Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance

Total Page:16

File Type:pdf, Size:1020Kb

Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance molecules Review Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance Natassja G. Bush y , Isabel Diez-Santos y , Lauren R. Abbott and Anthony Maxwell * Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; [email protected] (N.G.B.); [email protected] (I.D.-S.); [email protected] (L.R.A.) * Correspondence: [email protected]; Tel.: +44-16-0345-0771 These authors contributed equally to this work. y Academic Editor: Derek J. McPhee Received: 27 October 2020; Accepted: 28 November 2020; Published: 1 December 2020 Abstract: Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics. Keywords: fluoroquinolones; DNA gyrase; topoisomerases; antibacterials; DNA topology; supercoiling; antibiotic resistance 1. Introduction The quinolone antibiotics (Figure1) are the most successful class of topoisomerase inhibitors to date. They are synthetic antimicrobials with the initial compound, nalidixic acid, being discovered as a by-product of chloroquine synthesis in 1962 [1,2]. They are used to treat bacterial infections caused by both Gram-positive and Gram-negative bacteria, including, but not limited to, urinary tract infections (UTIs), pyelonephritis, gastroenteritis, sexually-transmitted diseases, such as Gonorrhoea, tuberculosis [3], prostatitis, community-acquired pneumonia and skin and soft-tissue infections [4,5]. However, due to an increase in resistance and issues surrounding toxicity, their use in the treatment of mild infections has been contraindicated [6]. The global rise in antibiotic resistance has galvanised research into new antibiotics against both well-established targets and new targets. It has also sparked further research into antibiotics whose mode of killing is less well-established, as well as how bacteria become resistant to them. This is certainly true in the case of quinolones. In this review, the current knowledge on the mode of action of quinolones, how they kill bacteria and known pathways to resistance will be discussed. Moreover, we will review the current literature on sublethal quinolone exposure leading to resistance to quinolone and non-quinolone antibiotics. Molecules 2020, 25, 5662; doi:10.3390/molecules25235662 www.mdpi.com/journal/molecules Molecules 2020, 25, 5662 2 of 27 Molecules 2020, 25, x FOR PEER REVIEW 2 of 28 FigureFigure 1. Chemical1. Chemical structures structures of severalof several significant significant fluoroquinolones. fluoroquinolones. Nalidixic Nalidixic acid acid (the (the first first “quinolone”)“quinolone”) is shown, is shown, along along with with the chloroquinethe chloroquin by-producte by-product inspiring inspiring its synthesis. its synthesis. Note Note that that nalidixicnalidixic acid acid lacks lacks the 4-quinolonethe 4-quinolone core core and and instead instead contains contains a 1,8-naphthyridine a 1,8-naphthyridine nucleus. nucleus. 2. Background on Quinolones 2. Background on Quinolones The discovery of nalidixic acid (Figure1) was reported in 1962 during the analogue synthesis of a The discovery of nalidixic acid (Figure 1) was reported in 1962 during the analogue synthesis of lead structure: 7-chloro-1-ethyl-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid, which was detected as a lead structure: 7-chloro-1-ethyl-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid, which was detected an impurity in the synthesis of chloroquine (an antimalarial agent). From the analogues produced, as an impurity in the synthesis of chloroquine (an antimalarial agent). From the analogues produced, nalidixic acid was notable due to its moderate antibacterial activity against Gram-negative species nalidixic acid was notable due to its moderate antibacterial activity against Gram-negative species (except against Pseudomonas aeruginosa), including Escherichia coli, both in vitro and in vivo [1]. (except against Pseudomonas aeruginosa), including Escherichia coli, both in vitro and in vivo [1]. Several Several years later, nalidixic acid was released for clinical use for the treatment of uncomplicated years later, nalidixic acid was released for clinical use for the treatment of uncomplicated UTIs [7]. UTIs [7]. This sparked the synthesis of additional analogues, although with little improvement over This sparked the synthesis of additional analogues, although with little improvement over nalidixic nalidixic acid in terms of spectrum of activity and serum concentration [1,8,9]. Other analogues included acid in terms of spectrum of activity and serum concentration [1,8,9]. Other analogues included oxolinic acid, which was also introduced to the clinic, and these compounds, along with nalidixic acid oxolinic acid, which was also introduced to the clinic, and these compounds, along with nalidixic (although, in relation to its structure, nalidixic acid is a 1,8 naphthyridone and not a true quinolone [1,2]), acid (although, in relation to its structure, nalidixic acid is a 1,8 naphthyridone and not a true are considered first-generation quinolones [4,10,11]. There are many proposals concerning how the quinolone [1,2]), are considered first-generation quinolones [4,10,11]. There are many proposals generations of quinolones should be defined. Of particular note, there is the suggestion of quinolone concerning how the generations of quinolones should be defined. Of particular note, there is the generations characterised by their structure, mechanism and their killing pathway [12], and there is suggestion of quinolone generations characterised by their structure, mechanism and their killing the classification by structure, in vitro activity and clinical use [13]. In this review, we are referring pathway [12], and there is the classification by structure, in vitro activity and clinical use [13]. In this to the quinolone generations classified by their clinical uses and spectrum of antibacterial activity review, we are referring to the quinolone generations classified by their clinical uses and spectrum of outlined by Andriole [11]. Continued optimisation of the quinolones led to a fluorine atom being antibacterial activity outlined by Andriole [11]. Continued optimisation of the quinolones led to a substituted onto carbon 6 (C-6) of the quinolone scaffold (Figure3), producing a fluoroquinolone (FQ). fluorine atom being substituted onto carbon 6 (C-6) of the quinolone scaffold (Figure 2), producing a The first fluoroquinolone was Flumequine, which, after brief use in the clinic, was abandoned due fluoroquinolone (FQ). The first fluoroquinolone was Flumequine, which, after brief use in the clinic, was abandoned due to ocular toxicity [13,14]. Another key modification that enhanced potency was Molecules 2020, 25, 5662 3 of 27 to ocular toxicity [13,14]. Another key modification that enhanced potency was the incorporation of a piperazine ring onto C-7 [2,15–18]. This C-7 addition, along with the C-6 fluorine, formed the second-generation quinolones, which have a broader scope of activity and better bioavailability, as well as improved pharmacokinetic and pharmacodynamic properties [8,16,19–21]. They were also less toxic and were less susceptible to single point mutations that led to high levels of resistance seen against the first-generation quinolones [7,8,17,22]. The second-generation quinolone class began with norfloxacin (Figure1)[ 15], which proved to be effective in the treatment of genitourinary and gastrointestinal tract infections, as well as increased activity against P. aeruginosa [15,16,21–23]. However, it was ciprofloxacin (Figure1) that was the first quinolone that showed e ffective systemic activity [8,17,24,25]. Ciprofloxacin is listed as a first-line treatment for low-risk febrile neutropenia within cancer patients and a second-line treatment for cholera, as well as being employed clinically against a range of UTIs, such as those caused by Pseudomonas aeruginosa [26]. It has also been demonstrated to be effective in the treatment of Enterobacteriaceae-induced osteomyelitis, prostatitis and septicaemia [8]. Following the success of ciprofloxacin, the observed structure-activity relationships (SARs) were explored further (Figure3). This medicinal chemistry e ffort produced a wide range of newer-generation FQs (third and fourth generations) that have even broader spectra of activity, greater efficacy and a lower prevalence of resistance [27]. Sparfloxacin and moxifloxacin (Figure1) are the better-known compounds of the third and fourth generations, respectively, and are amongst the first quinolones to show significant potency against Gram-positive bacteria [11]. Furthermore, Mycobacterium tuberculosis, the bacterial species that causes tuberculosis (TB; currently the world’s deadliest bacterial infectious disease to date), is susceptible to the FQs, and both moxifloxacin and levofloxacin (a second-generation quinolone)
Recommended publications
  • Partners in Practice
    ADRENALS: Spring 2012 What you won’t find in a textbook Partners in Practice Dr Sue Foster BVSc, MVetClinStud, FACVSc Vetnostics Small Animal Medical Consultant ➤ Cutaneous Mycobacterial Disease in Dogs and Cats: Part 2 PART 4b: UCCr and CALP ➤ The Most Difficult and Frustrating Diagnoses As part 4 of this series looks at diagnostic tests, we can’t Corticosteroid-induced alkaline phosphatase escape some statistics. So, some very simplistic explanations (c-ALP) relative to hyperA are as follows: ➤ Adrenals: Part 4b Increased serum ALP, the most common routine laboratory Sensitivity: the likelihood that the test will detect hyperA abnormality in hyperA is due mainly to the induction Specificity: the chance that a positive test is truly hyperA of a specific ALP isoenzyme by glucocorticoids. The corticosteroid-induced isoenzyme of ALP can be measured Then, there are predictive values which take into account by electrophoretic separation, heat inactivation or more the prevalence or likelihood of a disease in addition to usually in commercial laboratories, by levamisole-inhibition. sensitivity and specificity. The levamisole inhibition explains why c-ALP is sometimes referred to as l-ALP but this terminology can be confusing Positive predictive value (PPV): the chance of a positive as sometimes l-ALP is used to describe the liver isoenzyme; result being indicative of hyperA in dogs with signs of it is also referred to as CAP (corticosteroid-induced ALP) or hyperA (e.g. Can we confidently diagnose hyperA when we SIAP (steroid-induced alkaline phosphatase). get a “positive” result?) The sensitivity of c-ALP has been reported to be 0.81-0.95.7-9 Negative predictive value (NPV): the likelihood that a Specificity is poor (0.18-0.44)7-9 and PPV in one study was negative results eliminates the possibility of hyperA in dogs as low as 21.4%7 thus this test cannot be recommended as with signs of hyperA (e.g.
    [Show full text]
  • Crystal Structure and Stability of Gyrase–Fluoroquinolone Cleaved Complexes from Mycobacterium Tuberculosis
    Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis Tim R. Blowera,1, Benjamin H. Williamsonb, Robert J. Kernsb, and James M. Bergera,2 aDepartment of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205; and bDivision of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2013. Contributed by James M. Berger, December 22, 2015 (sent for review October 28, 2015; reviewed by Benjamin Bax and Yuk-Ching Tse-Dinh) Mycobacterium tuberculosis (Mtb) infects one-third of the world’s threatens both first-line and second-line use (11). The wide- population and in 2013 accounted for 1.5 million deaths. Fluoro- spread testing of fluoroquinolones against TB has revealed quinolone antibacterials, which target DNA gyrase, are critical considerable variation in efficacy of different drug variants agents used to halt the progression from multidrug-resistant tu- against Mtb. For example, ciprofloxacin is only marginally active, berculosis to extensively resistant disease; however, fluoroquino- and its early use with Mtb was halted in favor of ofloxacin and lone resistance is emerging and new ways to bypass resistance are levofloxacin (7). These two agents are now proving to be less required. To better explain known differences in fluoroquinolone effective than moxifloxacin and gatifloxacin (7, 10); however, the action, the crystal structures of the WT Mtb DNA gyrase cleavage newest two compounds also exhibit some nonideality. For ex- core and a fluoroquinolone-sensitized mutant were determined in ample, gatifloxacin can elicit side effects such as hypo/hypergly- complex with DNA and five fluoroquinolones.
    [Show full text]
  • Clinically Isolated Chlamydia Trachomatis Strains
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, JUIY 1988, p. 1080-1081 Vol. 32, No. 7 0066-4804/88/071080-02$02.00/0 Copyright © 1988, American Society for Microbiology In Vitro Activities of T-3262, NY-198, Fleroxacin (AM-833; RO 23-6240), and Other New Quinolone Agents against Clinically Isolated Chlamydia trachomatis Strains HIROSHI MAEDA,* AKIRA FUJII, KATSUHISA NAKATA, SOICHI ARAKAWA, AND SADAO KAMIDONO Department of Urology, School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe-city, Japan Received 9 December 1987/Accepted 29 March 1988 The in vitro activities of three newly developed quinolone drugs (T-3262, NY-198, and fleroxacin [AM-833; RO 23-6240]) against 10 strains of clinically isolated Chiamydia trachomatis were assessed and compared with those of other quinolones and minocycline. T-3262 (MIC for 90% of isolates tested, 0.1 ,ug/ml) was the most active of the quinolones. The NY-198 and fleroxacin MICs for 90% of isolates were 3.13 and 62.5 ,ug/ml, respectively. Recently, it has become well known that Chlamydia 1-ml sample of suspension was seeded into flat-bottomed trachomatis is an important human pathogen. It is respon- tubes with glass cover slips and incubated at 37°C in 5% CO2 sible not only for trachoma but also for sexually transmitted for 24 h. The monolayer was inoculated with 103 inclusion- infections, including lymphogranuloma venereum. In forming units of C. trachomatis. The tubes were centrifuged women, it causes cervicitis, endometritis, and salpingitis at 2,000 x g at 25°C for 45 min and left undisturbed at room asymptomatically (19), while in men it causes nongono- temperature for 2 h.
    [Show full text]
  • Seres Health, 160 First Street Suite 1A, Cambridge MA 02142 1
    Genetics: Early Online, published on September 27, 2013 as 10.1534/genetics.113.152306 1 Tolerance of Escherichia coli to fluoroquinolone antibiotics depends on specific 2 components of the SOS response pathway 3 4 Alyssa Theodore, Kim Lewis, Marin Vulić1 5 Antimicrobial Discovery Center, Department of Biology, Northeastern University, 6 Boston, Massachusetts 02115 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1Present Address: Seres Health, 160 First Street Suite 1A, Cambridge MA 02142 1 Copyright 2013. 32 Fluoroquinolone Tolerance in Escherichia coli 33 34 Keywords: SOS response, Persisters, Tolerance, DNA repair, fluoroquinolones 35 36 Corresponding Author: 37 Marin Vulić 38 Current Address: Seres Health 39 160 First Street Suite 1A 40 Cambridge MA 02142 41 [email protected] 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 2 65 ABSTRACT 66 67 Bacteria exposed to bactericidal fluoroquinolone (FQ) antibiotics can survive without 68 becoming genetically resistant. Survival of these phenotypically resistant cells, 69 commonly called persisters, depends on the SOS gene network. We have examined 70 mutants in all known SOS-regulated genes to identify functions essential for tolerance in 71 Escherichia coli. The absence of DinG and UvrD helicases and Holliday junction 72 processing enzymes RuvA and RuvB lead to a decrease in survival. Analysis of the 73 respective mutants indicates that in addition to repair of double strand breaks, tolerance 74 depends on the repair of collapsed replication forks and stalled transcription complexes.
    [Show full text]
  • A TWO-YEAR RETROSPECTIVE ANALYSIS of ADVERSE DRUG REACTIONS with 5PSQ-031 FLUOROQUINOLONE and QUINOLONE ANTIBIOTICS 24Th Congress Of
    A TWO-YEAR RETROSPECTIVE ANALYSIS OF ADVERSE DRUG REACTIONS WITH 5PSQ-031 FLUOROQUINOLONE AND QUINOLONE ANTIBIOTICS 24th Congress of V. Borsi1, M. Del Lungo2, L. Giovannetti1, M.G. Lai1, M. Parrilli1 1 Azienda USL Toscana Centro, Pharmacovigilance Centre, Florence, Italy 2 Dept. of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), 27-29 March 2019 Section of Pharmacology and Toxicology , University of Florence, Italy BACKGROUND PURPOSE On 9 February 2017, the Pharmacovigilance Risk Assessment Committee (PRAC) initiated a review1 of disabling To review the adverse drugs and potentially long-lasting side effects reported with systemic and inhaled quinolone and fluoroquinolone reactions (ADRs) of antibiotics at the request of the German medicines authority (BfArM) following reports of long-lasting side effects systemic and inhaled in the national safety database and the published literature. fluoroquinolone and quinolone antibiotics that MATERIAL AND METHODS involved peripheral and central nervous system, Retrospective analysis of ADRs reported in our APVD involving ciprofloxacin, flumequine, levofloxacin, tendons, muscles and joints lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, cinoxacin, nalidixic acid, reported from our pipemidic given systemically (by mouth or injection). The period considered is September 2016 to September Pharmacovigilance 2018. Department (PVD). RESULTS 22 ADRs were reported in our PVD involving fluoroquinolone and quinolone antibiotics in the period considered and that affected peripheral or central nervous system, tendons, muscles and joints. The mean patient age was 67,3 years (range: 17-92 years). 63,7% of the ADRs reported were serious, of which 22,7% caused hospitalization and 4,5% caused persistent/severe disability. 81,8% of the ADRs were reported by a healthcare professional (physician, pharmacist or other) and 18,2% by patient or a non-healthcare professional.
    [Show full text]
  • A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
    A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity.
    [Show full text]
  • Photodegradation Assessment of Ciprofloxacin, Moxifloxacin
    Hubicka et al. Chemistry Central Journal 2013, 7:133 http://journal.chemistrycentral.com/content/7/1/133 RESEARCH ARTICLE Open Access Photodegradation assessment of ciprofloxacin, moxifloxacin, norfloxacin and ofloxacin in the presence of excipients from tablets by UPLC-MS/MS and DSC Urszula Hubicka1*, PawełŻmudzki2, Przemysław Talik1, Barbara Żuromska-Witek1 and Jan Krzek1 Abstract Background: Ciprofloxacin (CIP), moxifloxacin (MOX), norfloxacin (NOR) and ofloxacin (OFL), are the antibacterial synthetic drugs, belonging to the fluoroquinolones group. Fluoroquinolones are compounds susceptible to photodegradation process, which may lead to reduction of their antibacterial activity and to induce phototoxicity as a side effect. This paper describes a simple, sensitive UPLC-MS/MS method for the determination of CIP, MOX, NOR and OFL in the presence of photodegradation products. Results: Chromatographic separations were carried out using the Acquity UPLC BEH C18 column; (2.1 × 100 mm, 1.7 μm particle size). The column was maintained at 40°C, and the following gradient was used: 0 min, 95% of eluent A and 5% of eluent B; 10 min, 0% of eluent A and 100% of eluent B, at a flow rate of 0.3 mL min-1. Eluent A: 0.1% (v/v) formic acid in water; eluent B: 0.1% (v/v) formic acid in acetonitrile. The method was validated and all the validation parameters were in the ranges acceptable by the guidelines for analytical method validation. The photodegradation of examined fluoroquinolones in solid phase in the presence of excipients followed kinetic of the first order reaction and depended upon the type of analyzed drugs and coexisting substances.
    [Show full text]
  • Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020
    First independent framework for assessing pharmaceutical company action Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020 ACKNOWLEDGEMENTS The Access to Medicine Foundation would like to thank the following people and organisations for their contributions to this report.1 FUNDERS The Antimicrobial Resistance Benchmark research programme is made possible with financial support from UK AID and the Dutch Ministry of Health, Welfare and Sport. Expert Review Committee Research Team Reviewers Hans Hogerzeil - Chair Gabrielle Breugelmans Christine Årdal Gregory Frank Fatema Rafiqi Karen Gallant Nina Grundmann Adrián Alonso Ruiz Hans Hogerzeil Magdalena Kettis Ruth Baron Hitesh Hurkchand Joakim Larsson Dulce Calçada Joakim Larsson Marc Mendelson Moska Hellamand Marc Mendelson Margareth Ndomondo-Sigonda Kevin Outterson Katarina Nedog Sarah Paulin (Observer) Editorial Team Andrew Singer Anna Massey Deirdre Cogan ACCESS TO MEDICINE FOUNDATION Rachel Jones The Access to Medicine Foundation is an independent Emma Ross non-profit organisation based in the Netherlands. It aims to advance access to medicine in low- and middle-income Additional contributors countries by stimulating and guiding the pharmaceutical Thomas Collin-Lefebvre industry to play a greater role in improving access to Alex Kong medicine. Nestor Papanikolaou Address Contact Naritaweg 227-A For more information about this publication, please contact 1043 CB, Amsterdam Jayasree K. Iyer, Executive Director The Netherlands [email protected] +31 (0) 20 215 35 35 www.amrbenchmark.org 1 This acknowledgement is not intended to imply that the individuals and institutions referred to above endorse About the cover: Young woman from the Antimicrobial Resistance Benchmark methodology, Brazil, where 40%-60% of infections are analyses or results.
    [Show full text]
  • Overcoming Fluoroquinolone Resistance: Mechanistic Basis of Non- Quinolone Antibacterials Targeting Type Ii Topoisomerases
    OVERCOMING FLUOROQUINOLONE RESISTANCE: MECHANISTIC BASIS OF NON- QUINOLONE ANTIBACTERIALS TARGETING TYPE II TOPOISOMERASES By Elizabeth Grace Gibson Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmacology May 10, 2019 Nashville, Tennessee Approved: Neil Osheroff, Ph.D. Joey Barnett, Ph.D. Wendell S. Akers, Pharm.D., Ph.D. Sean Davies, Ph.D. Benjamin Spiller, Ph.D. Timothy R. Sterling, M.D. DEDICATION To all my family and church family who have supported and encouraged me over all my years in school. To Him who I put all my trust. Commit your way to the Lord, trust also in Him and He shall bring it to pass. Psalm 37:5 ii ACKNOWLEDGEMENTS I want to first thank my Ph.D. advisor, Dr. Neil Osheroff, for allowing me to work in his laboratory. Thank you for all your support and encouragement and just being an overall great mentor. You really know how to bring us up when we need it or give us an ego check when we get a little high and mighty when things are going well. I appreciate your supportiveness to careers outside academia. I also appreciate that you always have our best interest at heart. To Dr. Joe Deweese, my first research mentor and the one who instilled the love of topoisomerase research. Without your guidance I would not be where I am today. Thank you for introducing me to Neil and his laboratory and helping with the transition from research in your lab to his.
    [Show full text]
  • Pharmacology
    FORM UPDATED | 04/07/20 Pharmacology 865-974-5646 Diagnostic Laboratory Service For lab Date Received: # of Samples Received: vetmed.tennessee.edu/vmc/dls use only Institution/Practice: ASSAYS CURRENTLY AVAILABLE Veterinarian: Aciclovir Gabapentin Address: Amoxicillin Galliprant Bromide Ganciclovir Bupivacaine Hydromorphone Butorphanol Itraconazole & Hydroxyitraconazole Carboplatin Ivermectin Phone: Caffeine Ketamine & Norketamine Fax: Carprofen Ketoprofen Carvedilol Lidocaine & metabolites Type of Sample: Ceftiofur Meloxicam No. of Samples: Ceftiofur Equivalents Midazolam & Hydroxmidazolam Cefovecin Metronidazole Date &Time Dosed: Chloramphenicol Moxidectin Citrate (urine only) Omeprazole Date & Time Collected: Deracoxib Oxalate (urine only) Dosage Amount: Diazepam and Nordiazepam Oxytetracycline Famciclovir/Penciclovir Piroxicam Dosage Formulation: Fenbendazole Praziquantil Route: Fentanyl Prednisolone Firocoxib Propofol Sample Identification Info: Flunixin Robenacoxib Species: Canine Feline Equine Fluconazole Terbinafine Other:__________________________________________________________ Fluoroquinolones: Thiafentanil Medication History (All medications the animal is currently on or has recently received): Ciprofloxacin Tramadol and metabolites Enrofloxacin M1, M2, M4, & M5 Fleroxacin Uric Acid Marbofloxacin Valciclovir Moxifloxacin Voriconazole Furosemide Requested Assay: If you are interested in drugs not listed, contact the laboratory with questions about assay development and cost. Ship Samples to: UTCVM Pharmacology Laboratory 2407
    [Show full text]
  • Management of E. Coli Sister Chromatid Cohesion in Response to Genotoxic Stress
    ARTICLE Received 1 Oct 2016 | Accepted 13 Jan 2017 | Published 6 Mar 2017 DOI: 10.1038/ncomms14618 OPEN Management of E. coli sister chromatid cohesion in response to genotoxic stress Elise Vickridge1,2,3, Charlene Planchenault1, Charlotte Cockram1, Isabel Garcia Junceda1 & Olivier Espe´li1 Aberrant DNA replication is a major source of the mutations and chromosomal rearrange- ments associated with pathological disorders. In bacteria, several different DNA lesions are repaired by homologous recombination, a process that involves sister chromatid pairing. Previous work in Escherichia coli has demonstrated that sister chromatid interactions (SCIs) mediated by topological links termed precatenanes, are controlled by topoisomerase IV. In the present work, we demonstrate that during the repair of mitomycin C-induced lesions, topological links are rapidly substituted by an SOS-induced sister chromatid cohesion process involving the RecN protein. The loss of SCIs and viability defects observed in the absence of RecN were compensated by alterations in topoisomerase IV, suggesting that the main role of RecN during DNA repair is to promote contacts between sister chromatids. RecN also modulates whole chromosome organization and RecA dynamics suggesting that SCIs significantly contribute to the repair of DNA double-strand breaks (DSBs). 1 Center for Interdisciplinary Research in Biology (CIRB), Colle`ge de France, UMR CNRS-7241, INSERM U1050, PSL Research University, 11 place Marcelin Berthelot, 75005 Paris, France. 2 Universite´ Paris-Saclay, 91400 Orsay, France. 3 Ligue Nationale Contre le Cancer, 75013 Paris, France. Correspondence and requests for materials should be addressed to O.E. (email: [email protected]). NATURE COMMUNICATIONS | 8:14618 | DOI: 10.1038/ncomms14618 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14618 ll cells must accurately copy and maintain the integrity of or cohesin-like activities26,27.
    [Show full text]
  • Dead Bugs Don't Mutate: Susceptibility Issues in the Emergence of Bacterial Resistance
    PERSPECTIVES Dead Bugs Don’t Mutate: Susceptibility Issues in the Emergence of Bacterial Resistance Charles W. Stratton*1 The global emergence of antibacterial resistance among and macrolides (the antibacterial agents used most frequently common and atypical respiratory pathogens in the last decade for pneumococcal infections) have become prevalent through- necessitates the strategic application of antibacterial agents. out the world. Indeed, rates of S. pneumoniae resistance to The use of bactericidal rather than bacteriostatic agents as penicillin now exceed 40% in many regions, and a high pro- first-line therapy is recommended because the eradication of portion of these strains are also resistant to macrolides. More- microorganisms serves to curtail, although not avoid, the devel- over, the trend is growing rapidly. Whereas 10.4% of all S. opment of bacterial resistance. Bactericidal activity is achieved with specific classes of antimicrobial agents as well as by com- pneumoniae isolates were resistant to penicillin and 16.5% bination therapy. Newer classes of antibacterial agents, such resistant to macrolides in 1996, these proportions rose to as the fluoroquinolones and certain members of the macrolide/ 14.1% and 21.9%, respectively, in 1997 (9). A more recent lincosamine/streptogramin class have increased bactericidal susceptibility study conducted in 2000–2001 showed that activity compared with traditional agents. More recently, the 51.5% of all S. pneumoniae isolates were resistant to penicillin ketolides (novel, semisynthetic, erythromycin-A derivatives) and 30.0% to macrolides (10). have demonstrated potent bactericidal activity against key res- The urgent need to curtail proliferation of antibacterial- piratory pathogens, including Streptococcus pneumoniae, Hae- resistant bacteria has refocused attention on the proper use of mophilus influenzae, Chlamydia pneumoniae, and Moraxella antibacterial agents.
    [Show full text]