1 Lp Spaces and Banach Spaces

Total Page:16

File Type:pdf, Size:1020Kb

1 Lp Spaces and Banach Spaces IVbookroot July 6, 2011 Copyrighted Material 1 Lp Spaces and Banach Spaces In this work the assumption of quadratic integrability will be replaced by the integrability of jf(x)jp. The analysis of these function classes will shed a particu­ lar light on the real and apparent advantages of the exponent 2; one can also expect that it will provide essential material for an axiomatic study of function spaces. F. Riesz, 1910 At present I propose above all to gather results about linear operators defined in certain general spaces, no­ tably those that will here be called spaces of type (B)... S. Banach, 1932 Function spaces, in particular Lp spaces, play a central role in many questions in analysis. The special importance of Lp spaces may be said to derive from the fact that they offer a partial but useful generalization of the fundamental L2 space of square integrable functions. In order of logical simplicity, the space L1 comes first since it occurs already in the description of functions integrable in the Lebesgue sense. Connected to it via duality is the L1 space of bounded functions, whose supremum norm carries over from the more familiar space of continuous functions. Of independent interest is the L2 space, whose origins are tied up with basic issues in Fourier analysis. The intermediate Lp spaces are in this sense an artifice, although of a most inspired and fortuitous kind. That this is the case will be illustrated by results in the next and succeeding chapters. In this chapter we will concentrate on the basic structural facts about the Lp spaces. Here part of the theory, in particular the study of their linear functionals, is best formulated in the more general context of Ba­ nach spaces. An incidental benefit of this more abstract view-point is that it leads us to the surprising discovery of a finitely additive measure on all subsets, consistent with Lebesgue measure. IVbookroot July 6, 2011 Copyrighted Material 2 Chapter 1. LP SPACES AND BANACH SPACES 1 Lp spaces Throughout this chapter (X; F; ¹) denotes a σ-finite measure space: X denotes the underlying space, F the σ-algebra of measurable sets, and ¹ the measure. If 1 · p < 1, the space Lp(X; F; ¹) consists of all complex- valued measurable functions on X that satisfy Z p (1) jf (x)j d¹(x) < 1: X p p p To simplify the notation, we write L (X; ¹), or L (X), or simply L when the underlying measure space has been specified. Then, if f 2 p p L (X; F; ¹) we define the L norm of f by (Z ¶1=p p kfkLp(X;F;¹) = jf(x)j d¹(x) : X We also abbreviate this to kfkLp(X), kfkLp , or kfkp. 1 When p = 1 the space L (X; F; ¹) consists of all integrable functions 1 on X, and we have shown in Chapter 6 of Book III, that L together with k ¢ kL1 is a complete normed vector space. Also, the case p = 2 warrants special attention: it is a Hilbert space. We note here that we encounter the same technical point that we al­ ready discussed in Book III. The problem is that kfkLp = 0 does not imply that f = 0, but merely f = 0 almost everywhere (for the measure ¹). Therefore, the precise definition of Lp requires introducing the equiv­ alence relation, in which f and g are equivalent if f = g a.e. Then, Lp consists of all equivalence classes of functions which satisfy (1). However, in practice there is little risk of error by thinking of elements in Lp as functions rather than equivalence classes of functions. The following are some common examples of Lp spaces. (a) The case X = Rd and ¹ equals Lebesgue measure is often used in practice. There, we have (Z ¶1=p p kfkLp = jf(x)j dx : Rd (b) Also, one can take X = Z, and ¹ equal to the counting measure. p Then, we get the “discrete” version of the L spaces. Measurable functions are simply sequences f = fangn2Z of complex numbers, IVbookroot July 6, 2011 Copyrighted Material 1. Lp spaces 3 and à ! 1 1=p X p kf kLp = janj : n=¡1 2 When p = 2, we recover the familiar sequence space ` (Z). p The spaces L are examples of normed vector spaces. The basic prop­ erty satisfied by the norm is the triangle inequality, which we shall prove shortly. The range of p which is of interest in most applications is 1 · p < 1, and later also p = 1. There are at least two reasons why we restrict our attention to these values of p: when 0 < p < 1, the function k ¢ kLp does not satisfy the triangle inequality, and moreover, for such p, the space p 1 L has no non-trivial bounded linear functionals. (See Exercise 2.) 1 When p = 1 the norm k ¢ kL1 satisfies the triangle inequality, and L is a complete normed vector space. When p = 2, this result continues to hold, although one needs the Cauchy-Schwarz inequality to prove it. In the same way, for 1 · p < 1 the proof of the triangle inequality relies on a generalized version of the Cauchy-Schwarz inequality. This is H¨older’s p inequality, which is also the key in the duality of the L spaces, as we will see in Section 4. 1.1 The HÄolder and Minkowski inequalities If the two exponents p and q satisfy 1 · p; q · 1, and the relation 1 1 + = 1 p q holds, we say that p and q are conjugate or dual exponents. Here, 0 we use the convention 1=1 = 0. Later, we shall sometimes use p to denote the conjugate exponent of p. Note that p = 2 is self-dual, that is, p = q = 2; also p = 1; 1 corresponds to q = 1; 1 respectively. Theorem 1.1 (HÄolder) Suppose 1 < p < 1 and 1 < q < 1 are conju­ p q 1 gate exponents. If f 2 L and g 2 L , then fg 2 L and kfgkL1 · kfkLp kgkLq : 1 Note. Once we have defined L (see Section 2) the corresponding in­ equality for the exponents 1 and 1 will be seen to be essentially trivial. 1We will de¯ne what we mean by a bounded linear functional later in the chapter. IVbookroot July 6, 2011 Copyrighted Material 4 Chapter 1. LP SPACES AND BANACH SPACES The proof of the theorem relies on a simple generalized form of the arithmetic-geometric mean inequality: if A; B ¸ 0, and 0 · θ · 1, then θ 1¡θ (2) A B · θA + (1 ¡ θ)B: Note that when θ = 1=2, the inequality (2) states the familiar fact that the geometric mean of two numbers is majorized by their arithmetic mean. To establish (2), we observe first that we may assume B 6= 0, and θ replacing A by AB, we see that it suffices to prove that A · θA + (1 ¡ θ 0 θ¡1 θ). If we let f (x) = x ¡ θx ¡ (1 ¡ θ), then f (x) = θ(x ¡ 1). Thus f(x) increases when 0 · x · 1 and decreases when 1 · x, and we see that the continuous function f attains a maximum at x = 1, where f(1) = 0. Therefore f(A) · 0, as desired. To prove H¨older’s inequality we argue as follows. If either kfkLp = 0 or kfkLq = 0, then fg = 0 a.e. and the inequality is obviously verified. Therefore, we may assume that neither of these norms vanish, and after replacing f by f=kf kLp and g by g=kgkLq , we may further assume that kfkLp = kgkLq = 1. We now need to prove that kfgkL1 · 1. p q If we set A = jf(x)j , B = jg(x)j , and θ = 1=p so that 1 ¡ θ = 1=q, then (2) gives 1p 1 q jf(x)g(x)j · jf (x)j + jg(x)j : p q Integrating this inequality yields kfgkL1 · 1, and the proof of the H¨older inequality is complete. For the case when the equality kfgkL1 = kfkLp kgkLq holds, see Exer­ cise 3. p We are now ready to prove the triangle inequality for the L norm. p Theorem 1.2 (Minkowski) If 1 · p < 1 and f; g 2 L , then f + g 2 p L and kf + gkLp · kf kLp + kgkLp . Proof. The case p = 1 is obtained by integrating jf(x) + g(x)j · jf(x)j + jg(x)j. When p > 1, we may begin by verifying that f + g 2 Lp, when both f and g belong to Lp. Indeed, jf(x) + g(x)jp · 2p(jf(x)jp + jg(x)jp); as can be seen by considering separately the cases jf (x)j · jg(x)j and jg(x)j · jf(x)j. Next we note that jf(x) + g(x)jp · jf (x)j jf(x) + g(x)jp¡1 + jg(x)j jf (x) + g(x)jp¡1 : IVbookroot July 6, 2011 Copyrighted Material 1. Lp spaces 5 If q denotes the conjugate exponent of p, then (p ¡ 1)q = p, so we see p¡1 q that (f + g) belongs to L , and therefore H¨older’s inequality applied to the two terms on the right-hand side of the above inequality gives p p¡1 p¡1 (3) kf + gkLp · kfkLp k(f + g) kLq + kgkLp k(f + g) kLq : However, using once again (p ¡ 1)q = p, we get p¡1 p=q k(f + g) kLq = kf + gkLp : From (3), since p ¡ p=q = 1, and because we may suppose that kf + gkLp > 0, we find kf + gkLp · kfkLp + kgkLp ; so the proof is finished.
Recommended publications
  • On Quasi Norm Attaining Operators Between Banach Spaces
    ON QUASI NORM ATTAINING OPERATORS BETWEEN BANACH SPACES GEUNSU CHOI, YUN SUNG CHOI, MINGU JUNG, AND MIGUEL MART´IN Abstract. We provide a characterization of the Radon-Nikod´ymproperty in terms of the denseness of bounded linear operators which attain their norm in a weak sense, which complement the one given by Bourgain and Huff in the 1970's. To this end, we introduce the following notion: an operator T : X ÝÑ Y between the Banach spaces X and Y is quasi norm attaining if there is a sequence pxnq of norm one elements in X such that pT xnq converges to some u P Y with }u}“}T }. Norm attaining operators in the usual (or strong) sense (i.e. operators for which there is a point in the unit ball where the norm of its image equals the norm of the operator) and also compact operators satisfy this definition. We prove that strong Radon-Nikod´ymoperators can be approximated by quasi norm attaining operators, a result which does not hold for norm attaining operators in the strong sense. This shows that this new notion of quasi norm attainment allows to characterize the Radon-Nikod´ymproperty in terms of denseness of quasi norm attaining operators for both domain and range spaces, completing thus a characterization by Bourgain and Huff in terms of norm attaining operators which is only valid for domain spaces and it is actually false for range spaces (due to a celebrated example by Gowers of 1990). A number of other related results are also included in the paper: we give some positive results on the denseness of norm attaining Lipschitz maps, norm attaining multilinear maps and norm attaining polynomials, characterize both finite dimensionality and reflexivity in terms of quasi norm attaining operators, discuss conditions to obtain that quasi norm attaining operators are actually norm attaining, study the relationship with the norm attainment of the adjoint operator and, finally, present some stability results.
    [Show full text]
  • Duality for Outer $ L^ P \Mu (\Ell^ R) $ Spaces and Relation to Tent Spaces
    p r DUALITY FOR OUTER Lµpℓ q SPACES AND RELATION TO TENT SPACES MARCO FRACCAROLI p r Abstract. We prove that the outer Lµpℓ q spaces, introduced by Do and Thiele, are isomorphic to Banach spaces, and we show the expected duality properties between them for 1 ă p ď8, 1 ď r ă8 or p “ r P t1, 8u uniformly in the finite setting. In the case p “ 1, 1 ă r ď8, we exhibit a counterexample to uniformity. We show that in the upper half space setting these properties hold true in the full range 1 ď p,r ď8. These results are obtained via greedy p r decompositions of functions in Lµpℓ q. As a consequence, we establish the p p r equivalence between the classical tent spaces Tr and the outer Lµpℓ q spaces in the upper half space. Finally, we give a full classification of weak and strong type estimates for a class of embedding maps to the upper half space with a fractional scale factor for functions on Rd. 1. Introduction The Lp theory for outer measure spaces discussed in [13] generalizes the classical product, or iteration, of weighted Lp quasi-norms. Since we are mainly interested in positive objects, we assume every function to be nonnegative unless explicitly stated. We first focus on the finite setting. On the Cartesian product X of two finite sets equipped with strictly positive weights pY,µq, pZ,νq, we can define the classical product, or iterated, L8Lr,LpLr spaces for 0 ă p, r ă8 by the quasi-norms 1 r r kfkL8ppY,µq,LrpZ,νqq “ supp νpzqfpy,zq q yPY zÿPZ ´1 r 1 “ suppµpyq ωpy,zqfpy,zq q r , yPY zÿPZ p 1 r r p kfkLpppY,µq,LrpZ,νqq “ p µpyqp νpzqfpy,zq q q , arXiv:2001.05903v1 [math.CA] 16 Jan 2020 yÿPY zÿPZ where we denote by ω “ µ b ν the induced weight on X.
    [Show full text]
  • ON SEQUENCE SPACES DEFINED by the DOMAIN of TRIBONACCI MATRIX in C0 and C Taja Yaying and Merve ˙Ilkhan Kara 1. Introduction Th
    Korean J. Math. 29 (2021), No. 1, pp. 25{40 http://dx.doi.org/10.11568/kjm.2021.29.1.25 ON SEQUENCE SPACES DEFINED BY THE DOMAIN OF TRIBONACCI MATRIX IN c0 AND c Taja Yaying∗;y and Merve Ilkhan_ Kara Abstract. In this article we introduce tribonacci sequence spaces c0(T ) and c(T ) derived by the domain of a newly defined regular tribonacci matrix T: We give some topological properties, inclusion relations, obtain the Schauder basis and determine α−; β− and γ− duals of the spaces c0(T ) and c(T ): We characterize certain matrix classes (c0(T );Y ) and (c(T );Y ); where Y is any of the spaces c0; c or `1: Finally, using Hausdorff measure of non-compactness we characterize certain class of compact operators on the space c0(T ): 1. Introduction Throughout the paper N = f0; 1; 2; 3;:::g and w is the space of all real valued sequences. By `1; c0 and c; we mean the spaces all bounded, null and convergent sequences, respectively. Also by `p; cs; cs0 and bs; we mean the spaces of absolutely p-summable, convergent, null and bounded series, respectively, where 1 ≤ p < 1: We write φ for the space of all sequences that terminate in zero. Moreover, we denote the space of all sequences of bounded variation by bv: A Banach space X is said to be a BK-space if it has continuous coordinates. The spaces `1; c0 and c are BK- spaces with norm kxk = sup jx j : Here and henceforth, for simplicity in notation, `1 k k the summation without limit runs from 0 to 1: Also, we shall use the notation e = (1; 1; 1;:::) and e(k) to be the sequence whose only non-zero term is 1 in the kth place for each k 2 N: Let X and Y be two sequence spaces and let A = (ank) be an infinite matrix of real th entries.
    [Show full text]
  • Uniform Boundedness Principle for Unbounded Operators
    UNIFORM BOUNDEDNESS PRINCIPLE FOR UNBOUNDED OPERATORS C. GANESA MOORTHY and CT. RAMASAMY Abstract. A uniform boundedness principle for unbounded operators is derived. A particular case is: Suppose fTigi2I is a family of linear mappings of a Banach space X into a normed space Y such that fTix : i 2 Ig is bounded for each x 2 X; then there exists a dense subset A of the open unit ball in X such that fTix : i 2 I; x 2 Ag is bounded. A closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings as consequences of this principle. Some applications of this principle are also obtained. 1. Introduction There are many forms for uniform boundedness principle. There is no known evidence for this principle for unbounded operators which generalizes classical uniform boundedness principle for bounded operators. The second section presents a uniform boundedness principle for unbounded operators. An application to derive Hellinger-Toeplitz theorem is also obtained in this section. A JJ J I II closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings in the third section as consequences of this principle. Go back Let us assume the following: Every vector space X is over R or C. An α-seminorm (0 < α ≤ 1) is a mapping p: X ! [0; 1) such that p(x + y) ≤ p(x) + p(y), p(ax) ≤ jajαp(x) for all x; y 2 X Full Screen Close Received November 7, 2013. 2010 Mathematics Subject Classification. Primary 46A32, 47L60. Key words and phrases.
    [Show full text]
  • Measure and Integration (Under Construction)
    Measure and Integration (under construction) Gustav Holzegel∗ April 24, 2017 Abstract These notes accompany the lecture course ”Measure and Integration” at Imperial College London (Autumn 2016). They follow very closely the text “Real-Analysis” by Stein-Shakarchi, in fact most proofs are simple rephrasings of the proofs presented in the aforementioned book. Contents 1 Motivation 3 1.1 Quick review of the Riemann integral . 3 1.2 Drawbacks of the class R, motivation of the Lebesgue theory . 4 1.2.1 Limits of functions . 5 1.2.2 Lengthofcurves ....................... 5 1.2.3 TheFundamentalTheoremofCalculus . 5 1.3 Measures of sets in R ......................... 6 1.4 LiteratureandFurtherReading . 6 2 Measure Theory: Lebesgue Measure in Rd 7 2.1 Preliminaries and Notation . 7 2.2 VolumeofRectanglesandCubes . 7 2.3 Theexteriormeasure......................... 9 2.3.1 Examples ........................... 9 2.3.2 Propertiesoftheexteriormeasure . 10 2.4 Theclassof(Lebesgue)measurablesets . 12 2.4.1 The property of countable additivity . 14 2.4.2 Regularity properties of the Lebesgue measure . 15 2.4.3 Invariance properties of the Lebesgue measure . 16 2.4.4 σ-algebrasandBorelsets . 16 2.5 Constructionofanon-measurableset. 17 2.6 MeasurableFunctions ........................ 19 2.6.1 Some abstract preliminary remarks . 19 2.6.2 Definitions and equivalent formulations of measurability . 19 2.6.3 Properties 1: Behaviour under compositions . 21 2.6.4 Properties 2: Behaviour under limits . 21 2.6.5 Properties3: Behaviourof sums and products . 22 ∗Imperial College London, Department of Mathematics, South Kensington Campus, Lon- don SW7 2AZ, United Kingdom. 1 2.6.6 Thenotionof“almosteverywhere”. 22 2.7 Building blocks of integration theory .
    [Show full text]
  • Chapter 4 the Lebesgue Spaces
    Chapter 4 The Lebesgue Spaces In this chapter we study Lp-integrable functions as a function space. Knowledge on functional analysis required for our study is briefly reviewed in the first two sections. In Section 1 the notions of normed and inner product spaces and their properties such as completeness, separability, the Heine-Borel property and espe- cially the so-called projection property are discussed. Section 2 is concerned with bounded linear functionals and the dual space of a normed space. The Lp-space is introduced in Section 3, where its completeness and various density assertions by simple or continuous functions are covered. The dual space of the Lp-space is determined in Section 4 where the key notion of uniform convexity is introduced and established for the Lp-spaces. Finally, we study strong and weak conver- gence of Lp-sequences respectively in Sections 5 and 6. Both are important for applications. 4.1 Normed Spaces In this and the next section we review essential elements of functional analysis that are relevant to our study of the Lp-spaces. You may look up any book on functional analysis or my notes on this subject attached in this webpage. Let X be a vector space over R. A norm on X is a map from X ! [0; 1) satisfying the following three \axioms": For 8x; y; z 2 X, (i) kxk ≥ 0 and is equal to 0 if and only if x = 0; (ii) kαxk = jαj kxk, 8α 2 R; and (iii) kx + yk ≤ kxk + kyk. The pair (X; k·k) is called a normed vector space or normed space for short.
    [Show full text]
  • Functional Analysis Lecture Notes Chapter 3. Banach
    FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C. All vector spaces are assumed to be over the field F. Definition 1.2. Let X be a vector space over the field F. Then a semi-norm on X is a function k · k: X ! R such that (a) kxk ≥ 0 for all x 2 X, (b) kαxk = jαj kxk for all x 2 X and α 2 F, (c) Triangle Inequality: kx + yk ≤ kxk + kyk for all x, y 2 X. A norm on X is a semi-norm which also satisfies: (d) kxk = 0 =) x = 0. A vector space X together with a norm k · k is called a normed linear space, a normed vector space, or simply a normed space. Definition 1.3. Let I be a finite or countable index set (for example, I = f1; : : : ; Ng if finite, or I = N or Z if infinite). Let w : I ! [0; 1). Given a sequence of scalars x = (xi)i2I , set 1=p jx jp w(i)p ; 0 < p < 1; 8 i kxkp;w = > Xi2I <> sup jxij w(i); p = 1; i2I > where these quantities could be infinite.:> Then we set p `w(I) = x = (xi)i2I : kxkp < 1 : n o p p p We call `w(I) a weighted ` space, and often denote it just by `w (especially if I = N). If p p w(i) = 1 for all i, then we simply call this space ` (I) or ` and write k · kp instead of k · kp;w.
    [Show full text]
  • The Nonstandard Theory of Topological Vector Spaces
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 172, October 1972 THE NONSTANDARDTHEORY OF TOPOLOGICAL VECTOR SPACES BY C. WARD HENSON AND L. C. MOORE, JR. ABSTRACT. In this paper the nonstandard theory of topological vector spaces is developed, with three main objectives: (1) creation of the basic nonstandard concepts and tools; (2) use of these tools to give nonstandard treatments of some major standard theorems ; (3) construction of the nonstandard hull of an arbitrary topological vector space, and the beginning of the study of the class of spaces which tesults. Introduction. Let Ml be a set theoretical structure and let *JR be an enlarge- ment of M. Let (E, 0) be a topological vector space in M. §§1 and 2 of this paper are devoted to the elementary nonstandard theory of (F, 0). In particular, in §1 the concept of 0-finiteness for elements of *E is introduced and the nonstandard hull of (E, 0) (relative to *3R) is defined. §2 introduces the concept of 0-bounded- ness for elements of *E. In §5 the elementary nonstandard theory of locally convex spaces is developed by investigating the mapping in *JK which corresponds to a given pairing. In §§6 and 7 we make use of this theory by providing nonstandard treatments of two aspects of the existing standard theory. In §6, Luxemburg's characterization of the pre-nearstandard elements of *E for a normed space (E, p) is extended to Hausdorff locally convex spaces (E, 8). This characterization is used to prove the theorem of Grothendieck which gives a criterion for the completeness of a Hausdorff locally convex space.
    [Show full text]
  • On Domain of Nörlund Matrix
    mathematics Article On Domain of Nörlund Matrix Kuddusi Kayaduman 1,* and Fevzi Ya¸sar 2 1 Faculty of Arts and Sciences, Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey 2 ¸SehitlerMah. Cambazlar Sok. No:9, Kilis 79000, Turkey; [email protected] * Correspondence: [email protected] Received: 24 October 2018; Accepted: 16 November 2018; Published: 20 November 2018 Abstract: In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l¥ was introduced by Wang, where 1 ≤ p < ¥. Tu˘gand Ba¸sarstudied the matrix domain of Nörlund mean on the sequence spaces f 0 and f in 2016. Additionally, Tu˘gdefined and investigated a new sequence space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017. In this article, we defined new space bs(Nt) and cs(Nt) and examined the domain of the Nörlund mean on the bs and cs, which are bounded and convergent series, respectively. We also examined their inclusion relations. We defined the norms over them and investigated whether these new spaces provide conditions of Banach space. Finally, we determined their a-, b-, g-duals, and characterized their matrix transformations on this space and into this space. Keywords: nörlund mean; nörlund transforms; difference matrix; a-, b-, g-duals; matrix transformations 1. Introduction 1.1. Background In the studies on the sequence space, creating a new sequence space and research on its properties have been important. Some researchers examined the algebraic properties of the sequence space while others investigated its place among other known spaces and its duals, and characterized the matrix transformations on this space.
    [Show full text]
  • Dirichlet Is Natural Vincent Danos, Ilias Garnier
    Dirichlet is Natural Vincent Danos, Ilias Garnier To cite this version: Vincent Danos, Ilias Garnier. Dirichlet is Natural. MFPS 31 - Mathematical Foundations of Program- ming Semantics XXXI, Jun 2015, Nijmegen, Netherlands. pp.137-164, 10.1016/j.entcs.2015.12.010. hal-01256903 HAL Id: hal-01256903 https://hal.archives-ouvertes.fr/hal-01256903 Submitted on 15 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MFPS 2015 Dirichlet is natural Vincent Danos1 D´epartement d'Informatique Ecole normale sup´erieure Paris, France Ilias Garnier2 School of Informatics University of Edinburgh Edinburgh, United Kingdom Abstract Giry and Lawvere's categorical treatment of probabilities, based on the probabilistic monad G, offer an elegant and hitherto unexploited treatment of higher-order probabilities. The goal of this paper is to follow this formulation to reconstruct a family of higher-order probabilities known as the Dirichlet process. This family is widely used in non-parametric Bayesian learning. Given a Polish space X, we build a family of higher-order probabilities in G(G(X)) indexed by M ∗(X) the set of non-zero finite measures over X. The construction relies on two ingredients.
    [Show full text]
  • Eberlein-Šmulian Theorem and Some of Its Applications
    Eberlein-Šmulian theorem and some of its applications Kristina Qarri Supervisors Trond Abrahamsen Associate professor, PhD University of Agder Norway Olav Nygaard Professor, PhD University of Agder Norway This master’s thesis is carried out as a part of the education at the University of Agder and is therefore approved as a part of this education. However, this does not imply that the University answers for the methods that are used or the conclusions that are drawn. University of Agder, 2014 Faculty of Engineering and Science Department of Mathematics Contents Abstract 1 1 Introduction 2 1.1 Notation and terminology . 4 1.2 Cornerstones in Functional Analysis . 4 2 Basics of weak and weak* topologies 6 2.1 The weak topology . 7 2.2 Weak* topology . 16 3 Schauder Basis Theory 21 3.1 First Properties . 21 3.2 Constructing basic sequences . 37 4 Proof of the Eberlein Šmulian theorem due to Whitley 50 5 The weak topology and the topology of pointwise convergence on C(K) 58 6 A generalization of the Ebrlein-Šmulian theorem 64 7 Some applications to Tauberian operator theory 69 Summary 73 i Abstract The thesis is about Eberlein-Šmulian and some its applications. The goal is to investigate and explain different proofs of the Eberlein-Šmulian theorem. First we introduce the general theory of weak and weak* topology defined on a normed space X. Next we present the definition of a basis and a Schauder basis of a given Banach space. We give some examples and prove the main theorems which are needed to enjoy the proof of the Eberlein-Šmulian theorem given by Pelchynski in 1964.
    [Show full text]
  • Arxiv:1911.05823V1 [Math.OA] 13 Nov 2019 Al Opc Oooia Pcsadcommutative and Spaces Topological Compact Cally Edt E Eut Ntplg,O Ipie Hi Ros Nteothe the in Study Proofs
    TOEPLITZ EXTENSIONS IN NONCOMMUTATIVE TOPOLOGY AND MATHEMATICAL PHYSICS FRANCESCA ARICI AND BRAM MESLAND Abstract. We review the theory of Toeplitz extensions and their role in op- erator K-theory, including Kasparov’s bivariant K-theory. We then discuss the recent applications of Toeplitz algebras in the study of solid state sys- tems, focusing in particular on the bulk-edge correspondence for topological insulators. 1. Introduction Noncommutative topology is rooted in the equivalence of categories between lo- cally compact topological spaces and commutative C∗-algebras. This duality allows for a transfer of ideas, constructions, and results between topology and operator al- gebras. This interplay has been fruitful for the advancement of both fields. Notable examples are the Connes–Skandalis foliation index theorem [17], the K-theory proof of the Atiyah–Singer index theorem [3, 4], and Cuntz’s proof of Bott periodicity in K-theory [18]. Each of these demonstrates how techniques from operator algebras lead to new results in topology, or simplifies their proofs. In the other direction, Connes’ development of noncommutative geometry [14] by using techniques from Riemannian geometry to study C∗-algebras, led to the discovery of cyclic homol- ogy [13], a homology theory for noncommutative algebras that generalises de Rham cohomology. Noncommutative geometry and topology techniques have found ample applica- tions in mathematical physics, ranging from Connes’ reformulation of the stan- dard model of particle physics [15], to quantum field theory [16], and to solid-state physics. The noncommutative approach to the study of complex solid-state sys- tems was initiated and developed in [5, 6], focusing on the quantum Hall effect and resulting in the computation of topological invariants via pairings between K- theory and cyclic homology.
    [Show full text]