new Global chief executive, buildings + places technologies, applying advanced materials, leveraging alternative financing, and rapidly sharing knowledge and resources across an increasingly globalized world. While some of these factors we have faced before as part of the cyclical nature of our industry, many we have not. Structural changes are reshaping our national economies and this requires a new way of thinking. In this regard, we felt it was the ideal time to release the first international edition of our annual industry handbook. This Blue Book draws upon knowledge and experience from our leading thinkers across the globe as we explore some of the big ideas needed to improve productivity. I hope you find the 2014 Blue Book insightful and as always we welcome
    [Show full text]
  • Nanotechnology; Advancements and Concerns in Construction Industries
    International Conference on Earth, Environment and Life sciences (EELS-2014) Dec. 23-24, 2014 Dubai (UAE) Nanotechnology; Advancements and Concerns in Construction Industries Emmanuel Emem-Obong Agbenyeku, Edison Muzenda, and Innocent Mandla Msibi plastics, glass, timber, metals etc., have been reported as Abstract—This paper lays emphasis on recent developments important materials under constant study for reasons of pertaining the utilization of nano-materials in active areas of improvement and to serve as substitutes to the costly construction industry around the globe. The pertinence of conventional products [4]. Stone aggregates and timber are nanotechnology towards the sustainable growth of the construction considered the oldest materials used by early humans for industry worldwide has become of chief interest. The paper shelter against wild beasts and the elements. Like every other introduced and highlighted a few applications of important nano building components presently in circulation. The paper further species, building materials have passed through an documented a few merits of nanotechnology and demerits in terms of evolutionary era and presently concrete and steel are the severe health risks linked to the use of nanotechnology. Developing modern giants in construction industry. With the advancement countries should therefore be technologically prepared before the in technology, newer and smarter materials have been incorporation of this growing technology into their systems. Some discovered and developed by engineers and scientists in a parts of the developed world have successfully engaged in large area of interest. The utilization of nanotechnology and construction projects using nanotechnology. The dangers however, nano-materials in diverse areas of engineering has eventually should be generally known and remedies sought after such that nano emerged as a new initiative under continuous investigation and building resources could be harnessed and effused safely and propagation.
    [Show full text]