Antioxidant and Antimicrobial Activity of Ophiurasaponin Extracted from Ophiopholis Mirabilis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Position of the Ophiuroidea Within the Phylum Echinodermata
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2005 The Position of the Ophiuroidea within the Phylum Echinodermata Mary C. Harmon University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Harmon, Mary C., "The Position of the Ophiuroidea within the Phylum Echinodermata" (2005). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/2916 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Position of the Ophiuroidea within the Phylum Echinodermata by Mary C. Harmon A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Biology College of Arts and Sciences University of South Florida Major Professor: Brian T. Livingston, Ph.D. James R. Garey, Ph.D. Jessica L. Moore, Ph.D. Date of Approval: November 18, 2005 Keywords: molecular phylogeny, evolution, echinoderm classes, ribosomal DNA, ophiuroid © Copyright 2005, Mary C. Harmon Dedication For my parents, who have instilled in me the desire to succeed, and given me the tools necessary to do so. For Holly and my friends and family. Thank you for believing in me and for providing enjoyable breaks from my scholarly chores when I needed them. And when I didn’t. For Ailey Marie. 26 December 1998 - 07 October 2005. She taught me many important things…none of which were related to echinoderms. -
Echinodermata
Echinodermata Bruce A. Miller The phylum Echinodermata is a morphologically, ecologically, and taxonomically diverse group. Within the nearshore waters of the Pacific Northwest, representatives from all five major classes are found-the Asteroidea (sea stars), Echinoidea (sea urchins, sand dollars), Holothuroidea (sea cucumbers), Ophiuroidea (brittle stars, basket stars), and Crinoidea (feather stars). Habitats of most groups range from intertidal to beyond the continental shelf; this discussion is limited to species found no deeper than the shelf break, generally less than 200 m depth and within 100 km of the coast. Reproduction and Development With some exceptions, sexes are separate in the Echinodermata and fertilization occurs externally. Intraovarian brooders such as Leptosynapta must fertilize internally. For most species reproduction occurs by free spawning; that is, males and females release gametes more or less simultaneously, and fertilization occurs in the water column. Some species employ a brooding strategy and do not have pelagic larvae. Species that brood are included in the list of species found in the coastal waters of the Pacific Northwest (Table 1) but are not included in the larval keys presented here. The larvae of echinoderms are morphologically and functionally diverse and have been the subject of numerous investigations on larval evolution (e.g., Emlet et al., 1987; Strathmann et al., 1992; Hart, 1995; McEdward and Jamies, 1996)and functional morphology (e.g., Strathmann, 1971,1974, 1975; McEdward, 1984,1986a,b; Hart and Strathmann, 1994). Larvae are generally divided into two forms defined by the source of nutrition during the larval stage. Planktotrophic larvae derive their energetic requirements from capture of particles, primarily algal cells, and in at least some forms by absorption of dissolved organic molecules. -
Final Report Form
Appendix K – OSRI Grant Policy Manual Final Report Form - Oil Spill Recovery Institute An electronic copy of this report shall be submitted by mail, or e-mail to the OSRI Research Program Manager [email protected] and Financial Office [email protected] Mailing address: P.O. Box 705 - Cordova, AK 99574 - Deadline for this report: Submittal within 90 days of grant/award expiration. Also, note that a summary Financial Statement shall be submitted within 45 days of the grant expiration. The final invoice and financial statement is due within 90 days of the grant/award expiration. Today’s date: 15 April 2014 Name of awardee/grantee: Bodil Bluhm OSRI Contract Number: 11-10-14 Project title: Data rescue: Epibenthic invertebrates from the Beaufort Sea sampled during WEBSEC and OCS cruises in the 1970s Dates project began and ended: PART I - Outline for Final Program or Technical Report This report must be submitted by all grantees. However, for those whose project work resulted in a peer reviewed publication (whether in draft or final form), this report may be abbreviated and the publication attached as part of the report. A. Non-technical Abstract or summary of project work that does not exceed 2 pages and includes an overview of the project. This abstract should describe the nature and significance of the project. It may be provided to the Advisory Board and could be used by OSRI staff to answer inquiries as to the nature and significance of the project. This project sought to rescue data on epibenthic invertebrates and fish sampled by trawls and photographs in the Alaskan Beaufort Sea during Western Beaufort Sea Ecological Cruise (WEBSEC) and Outer Continental Shelf (OCS) surveys in the 1970s. -
Oceanography
Department of OCEANOGRAPHY PROGRESS REPORT Ecological Studies of Radioactivity in the Columbia River Estuary and Adjacent Pacific Ocean Norman Cutshall, SCHOOL OF SCIENCE Principal Investigator Compiled and Edited by James E. McCauley Atomic Energy Commission Contract AT(45-1) 2227 Task Agreement 12 OREGON STATE UNIVERSITY RLO 2227-T12-10 Reference 71-18 1 July 1970 through 30 June 1971 ECOLOGICALSTUDIESOF RADIOACTIVITYIN THE COLUMBIA RIVER ESTUARY AND ADJACENTPACIFIC OCEAN Compiled andEdited by James E. McCauley Principal Investigator: NormanCutshall Co-investigators: Andrew G. Carey, Jr. James E. McCauley William G. Pearcy William C. Renfro William 0. Forster Department of Oceanography Oregon State University Corvallis, Oregon 97331 PROGRESS REPORT 1 July 1970 through 30 June 1971 Submitted to U.S. Atomic Energy Commission ContractAT(45-1)2227 Reference 71-18 RLO 2227-T-12-10 July 1971 ACKNOWLEDGMENTS A major expense in oceanographic research is "time at sea." Operations on the R/V YAQUINA, R/V CAYUSE, R/V PAIUTE, AND R/V SACAJEWEA were funded by several agencies, with the bulk coming from the National Science Founda- tion and Office of Naval Research. Certain special cruises of radiochemical or radioecological import were funded by the Atomic Energy Commission, as was much of the equipment for radioanalysis and stable element analysis. Support for student research, plussome of the gamma ray spectometry facilities, were provided by the Federal Water Quality Administration. We gratefully acknowledge the role of these agencies insupport of the research reported in the following pages. We also wish to express our thanks to the numerous students and staff who contributed to the preparation of thisprogress report. -
Echinodermata
Echinodermata Gr : spine skin 6500 spp all marine except for few estuarine, none freshwater 1) pentamerous radial symmetry (adults) *larvae bilateral symmetrical 2) spines 3) endoskeleton mesodermally-derived ossicles calcareous plates up to 95% CaCO3, up to 15% MgCO3, salts, trace metals, small amount of organic materials 4) water vascular system (WVS) 5) tube feet (podia) Unicellular (acellular) Multicellular (metazoa) protozoan protists Poorly defined Diploblastic tissue layers Triploblastic Cnidaria Porifera Ctenophora Placozoa Uncertain Acoelomate Coelomate Pseudocoelomate Priapulida Rotifera Chaetognatha Platyhelminthes Nematoda Gastrotricha Rhynchocoela (Nemertea) Kinorhyncha Entoprocta Mesozoa Acanthocephala Loricifera Gnathostomulida Nematomorpha Protostomes Uncertain (misfits) Deuterostomes Annelida Mollusca Echinodermata Brachiopoda Hemichordata Arthropoda Phoronida Onychophora Bryozoa Chordata Pentastomida Pogonophora Sipuncula Echiura 1 Chapter 14: Echinodermata Classes: 1) Asteroidea (Gr: characterized by star-like) 1600 spp 2) Ophiuroidea (Gr: snake-tail-like) 2100 spp 3) Echinoidea (Gr: hedgehog-form) 1000 spp 4) Holothuroidea (Gr: sea cucumber-like) 1200 spp 5) Crinoidea (Gr: lily-like) stalked – 100 spp nonstalked, motile comatulid (feather stars)- 600 spp Asteroidea sea stars/starfish arms not sharply marked off from central star shaped disc spines fixed pedicellariae ambulacral groove open tube feet with suckers on oral side anus/madreporite aboral 2 Figure 22.01 Pincushion star, Culcita navaeguineae, preys on coral -
Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea)
Review Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea) Sabine Sto¨ hr1*, Timothy D. O’Hara2, Ben Thuy3 1 Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden, 2 Museum Victoria, Melbourne, Victoria, Australia, 3 Department of Geobiology, Geoscience Centre, University of Go¨ttingen, Go¨ttingen, Germany fossils has remained relatively low and constant since that date. Abstract: This review presents a comprehensive over- The use of isolated skeletal elements (see glossary below) as the view of the current status regarding the global diversity of taxonomic basis for ophiuroid palaeontology was systematically the echinoderm class Ophiuroidea, focussing on taxono- introduced in the early 1960s [5] and initiated a major increase in my and distribution patterns, with brief introduction to discoveries as it allowed for complete assemblages instead of their anatomy, biology, phylogeny, and palaeontological occasional findings to be assessed. history. A glossary of terms is provided. Species names This review provides an overview of global ophiuroid diversity and taxonomic decisions have been extracted from the literature and compiled in The World Ophiuroidea and distribution, including evolutionary and taxonomic history. It Database, part of the World Register of Marine Species was prompted by the near completion of the World Register of (WoRMS). Ophiuroidea, with 2064 known species, are the Marine Species (http://www.marinespecies.org) [6], of which the largest class of Echinodermata. A table presents 16 World Ophiuroidea Database (http://www.marinespecies.org/ families with numbers of genera and species. The largest ophiuroidea/index.php) is a part. A brief overview of ophiuroid are Amphiuridae (467), Ophiuridae (344 species) and anatomy and biology will be followed by a systematic and Ophiacanthidae (319 species). -
Ecology of the White Sea with Emphasis on Its Deep Basin Edited
Scientific Cooperation in the Russian Arctic: Ecology of the White Sea with Emphasis on its Deep Basin Edited by Eike Rachor Ber. Polarforsch. 359 (2000) ISSN 0176 - 5027 Contents Foreword ....................................................................................... 1 A. Reviews General features of the White Sea. Morphology, sediments, hydrology, oxygen conditions, nutrients and organic matter. Berger, V. Ya. & Naumov, A.D.. ...................................................... .3 Geochemical investigations in the White Sea. Strekopytov, S. .......................................................................... 10 Life in the depth of the White Sea - What is known about it. Galkina, V. N., Fedyakov, V.V. & Naumov, A.D ................................. 14 Deep-water meiobenthos research in the White Sea. Mokievsky, V. ........................................................................... 21 The White Sea Basin phytoplankton - a review. Rat'kova, T.N.. ..........................................................................23 Zooplankton of the White Sea . History of investigations and the present state of knowledge - a review. Pertzova, N.M. & Kosobokova, K.N. ............................................... 30 Macroplankton and rnicronekton Spiridonov, V. ........................................................................... 42 B. Original articles On the macro-invertebrate sublittoral bottom fauna in the White Sea - with cornrnents On its zoogeography Deubel, H. ............................................................................... -
Ecosystems and Resources of the Massachusetts Coast
ECOSYSTEMS AND RESOURCES, OF THE MASSACHUSETTS COAST .....-_-- .. •. / '- .. ~, \ '.' . - ..... INSTITUTE FOR MAN -,-...,,~,.. :-- .AND ENVIRONMENT - ...........:r"l -;.- / -,-.--"-,, T"'- - 2 24 TABLE OF CONENTS Acknowledgements Introduction 3 We wish to thank the following persons and organizations who generously provided their I The Geology of the Massachusetts Coast 5 time and facilities to help us prepare this document. First to our scientific advisory The Glacial Influence 5 panel, Professors Charles Cole, Dayton Carritt, The Dynamic Coastline 6 Craig Edwards, Paul Godfrey and James Nature's Stabilizers 10 Parrish, of the University of Massachusetts, Amherst, we offer appreciation for their critical II The living Systems of the Coast 11 and patient review of our manuscript. We also The Ecosystem 11 extend our gratitude to the staff of the Massachusetts Coastal Zone Management Ecosystem Management 12 Program, Executive Office of Environmental Salt Marsh 13 Affairs, for their assistance. Others who Eelgrass Beds 16 provided help are: John Dennis, Nantucket; Sand Dunes 17 Ralph Goodno and Thomas Quink, Cooperative Sand Beaches 20 Extension Service; Dr. James Baird, Tidal Flats 23 Massachusetts Audubon; Allen Look, Nor thampton; Clifford Kaye, U.S. Geological Rocky Shores 24 Survey; Dr. Phillip Stanton, Framingham State Composite Ecosystems 26 College; and Dr. Joseph Hartshorn, University Salt Ponds 26 of Massachusetts. Barrier Beaches-Islands 28 Thanks are due also to the Metropolitan Estuaries 29 District Commission and Massachusetts Inventory Maps of Mass. Coast 34 Division of Forests and Parks for providing us boat trips in Boston Harbor; and Carlozzi, Sinton and Vilkitis, Inc. for the use of their four III Coastal Resources and Their Cultural Uses 44 wheel drive vehicle. -
The Echinoderm Newsletter
THE ECHINODERM NEWSLETTER Number 16. 1991. Editor: John Lawrence Department of 8iology University of South Florida Tampa, Florida 33620, U.S.A. Distributed by the Department of Invertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, D.C. 20560, U.S.A. (David Pawson) The newsletter contains information concerning meetings and conferences, publications of interest to echinoderm biologists, titles of theses on echinoderms, and research interests and addresses of echinoderm biologists. Individuals who desire to receive the newsletter should send their name and research interests to the editor. The newsletter is not intended to be a part of the scientific literature and should not be ctted, abstracted, or reprinted as a published document. 1 .. j Table of Contents Echinoderm specialists: names and address 1 Conferences 1991 European Colloquium on Echinoderms 26 1994 International Echinoderm Conference 27 Books in print .........•.........................••.................. 29 Recent articles ........•............................................. 39 Papers presented at conferences 70 Theses and dis sertat ions 98 Requests and informat ion . Inst itut iona 1 1 ibrarfes' requests 111 Newsletters: Beche-de-mer Information Bulleltin 111 COTS Comm. (Crown-of-thorns starfish) 114 Individual requests and information 114 Cadis-fly oviposition in asteroids 116 Pept ides in ech inoderms ;- 117 Mass mortality of asteroids in the north Pacific 118 Species of echinoderms available at marine stations . Japan 120 Banyuls, -