Streptococcus and Enterococcus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio In
microorganisms Review The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease Spase Stojanov 1,2, Aleš Berlec 1,2 and Borut Štrukelj 1,2,* 1 Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] (S.S.); [email protected] (A.B.) 2 Department of Biotechnology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia * Correspondence: borut.strukelj@ffa.uni-lj.si Received: 16 September 2020; Accepted: 31 October 2020; Published: 1 November 2020 Abstract: The two most important bacterial phyla in the gastrointestinal tract, Firmicutes and Bacteroidetes, have gained much attention in recent years. The Firmicutes/Bacteroidetes (F/B) ratio is widely accepted to have an important influence in maintaining normal intestinal homeostasis. Increased or decreased F/B ratio is regarded as dysbiosis, whereby the former is usually observed with obesity, and the latter with inflammatory bowel disease (IBD). Probiotics as live microorganisms can confer health benefits to the host when administered in adequate amounts. There is considerable evidence of their nutritional and immunosuppressive properties including reports that elucidate the association of probiotics with the F/B ratio, obesity, and IBD. Orally administered probiotics can contribute to the restoration of dysbiotic microbiota and to the prevention of obesity or IBD. However, as the effects of different probiotics on the F/B ratio differ, selecting the appropriate species or mixture is crucial. The most commonly tested probiotics for modifying the F/B ratio and treating obesity and IBD are from the genus Lactobacillus. In this paper, we review the effects of probiotics on the F/B ratio that lead to weight loss or immunosuppression. -
Streptococcus Agalactiae Using Strand Invasion Based Amplification (SIBA®) Method
Sanna Hirvonen Rapid detection of Streptococcus agalactiae using Strand Invasion Based Amplification (SIBA®) Method Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Biotechnology and Food Engineering Bachelor’s Thesis 01.06.2017 Abstract Author(s) Sanna Hirvonen Title Rapid detection of Streptococcus agalactiae using Strand In- vasion Based Amplification (SIBA®) Method Number of Pages 41 pages + 1 appendix Date 1. June 2017 Degree Bachelor of Engineering Degree Programme Biotechnology and Food Engineering Specialisation option Kevin Eboigbodin, Senior Development Manager Instructor(s) Kirsi Moilanen, Project Manager Tiina Soininen, Senior Lecturer The aim of this Bachelor’s thesis was to develop a new and rapid method for the detection of Streptococcus agalactiae by using the isothermal SIBA®-method. S. agalactiae, i.e. group B streptococcus (GBS), is the leading cause of severe neonatal infections. In addi- tion, it causes infections for pregnant women, the elderly and people, who have some chronic disease. The experimental part of this thesis was executed at Orion Diagnostica’s Research and Development laboratory. The thesis was started by conducting oligoscreening to find the most suitable primer combinations. Along with the screening, GBS was grown on blood agar plate and LB broth. The genomic DNA was extracted from LB broth and quantified with qPCR. Primer combinations that passed the oligoscreening were tested with the ge- nomic DNA. Suitable assays were optimized, the sensitivity and specificity of the assays were tested, and the best assay was freeze-dried. In addition, the effect of different lytic enzymes to SIBA® reaction and GBS cells was tested. Lastly, the developed SIBA GBS assay was tested with clinical samples by using freeze-dried reagents. -
Drug-Resistant Streptococcus Pneumoniae and Methicillin
NEWS & NOTES Conference Summary pneumoniae can vary among popula- conference sessions was that statically tions and is influenced by local pre- sound methods of data collection that Drug-resistant scribing practices and the prevalence capture valid, meaningful, and useful of resistant clones. Conference pre- data and meet the financial restric- Streptococcus senters discussed the role of surveil- tions of state budgets are indicated. pneumoniae and lance in raising awareness of the Active, population-based surveil- Methicillin- resistance problem and in monitoring lance for collecting relevant isolates is the effectiveness of prevention and considered the standard criterion. resistant control programs. National- and state- Unfortunately, this type of surveil- Staphylococcus level epidemiologists discussed the lance is labor-intensive and costly, aureus benefits of including state-level sur- making it an impractical choice for 1 veillance data with appropriate antibi- many states. The challenges of isolate Surveillance otic use programs designed to address collection, packaging and transport, The Centers for Disease Control the antibiotic prescribing practices of data collection, and analysis may and Prevention (CDC) convened a clinicians. The potential for local sur- place an unacceptable workload on conference on March 12–13, 2003, in veillance to provide information on laboratory and epidemiology person- Atlanta, Georgia, to discuss improv- the impact of a new pneumococcal nel. ing state-based surveillance of drug- vaccine for children was also exam- Epidemiologists from several state resistant Streptococcus pneumoniae ined; the vaccine has been shown to health departments that have elected (DRSP) and methicillin-resistant reduce infections caused by resistance to implement enhanced antimicrobial Staphylococcus aureus (MRSA). -
Current Trends of Enterococci in Dairy Products: a Comprehensive Review of Their Multiple Roles
foods Review Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles Maria de Lurdes Enes Dapkevicius 1,2,* , Bruna Sgardioli 1,2 , Sandra P. A. Câmara 1,2, Patrícia Poeta 3,4 and Francisco Xavier Malcata 5,6,* 1 Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal; [email protected] (B.S.); [email protected] (S.P.A.C.) 2 Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal 3 Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; [email protected] 4 Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisboa, Portugal 5 LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 420-465 Porto, Portugal 6 FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal * Correspondence: [email protected] (M.d.L.E.D.); [email protected] (F.X.M.) Abstract: As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, Citation: Dapkevicius, M.d.L.E.; and rheological properties, thus contributing to the development of its typical sensorial properties. Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autoly- Malcata, F.X. -
Association Between Carriage of Streptococcus Pneumoniae and Staphylococcus Aureus in Children
BRIEF REPORT Association Between Carriage of Streptococcus pneumoniae and Staphylococcus aureus in Children Gili Regev-Yochay, MD Context Widespread pneumococcal conjugate vaccination may bring about epidemio- Ron Dagan, MD logic changes in upper respiratory tract flora of children. Of particular significance may Meir Raz, MD be an interaction between Streptococcus pneumoniae and Staphylococcus aureus, in view of the recent emergence of community-acquired methicillin-resistant S aureus. Yehuda Carmeli, MD, MPH Objective To examine the prevalence and risk factors of carriage of S pneumoniae Bracha Shainberg, PhD and S aureus in the prevaccination era in young children. Estela Derazne, MSc Design, Setting, and Patients Cross-sectional surveillance study of nasopharyn- geal carriage of S pneumoniae and nasal carriage of S aureus by 790 children aged 40 Galia Rahav, MD months or younger seen at primary care clinics in central Israel during February 2002. Ethan Rubinstein, MD Main Outcome Measures Carriage rates of S pneumoniae (by serotype) and S aureus; risk factors associated with carriage of each pathogen. TREPTOCOCCUS PNEUMONIAE AND Results Among 790 children screened, 43% carried S pneumoniae and 10% car- Staphylococcus aureus are com- ried S aureus. Staphylococcus aureus carriage among S pneumoniae carriers was 6.5% mon inhabitants of the upper vs 12.9% in S pneumoniae noncarriers. Streptococcus pneumoniae carriage among respiratory tract in children and S aureus carriers was 27.5% vs 44.8% in S aureus noncarriers. Only 2.8% carried both Sare responsible for common infec- pathogens concomitantly vs 4.3% expected dual carriage (P=.03). Risk factors for tions. Carriage of S aureus and S pneu- S pneumoniae carriage (attending day care, having young siblings, and age older than moniae can result in bacterial spread and 3 months) were negatively associated with S aureus carriage. -
Clostridium Difficile Infection: How to Deal with the Problem DH INFORMATION RE ADER B OX
Clostridium difficile infection: How to deal with the problem DH INFORMATION RE ADER B OX Policy Estates HR / Workforce Commissioning Management IM & T Planning / Finance Clinical Social Care / Partnership Working Document Purpose Best Practice Guidance Gateway Reference 9833 Title Clostridium difficile infection: How to deal with the problem Author DH and HPA Publication Date December 2008 Target Audience PCT CEs, NHS Trust CEs, SHA CEs, Care Trust CEs, Medical Directors, Directors of PH, Directors of Nursing, PCT PEC Chairs, NHS Trust Board Chairs, Special HA CEs, Directors of Infection Prevention and Control, Infection Control Teams, Health Protection Units, Chief Pharmacists Circulation List Description This guidance outlines newer evidence and approaches to delivering good infection control and environmental hygiene. It updates the 1994 guidance and takes into account a national framework for clinical governance which did not exist in 1994. Cross Ref N/A Superseded Docs Clostridium difficile Infection Prevention and Management (1994) Action Required CEs to consider with DIPCs and other colleagues Timing N/A Contact Details Healthcare Associated Infection and Antimicrobial Resistance Department of Health Room 528, Wellington House 133-155 Waterloo Road London SE1 8UG For Recipient's Use Front cover image: Clostridium difficile attached to intestinal cells. Reproduced courtesy of Dr Jan Hobot, Cardiff University School of Medicine. Clostridium difficile infection: How to deal with the problem Contents Foreword 1 Scope and purpose 2 Introduction 3 Why did CDI increase? 4 Approach to compiling the guidance 6 What is new in this guidance? 7 Core Guidance Key recommendations 9 Grading of recommendations 11 Summary of healthcare recommendations 12 1. -
Biofire Blood Culture Identification System (BCID) Fact Sheet
BioFire Blood Culture Identification System (BCID) Fact Sheet What is BioFire BioFire BCID is a multiplex polymerase chain reaction (PCR) test designed to BCID? identify 24 different microorganism targets and three antibiotic resistance genes from positive blood culture bottles. What is the purpose The purpose of BCID is to rapidly identify common microorganisms and of BCID? antibiotic resistance genes from positive blood cultures so that antimicrobial therapy can be quickly optimized by the physician and the antibiotic stewardship pharmacist. It is anticipated that this will result in improved patient outcomes, decreased length of stay, improved antibiotic stewardship, and decreased costs. When will BCID be BCID is performed on all initially positive blood cultures after the gram stain is routinely performed and reported. performed? When will BCID not For blood cultures on the same patient that subsequently become positive with be routinely a microorganism showing the same morphology as the initial positive blood performed? culture, BCID will not be performed. BCID will not be performed on positive blood cultures with gram positive bacilli unless Listeria is suspected. BCID will not be performed on blood culture bottles > 8 hours after becoming positive. BCID will not be performed between 10PM-7AM on weekdays and 2PM-7AM on weekends. BCID will not be performed for clinics that have specifically opted out of testing. How soon will BCID After the blood culture becomes positive and the gram stain is performed and results be available? reported, the bottle will be sent to the core Microbiology lab by routine courier. BCID testing will then be performed. It is anticipated that total turnaround time will generally be 2-3 hours after the gram stain is reported. -
Goals of This Review Testable Concepts Fundamentals: Host
41a –Infections in the Neutropenic Cancer Patient and Hematopoietic Stem Cell Recipients Speaker: Kieren Marr, MD Disclosures of Financial Relationships with Relevant Commercial Interests • Consultant – Amplyx, Cidara, Merck and Company, Infections in the Neutropenic Cancer Patient and Sfunga Therapeutics Hematopoietic Stem Cell Recipients • Ownership Interests – MycoMed Technologies Kieren Marr, MD Professor of Medicine and Oncology John Hopkins University School of Medicine Director, Transplant and Oncology Infectious Diseases John Hopkins University School of Medicine Goals of This Review Testable Concepts • Immune compromised people develop “typical” • Think about the patient infections and those specific to their underlying risks – How does underlying disease impact risks? • Focus here on testable complications specific to the • Think about the treatment received host – What type of immune suppression? – Types of immune – suppressing drugs and diseases • Think about infections breaking through preventative – Recognition of specific “neutropenic syndromes” therapies • Skin lesions – A good context to test resistance and differentials • Invasive fungal infections • Think about common non‐infectious syndromes • Neutropenic colitis Fundamentals: Host Immune Risks Classic Immunologic risks • Immune defects associated with underlying • Neutropenia malignancy (and prior therapies) – Prolonged (>10 days) and profound (< 500 cells / mm3) – AML and myelodysplastic syndromes (MDS) associated with high risks for severe bacterial and fungal • -
Pdfs/ Ommended That Initial Cultures Focus on Common Pathogens, Pscmanual/9Pscssicurrent.Pdf)
Clinical Infectious Diseases IDSA GUIDELINE A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya J. Michael Miller,1 Matthew J. Binnicker,2 Sheldon Campbell,3 Karen C. Carroll,4 Kimberle C. Chapin,5 Peter H. Gilligan,6 Mark D. Gonzalez,7 Robert C. Jerris,7 Sue C. Kehl,8 Robin Patel,2 Bobbi S. Pritt,2 Sandra S. Richter,9 Barbara Robinson-Dunn,10 Joseph D. Schwartzman,11 James W. Snyder,12 Sam Telford III,13 Elitza S. Theel,2 Richard B. Thomson Jr,14 Melvin P. Weinstein,15 and Joseph D. Yao2 1Microbiology Technical Services, LLC, Dunwoody, Georgia; 2Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; 3Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; 5Department of Pathology, Rhode Island Hospital, Providence; 6Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill; 7Department of Pathology, Children’s Healthcare of Atlanta, Georgia; 8Medical College of Wisconsin, Milwaukee; 9Department of Laboratory Medicine, Cleveland Clinic, Ohio; 10Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan; 11Dartmouth- Hitchcock Medical Center, Lebanon, New Hampshire; 12Department of Pathology and Laboratory Medicine, University of Louisville, Kentucky; 13Department of Infectious Disease and Global Health, Tufts University, North Grafton, Massachusetts; 14Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, Illinois; and 15Departments of Medicine and Pathology & Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey Contents Introduction and Executive Summary I. -
Universidade Do Algarve Investigation of Listeria Monocytogenes And
Universidade do Algarve Investigation of Listeria monocytogenes and Streptococcus pneumoniae mutants in in vivo models of infection Ana Raquel Chaves Mendes de Alves Porfírio Dissertação para a obtenção do Grau de Mestrado em Engenharia Biológica Tese orientada pelo Prof. Dr. Peter W. Andrew e coorientada pela Prof. Dr. Maria Leonor Faleiro 2015 I Investigation of Streptococcus pneumoniae and Listeria monocytogenes mutants in in vivo models of infection Declaro ser a autora deste trabalho, que é original e inédito. Autores e trabalhos consultados estão devidamente citados no texto e constam na listagem de referências incluída. Copyright © 2015, por Ana Raquel Chaves Mendes de Alves Porfírio A Universidade do Algarve tem o direito, perpétuo e sem limites geográficos, de arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de repositórios científicos e de admitir a sua copia e distribuição com objetivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. II “I was taight that the way of progress was neither swift nor easy” – Marie Curie III Acknowledgements First of all I would like to thank the University of Algarve and the University of Leicester for providing me with the amazing opportunity of doing my dissertation project abroad. I wish to particularly express my deepest gratitude to my supervisors Prof. Peter Andrew and Prof. Maria Leonor Faleiro for their continuous guidance and support throughout this project. Their useful insight and feedback was thoroughly appreciated. -
Beta-Haemolytic Streptococci (BHS)
technical sheet Beta-Haemolytic Streptococci (BHS) Classification Transmission Gram-positive cocci, often found in chains Transmission is generally via direct contact with nasopharyngeal secretions from ill or carrier animals. Family Animals may also be infected by exposure to ill or Streptococcaceae carrier caretakers. β-haemolytic streptococci are characterized by Lancefield grouping (a characterization based on Clinical Signs and Lesions carbohydrates in the cell walls). Only some Lancefield In mice and rats, generally none. Occasional groups are of clinical importance in laboratory rodents. outbreaks of disease associated with BHS are Streptococci are generally referred to by their Lancefield reported anecdotally and in the literature. In most grouping but genus and species are occasionally used. cases described, animals became systemically ill after experimental manipulation, and other animals Group A: Streptococcus pyogenes in the colony were found to be asymptomatic Group B: Streptococcus agalactiae carriers. In a case report not involving experimental Group C: Streptococcus equi subsp. zooepidemicus manipulation, DBA/2NTac mice and their hybrids were Group G: Streptococcus canis more susceptible to an ascending pyelonephritis and subsequent systemic disease induced by Group B Affected species streptococci than other strains housed in the same β-haemolytic streptococci are generally considered barrier. opportunists that can colonize most species. Mice and guinea pigs are reported most frequently with clinical In guinea pigs, infection with Group C streptococci signs, although many rodent colonies are colonized leads to swelling and infection of the lymph nodes. with no morbidity, suggesting disease occurs only with Guinea pigs can be inapparent carriers of the organism severe stress or in other exceptional circumstances. -
Pathodxtra Strep Grouping
of extracted streptococci antigens of prepared (as described in test procedure on solid media) representative strains of Lancefield Groups A Colonies On Solid Media: with an uninoculated mixing stick or inoculating loop. The A, B, C, D, F and G. The solution contains 1 Label one 12 × 75 mm test tube for each specimen. latex suspension should not show significant agglutination 0.098% sodium azide as preservative. Store 2 Add 1 free flowing drop of Reagent 1 to each specimen and the result serves as a control for direct comparison of at 2 to 8°C; stable until the expiration date tube by squeezing the bottle gently in a vertical the test performed with bacterial extract. Key Code TSMX7733B position. marked on the label. c) Carry out the complete test procedure on stock cultures www.oxoid.com/ifu 3 Pick 1 to 4 isolated ß-haemolytic colonies with a Reagent 1 (DR0709A) disposable applicator stick or with an inoculating loop of known groups. Europe + 800 135 79 135 US 1 855 236 0910 One bottle containing 4.0 ml of a blue and resuspend them in Reagent 1. (If colonies are 10 RESULTS CA 1 855 805 8539 ROW +31 20 794 7071 coloured sodium nitrite solution with minute sufficient colonies should be resuspended in 0.098% sodium azide as preservative. Store Reagent 1 to ensure it becomes turbid.) Do not use INTERPRETATION upright and tightly capped; stable at 2 to a swab, since it will absorb too much of the liquid 10.1 POSITIVE RESULT: A positive reaction occurs when there volume.