Design of a Tunable Absorber Based on Active Frequency-Selective Surface for UHF Applications

Total Page:16

File Type:pdf, Size:1020Kb

Design of a Tunable Absorber Based on Active Frequency-Selective Surface for UHF Applications materials Article Design of a Tunable Absorber Based on Active Frequency-Selective Surface for UHF Applications Kainan Qi 1,2,*, Liangsheng Li 2, Jianxun Su 1, Yongqiang Liu 2 and Junwen Chen 1 1 College of Information Engineering, Communication University of China, Beijing 100854, China; [email protected] (J.S.); [email protected] (J.C.) 2 Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China; [email protected] (L.L.); [email protected] (Y.L.) * Correspondence: [email protected] Received: 11 October 2019; Accepted: 26 November 2019; Published: 2 December 2019 Abstract: An ultrathin tunable absorber for the ultrahigh frequency (UHF) band is presented in this paper. The absorber is a single-layer structure based on the topology of a Salisbury screen, in which the conventional resistive layer is replaced by an active frequency-selective surface (AFSS) loaded with resistors and varactors. The reflectivity response of the absorber can be controlled by adjusting the reverse bias voltage for the varactors, which is verified by both simulated and measured results. The experimental results show that the reflectivity response of the absorber can be modulated below 10 dB over a frequency band ranging from 415 to 822 MHz. The total thickness of the absorber, 10 mm, − is equivalent to only λ/72 of the lower limit frequency. The absorbing mechanism for the designed absorber is illustrated by simulating the volume loss density distributions. A detailed analysis is also carried out on the basis of these parameters, such as the AFSS shape, resistor, thickness of the foam, thickness and permittivity of the dielectric substrate, and incident angles, which contribute to the reflectivity of the AFSS absorber. Keywords: tunable absorber; active frequency-selective surface; ultrahigh frequency; varactors 1. Introduction Stealth technology is one of the most important military technologies and is of concern to all nations. Radar-absorbing materials (RAM) can effectively reduce the radar cross section (RCS) [1] of aircrafts and are commonly used in stealth missions. Traditional absorbers [2–4] are well used at high frequencies above 2 GHz. However, low-frequency absorbers are also in great demand. As radar detection equipment extends to the near-meter wavelength regime, high-performance absorbers are required at lower frequencies, especially in the ultrahigh frequency (UHF) band. In addition, low-frequency absorbing materials can also be used for electromagnetic compatibility (EMC) [5], radio frequency identification (RFID) [6], and sub-GHz wireless systems [7]. Metamaterial absorbers (MMA) have attracted much attention in recent years [8–14], after a perfect MMA with near unity absorption in microwave regime was first reported by Landy et al. [15]. MMA are also used for low frequency applications [16–19]; for example, Khuyen et al. [20] proposed an ultrathin polarization-insensitive metamaterial absorber, which exhibits a peak absorption of 97% at 250 MHz. Zuo et al. [21] presented a wideband metamaterial absorber using a metallic incurved structure, which has an absorptivity of more than 90% at 0.8–2.7 GHz. Rozanov [22] discussed the problems of the ultimate thickness-to-bandwidth ratio of a radar absorber, observing that passive absorbers are usually very thick or have a narrow absorption bandwidth below 2 GHz. This problem could be solved by using a tunable absorber, the electromagnetic characteristics of which can be dynamically modulated. There are several methods to make a tunable Materials 2019, 12, 3989; doi:10.3390/ma12233989 www.mdpi.com/journal/materials Materials 2019, 12, x FOR PEER REVIEW 11 of 13 Materials 2019, 12, 3989 2 of 12 superconductors [25], conducting polymers [26], an active frequency-selective surface (AFSS) [27], andabsorber, so on including. In terms thoseof cost based and response on the use time, of graphene AFSS was [23 adopted], liquid in crystals this study [24], superconductorsto design the tunable [25], absorberconducting. The polymers tunable [ 26absorber], an active based frequency-selective on AFSS [28–32] surfacehas an ultrat (AFSS)hin [27 layered], and so structure, on. In terms which of costcan beand used response to simultaneously time, AFSS was control adopted its inreflection this study response to design tothe obtain tunable a wide absorber. absorbing The tunablebandwidth. absorber For instance,based on AFSSMias et [28 al.–32 [33] has] designed an ultrathin a tunable layered microwave structure, absorber which can based be used on a to high simultaneously-impedance surface control andits reflection presented response data showing to obtain that a widethe reflectivity absorbing response bandwidth. of the For absorber instance, can Mias be et controlled al. [33] designed over the a frequencytunable microwave band from absorber 1.72 to based 1.93 GHz. on a high-impedance Zhao et al. [34] surfacedesigned and a presentedtunable metamaterial data showing absorber that the usingreflectivity varactor response diodes, of thewhich absorber had a cantunable be controlled bandwidth over of the1.5 frequencyGHz and bandan absorption from 1.72 rate to 1.93 of more GHz. thanZhao et90% al. [when34] designed the bias a tunable voltage metamaterial changed from absorber 0 to using −19 varactorV. However, diodes, these which works had a tunablecannot simultaneouslybandwidth of 1.5 guarantee GHz and both an absorption tunable absorption rate of more bandwidth than 90% and when material the bias thickness. voltage changed from 0 to 19In V.this However, study, we these design worksed cannota thin absorber simultaneously with a guaranteesufficiently both large tunable tunable absorption bandwidth. bandwidth In this − design,and material the resistors thickness. and varactors are embedded between adjacent resonant units, and the absorbed frequencyIn this can study, be tuned we designed continuously a thin absorberby adjusting with the a subiasfficiently voltage large of varactors. tunable bandwidth. The experimental In this resultsdesign, validate the resistors the tunability and varactors of the are designed embedded absorber between. The adjacent tunability resonant ranges units, from and 415 theto 8 absorbed22 MHz, withfrequency a reflectivity can be tuned below continuously −10 dB and bya thickness adjusting of the 10 bias mm voltage that corresponds of varactors. to Theonly experimental λ/72 of the resonanceresults validate frequency. the tunability This work of theis important designed absorber.for stealth The and tunability other microwave ranges from applications 415 to 822 in MHz, the withfuture. a reflectivity below 10 dB and a thickness of 10 mm that corresponds to only λ/72 of the resonance − frequency. This work is important for stealth and other microwave applications in the future. 2. Design, Simulations, and Experiments 2. Design, Simulations, and Experiments 2.1. Structure of Proposed Absorber 2.1. Structure of Proposed Absorber Figure 1 shows the structure of the proposed AFSS absorber. The top layer is a FR4 dielectric substrate,Figure which1 shows has thea relative structure permittivity of the proposed of 4.4(1 AFSS-j0.02) absorber. and a thickness The top of layer 1 mm. is The a FR4 next dielectric layer is thesubstrate, AFSS, whichwhich has is aloaded relative with permittivity resistors of and 4.4(1-j0.02) varactors and and a thickness printed ofonto 1 mm. the TheFR4 next substrate; layer is the AFSS,thickness which of the is loaded copper with is 0.018 resistors mm. and The varactors third layer, and use printedd as an onto independent the FR4 substrate; layer, is the a thickness9 mm-thick of the copper is 0.018 mm. The third layer, used as an independent layer, is a 9 mm-thick foam with very foam with very low dielectric loss ( ε r = 1.05, tanδ = 0.002). The bottom layer is a metal ground. low dielectric loss (" = 1.05, tan δ = 0.002). The bottom layer is a metal ground. Figure1b shows the Figure 1b shows the rgeometric structure of the unit cell, which is based on a dipole. It is composed of geometric structure of the unit cell, which is based on a dipole. It is composed of two bias lines along two bias lines along the x-axis and two strips with six circles along the y-axis. The final geometric the x-axis and two strips with six circles along the y-axis. The final geometric dimensions are given as: dimensions are given as: x = y = 50 mm, h = 3 mm, r = 3 mm, g = 2 mm, w = 1 mm, b = 1 mm, and d = x = y = 50 mm, h = 3 mm, r = 3 mm, g = 2 mm, w = 1 mm, b = 1 mm, and d = 9 mm. A varactor and a 9 mm. A varactor and a resistor are loaded onto the gap between the two strips. resistor are loaded onto the gap between the two strips. h w r FR4 y E resistor g b varactor AFSS foam d conducting plate x (a) (b) Figure 1. Cont. Materials 2019, 12, 3989 3 of 12 Materials 2019, 12, x FOR PEER REVIEW 11 of 13 Materials 2019, 12, x FOR PEER REVIEW 11 of 13 L L C0 C 0 R Cr R Cr (c) (c) Figure 1.1. TheThe designed designed absorber: absorber (a:) ( three-dimensionala) three-dimensional (3D) ( structure,3D) structure, (b) an ( activeb) anfrequency-selective active frequency- Figure 1. The designed absorber: (a) three-dimensional (3D) structure, (b) an active frequency- surfaceselective (AFSS) surface unit (AFSS cell,) andunit (cell,c) the and equivalent (c) the equivalent circuit model circuit of themodel AFSS. of the AFSS. selective surface (AFSS) unit cell, and (c) the equivalent circuit model of the AFSS. 2.2. E Equivalentquivalent C Circuitircuit ModelModel of the Proposed Absorber 2.2. Equivalent Circuit Model of the Proposed Absorber The equivalent circuit modelmodel forfor thethe AFSSAFSS layerlayer isis shown inin FigureFigure1 1c.c. AA varactorvaractor withwith aa variablevariable capacitanceThe equivalent C is connected circuit in model parallel for to the a resistorAFSS layer R.
Recommended publications
  • Bringing Optical Metamaterials to Reality
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bringing Optical Metamaterials to Reality Permalink https://escholarship.org/uc/item/5d37803w Author Valentine, Jason Gage Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bringing Optical Metamaterials to Reality By Jason Gage Valentine A dissertation in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Xiang Zhang, Chair Professor Costas Grigoropoulos Professor Liwei Lin Professor Ming Wu Fall 2010 Bringing Optical Metamaterials to Reality © 2010 By Jason Gage Valentine Abstract Bringing Optical Metamaterials to Reality by Jason Gage Valentine Doctor of Philosophy in Mechanical Engineering University of California, Berkeley Professor Xiang Zhang, Chair Metamaterials, which are artificially engineered composites, have been shown to exhibit electromagnetic properties not attainable with naturally occurring materials. The use of such materials has been proposed for numerous applications including sub-diffraction limit imaging and electromagnetic cloaking. While these materials were first developed to work at microwave frequencies, scaling them to optical wavelengths has involved both fundamental and engineering challenges. Among these challenges, optical metamaterials tend to absorb a large amount of the incident light and furthermore, achieving devices with such materials has been difficult due to fabrication constraints associated with their nanoscale architectures. The objective of this dissertation is to describe the progress that I have made in overcoming these challenges in achieving low loss optical metamaterials and associated devices. The first part of the dissertation details the development of the first bulk optical metamaterial with a negative index of refraction.
    [Show full text]
  • Tunable Terahertz Metamaterial Based on a Dielectric Cube Array with Disturbed Mie Resonance
    Metamaterials '2012: The Sixth International Congress on Advanced Electromagnetic Materials in Microwaves and Optics Tunable terahertz metamaterial based on a dielectric cube array with disturbed Mie resonance D.S. Kozlov1, M.A. Odit1, and I.B. Vendik1, Young-Geun Roh2, Sangmo Cheon2, Chang- Won Lee2 1 Department of Microelectronics & Radio Engineering St. Petersburg Electrotechnical University “LETI” 5, Prof. Popov Str., 197376, St. Petersburg, Russia Fax: +7 812-3460867; email: [email protected] 2 Samsung Advanced Institute of Technology Yong-in 449-912, Korea Fax: + 82–312809349; email: [email protected] Abstract Tunable metamaterial operating in terahertz (THz) frequency range based on dielectric cubic parti- cles with deposited conducting resonant strips was investigated. The frequency of the Mie reso- nances depends on the electric length of the strip. The simulated structure shows tunability over 20 GHz with -30 dB on/off ratio. This method of control can be applied for a design of tunable meta- material based on various dielectric resonant inclusions. 1. Introduction THz radiation can be used for nondestructive medical scanning, security screening, quality control, atmospheric investigation, space research, etc. [1, 2]. Artificially manufactured structures, known as metamaterials, allow obtaining desired electromagnetic properties in any frequency region. Metamate- rials operating in THz frequency range have been proposed in [3]. Controllable devices such as tuna- ble filters, switches (modulators) or phase shifters are required in order to control spectrum, power, and directivity of THz radiation. In this work we suggest and analyze tunable metamaterials based on resonant dielectric inclusions. 2. Metamaterial based on dielectric resonators There is a number of structures with negative values of dielectric permittivity and magnetic permeabil- ity.
    [Show full text]
  • Tunable Metamaterial with Gold and Graphene Split-Ring Resonators and Plasmonically Induced Transparency
    nanomaterials Article Tunable Metamaterial with Gold and Graphene Split-Ring Resonators and Plasmonically Induced Transparency Qichang Ma, Youwei Zhan and Weiyi Hong * Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications & Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; [email protected] (Q.M.); [email protected] (Y.Z.) * Correspondence: [email protected]; Tel.: +86-185-203-89309 Received: 28 November 2018; Accepted: 20 December 2018; Published: 21 December 2018 Abstract: In this paper, we propose a metamaterial structure for realizing the electromagnetically induced transparency effect in the MIR region, which consists of a gold split-ring and a graphene split-ring. The simulated results indicate that a single tunable transparency window can be realized in the structure due to the hybridization between the two rings. The transparency window can be tuned individually by the coupling distance and/or the Fermi level of the graphene split-ring via electrostatic gating. These results could find significant applications in nanoscale light control and functional devices operating such as sensors and modulators. Keywords: metamaterials; mid infrared; graphene split-ring; gold split-ring; electromagnetically induced transparency effect 1. Introduction Electromagnetically-induced transparency (EIT) is a concept originally observed in atomic physics and arises due to quantum interference, resulting in a narrowband transparency window for light propagating through an originally opaque medium [1,2]. The EIT effect extended to classical optical systems using plasmonic metamaterials leads to new opportunities for many important applications such as slow light modulator [3–6], high sensitivity sensors [7,8], quantum information processors [9], and plasmonic switches [10–12].
    [Show full text]
  • Reconfigurable Metasurface Antenna Based on the Liquid Metal
    micromachines Article Reconfigurable Metasurface Antenna Based on the Liquid Metal for Flexible Scattering Fields Manipulation Ting Qian Shanghai Technical Institute of Electronics and Information, Shanghai 200240, China; [email protected] Abstract: In this paper, we propose a reconfigurable metasurface antenna for flexible scattering field manipulation using liquid metal. Since the Eutectic gallium indium (EGaIn) liquid metal has a melting temperature around the general room temperature (about 30 ◦C), the structure based on the liquid metal can be easily reconstructed under the temperature control. We have designed an element cavity structure to contain liquid metal for its flexible shape-reconstruction. By melting and rotating the element structure, the shape of liquid metal can be altered, resulting in the distinct reflective phase responses. By arranging different metal structure distribution, we show that the scattering fields generated by the surface have diverse versions including single-beam, dual-beam, and so on. The experimental results have good consistency with the simulation design, which demonstrated our works. The presented reconfigurable scheme may promote more interest in various antenna designs on 5G and intelligent applications. Keywords: liquid-metal metasurface; reconfigurable metasurface; reconfigurable antenna; beam ma- nipulation Citation: Qian, T. Reconfigurable 1. Introduction Metasurface Antenna Based on the The concept of metamaterials has attracted much attention in the past decade. Meta- Liquid Metal for Flexible Scattering materials are three-dimensional artificial structures with special electromagnetic properties. Fields Manipulation. Micromachines Due to the fact that metamaterials can be designed artificially, they can be widely used in a 2021, 12, 243. https://doi.org/ variety of applications, such as negative and zero refraction [1], perfect absorption [2–4], 10.3390/mi12030243 invisibility cloaking [5–8], dielectrics lenses [9,10] and vortex beams [11,12].
    [Show full text]
  • To Super-Radiating Manipulation of a Dipolar Emitter Coupled to a Toroidal Metastructure
    From non- to super-radiating manipulation of a dipolar emitter coupled to a toroidal metastructure Jie Li,1 Xing-Xing Xin,1 Jian Shao,1 Ying-Hua Wang,1 Jia-Qi Li,1 Lin Zhou,2 and Zheng- Gao Dong1,* 1Physics Department and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China 2School of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China * [email protected] Abstract: Toroidal dipolar response in a metallic metastructure, composed of double flat rings, is utilized to manipulate the radiation pattern of a single dipolar emitter (e.g., florescent molecule/atom or quantum dot). Strong Fano-type radiation spectrum can be obtained when these two coupling dipoles are spatially overlapped, leading to significant radiation suppression (so-called nonradiating source) attributed to the dipolar destructive interference. Moreover, this nonradiating configuration will become a directionally super-radiating nanoantenna after a radial displacement of the emitter with respect to the toroidal flat-ring geometry, which emits linearly polarized radiation with orders of power enhancement in a particular orientation. The demonstrated radiation characteristics from a toroidal- dipole-mediated dipolar emitter indicate a promising manipulation capability of the dipolar emission source by intriguing toroidal dipolar response. ©2015 Optical Society of America OCIS codes: (160.3918) Metamaterials; (250.5403) Plasmonics. References and links 1. L. B. Zel’dovich, “The relation between decay asymmetry and dipole moment of elementary particles,” Sov. Phys. JETP 6, 1148 (1958). 2. T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, “Toroidal dipolar response in a metamaterial,” Science 330(6010), 1510–1512 (2010).
    [Show full text]
  • And Ku-Band Application
    applied sciences Article Compact Left-Handed Meta-Atom for S-, C- and Ku-Band Application Md. Mehedi Hasan 1,*, Mohammad Rashed Iqbal Faruque 1,* and Mohammad Tariqul Islam 2,* ID 1 Space Science Centre (ANGKASA), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 2 Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia * Correspondence: [email protected] (M.M.H.); [email protected] (M.R.I.F.); [email protected] (M.T.I.); Tel.: +60-102938061 (M.R.I.F.) Received: 10 August 2017; Accepted: 10 October 2017; Published: 23 October 2017 Abstract: A new compact left-handed meta-atom for S-, C- and Ku-band applications is presented in this paper. The proposed structure provides a wide bandwidth and exhibits left-handed characteristics at 0◦, 90◦, 180◦ and 270◦ (xy-axes) rotations. Besides, the left-handed characteristics and wide bandwidth of 1 × 2, 2 × 2, 3 × 3 and 4 × 4 arrays are also investigated at the above-mentioned rotation angles. In this study, the meta-atom is designed by creating splits at the outer and inner square-shaped ring resonators, and a metal arm is placed at the middle of the inner ring resonator. The arm is also connected to the upper and lower portions of the inner ring resonator, and later, the design appears as an I-shaped split ring resonator. The commercially available, finite integration technique (FIT)-based electromagnetic simulator CST Microwave Studio is used for design and simulation purposes. The measured data comply well with the simulated data of the unit cell for 1 × 2, 2 × 2, 3 × 3 and 4 × 4 arrays at every rotation angle.
    [Show full text]
  • Design, Fabrication and Testing of Tunable RF Meta-Atoms Derrick Langley
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 6-14-2012 Design, Fabrication and Testing of Tunable RF Meta-atoms Derrick Langley Follow this and additional works at: https://scholar.afit.edu/etd Part of the Engineering Science and Materials Commons Recommended Citation Langley, Derrick, "Design, Fabrication and Testing of Tunable RF Meta-atoms" (2012). Theses and Dissertations. 1128. https://scholar.afit.edu/etd/1128 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. k DESIGN, FABRICATION AND TESTING OF TUNABLE RF META-ATOMS DISSERTATION Derrick Langley, Captain, USAF AFIT/DEE/ENG/12-04 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT/DEE/ENG/12-04 DESIGN, FABRICATION AND TESTING OF TUNABLE RF META-ATOMS DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Derrick Langley, B.S.E.E., M.S.E.E.
    [Show full text]
  • Highly Tunable Hybrid Metamaterials Employing Split-Ring Resonators Strongly Coupled to Graphene Surface Plasmons
    Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons Peter Q. Liu,1†* Isaac J. Luxmoore,2†* Sergey A. Mikhailov,3 Nadja A. Savostianova,3 Federico Valmorra,1 Jerome Faist,1 Geoffrey R. Nash2 1Institute for Quantum Electronics, Department of Physics, ETH Zurich, Zurich CH-8093, Switzerland 2College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom 3Institute of Physics, University of Augsburg, Augsburg 86159, Germany †These authors contributed equally to the work. *To whom correspondence should be addressed. E-mail: [email protected]; [email protected] 1 Abstract Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities to confine light in subwavelength dimensions and to enhance light-matter interactions. Recently, graphene-based plasmonics has revealed emerging technological potential as it features large tunability, higher field-confinement and lower loss compared to metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators efficiently coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting over 60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.
    [Show full text]
  • Metamaterial Transmission Lines with Tunable Phase and Characteristic
    injection-locked active antenna for array applications, IEEE Trans Mi- lable characteristic impedance and dispersion (phase) [15–19]. crowave Theory Tech 50 (2002), 481–486. This can be achieved by loading the line by means of electrically 3. D. Bonefacˇcic´ and J. Bartolic´, Compact active integrated antenna with small reactive elements. Thanks to this controllability and the transistor oscillator and line impedance transformer, Electron Lett 36 small size of the unit cell of such lines, these artificial lines have (2000), 1519–1521. been applied to the design of compact devices with enhanced 4. N.M. Nguyen and R.G. Meyer, Start-up and frequency stability in performance and/or providing new functionalities. Obviously, the high-frequency oscillator, IEEE J Solid-State Circuits 27 (1992), 810– 820. superior characteristics of these artificial lines can be further enhanced by including tuning in the loading reactive elements. © 2009 Wiley Periodicals, Inc. This has led to the design of tunable components based on these artificial lines such as scanning leaky-wave antennas [1], tunable filters and resonators [3, 20, 21], and phase shifters [4], among others. Also, the synthesis of electrically controllable artificial METAMATERIAL TRANSMISSION LINES transmission lines has been applied to impedance matching [5]. WITH TUNABLE PHASE AND Based on split ring resonators or complementary split ring CHARACTERISTIC IMPEDANCE BASED resonators, tunable artificial lines have been designed [3, 22]. In ON COMPLEMENTARY SPLIT RING such lines, the resonant elements (split ring resonators or their complementary counterparts) are loaded with varactor diodes and, RESONATORS hence, the electrical characteristics of these resonators can be Adolfo Ve´ lez, Jordi Bonache, and Ferran Martín electronically controlled.
    [Show full text]
  • Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits for Steerable Antenna Arrays
    Metamaterial-Inspired CMOS Tunable Microwave Integrated Circuits For Steerable Antenna Arrays by Mohamed A.Y. Abdalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto °c Copyright by Mohamed Abdalla 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-59036-2 Our file Notre référence ISBN: 978-0-494-59036-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • Experimental Demonstration of Tunable Graphene-Polaritonic Hyperbolic Metamaterial
    Research Article Vol. 27, No. 21 / 14 October 2019 / Optics Express 30225 Experimental demonstration of tunable graphene-polaritonic hyperbolic metamaterial JEREMY BROUILLET,1 GEORGIA T. PAPADAKIS,2,* ANDAND HARRY A.ATWATER1 1Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, California 91125, USA 2Department of Electrical Engineering, Ginzton Laboratory, Stanford University, California 94305, USA *[email protected] Abstract: Tuning the macroscopic dielectric response on demand holds potential for actively tunable metaphotonics and optical devices. In recent years, graphene has been extensively investigated as a tunable element in nanophotonics. Significant theoretical work has been devoted on the tuning the hyperbolic properties of graphene/dielectric heterostructures; however, until now, such a motif has not been demonstrated experimentally. Here we focus on a graphene/polaritonic dielectric metamaterial, with strong optical resonances arising from the polar response of the dielectric, which are, in general, difficult to actively control. By controlling the doping level of graphene via external bias we experimentally demonstrate a wide range of tunability from a Fermi level of EF = 0 eV to EF = 0.5 eV, which yields an effective epsilon-near-zero crossing and tunable dielectric properties, verified through spectroscopic ellipsometry and transmission measurements. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 1. Introduction Spectral tunability is key for controlling light-matter interactions, critical for many applications including emission control, surface enhanced spectroscopy, sensing, and thermal control. Particularly in the subwavelength range, tuning plasmonic resonances has been essential in controlling color, typically achieved by controlling the size of plasmonic nanoparticles, antennas and metamaterials [1–4].
    [Show full text]
  • Tunable Control of Mie Resonances Based on Hybrid VO2 and Dielectric Metamaterial
    S S symmetry Article Tunable Control of Mie Resonances Based on Hybrid VO2 and Dielectric Metamaterial Ju Gao 1, Kuang Zhang 1, Guohui Yang 1 , Sungtek Kahng 2 and Qun Wu 1,* 1 School of Electronic and Communication Engineering, Harbin Institute of Technology, Harbin 150001, China; [email protected] (J.G.); [email protected] (K.Z.); [email protected] (G.Y.) 2 Department of Information and Telecommunication Engineering, Incheon National University, Songdo-1-dong, Yonsu-gu, Incheon 210211, Korea; [email protected] * Correspondence: [email protected]; Tel.: +86-451-8641-3502 Received: 3 September 2018; Accepted: 17 September 2018; Published: 20 September 2018 Abstract: In this paper, a tunable dielectric metamaterial absorber with temperature-based vanadium dioxide (VO2) is proposed. In contrast to previous studies, both the metal phase of VO2 and the semiconductor phase are applied to manipulate the Mie resonant modes in the dielectric cubes. By embedding VO2 in the main resonant structure, the control over Mie resonant modes in dielectric metamaterials is realized. Each resonant mode is analyzed through field distribution and explains why the phase switch of VO2 could affect the absorbance spectrum. This use of tunable materials could create another new methodology for the manipulation of the Mie resonance-based dielectric cubes and make them closer in essence to isotropic metamaterials. Keywords: vanadium dioxide; dielectric metamaterial; absorber; Mie resonance 1. Introduction The study of electromagnetic waves began in the late 1800s. Over the course of a century’s research, the primary goal modern electromagnetic wave research has been to achieve full control of it, including amplitude control, phase control, and wave impendence control [1–5].
    [Show full text]