<<

Page 1 of 74 Diabetes

Highly proliferative alpha related islet endocrine cells in

human pancreata

Carol J. Lam1, Aaron R. Cox1, Daniel R. Jacobson2, Matthew M. Rankin2, Jake A. Kushner1

Short Running Title: Proliferative Islet Cells in Human Pancreata

1 McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030

2 Division of and Diabetes, Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104

Correspondence: Jake A. Kushner M.D. or Aaron R. Cox PhD., Baylor College of Medicine, Houston, TX, 77030, (832) 8223780, [email protected] or [email protected]

Keywords: Pancreatic Islet, Endocrine, Cell Differentiation, Morphometry, Cell Proliferation,

βcell, αcell, Sox9, ARX

(Manuscript information: abstract – 197 words, main text – 3990 words; 7 figures, 1 table, 13

supplemental figures, 23 supplemental tables)

Diabetes Publish Ahead of Print, published online January 11, 2018 Diabetes Page 2 of 74

ABSTRACT

The proliferative response of nonβ islet endocrine cells in response to

(T1D) remains undefined. We quantified islet endocrine cell proliferation in a large collection of nondiabetic control and T1D human pancreata across a wide range of ages. Surprisingly, islet endocrine cells with abundant proliferation were present in many adolescent and young adult

T1D pancreata. But, the proliferative islet endocrine cells were also present in similar abundance within control samples. We queried the proliferating islet cells with antisera against various islet . Although PP, somatostatin, and ghrelin cells did not exhibit frequent proliferation, expressing αcells were highly proliferative in many adolescent and young adult samples. Notably, αcells only comprised a fraction (~1/3) of the proliferative islet cells within those samples; most proliferative cells did not express islet hormones. The proliferative negative cells uniformly contained immunoreactivity for ARX (indicating αcell fate) and cytoplasmic Sox9 (Sox9Cyt). These hormone negative cells represented the majority of islet

endocrine Ki67+ nuclei and were conserved from infancy through young adulthood. Our studies

reveal a novel population of highly proliferative ARX+ Sox9Cyt+ hormone negative cells and suggest the possibility of previously unrecognized islet development and/or lineage plasticity within adolescent and adult human pancreata.

Page 3 of 74 Diabetes

INTRODUCTION

Type 1 diabetes (T1D) is characterized by a considerable loss of βcells and subsequent

deficiency (17). Although βcells have been reported to persist in T1D pancreata for

several years after diagnosis, we recently found that T1D pancreata do not exhibit evidence of

increased βcell proliferation, nor evidence of βcell neogenesis or (1).

However, the impact of T1D on nonβcells has not been studied. Thus, the regenerative

response of islet endocrine cells to T1D remains poorly understood.

Lineage tracing studies in mice suggest that αcells may have unappreciated plasticity. α

cells appear to transdifferentiate into βcells in mice under some circumstances (24). These

results imply that αcells might be a potential source for βcell neogenesis as a novel therapy for

diabetes. Indeed, insulinglucagon coexpressing cells have been reported within pancreata of

human patients with acute pancreatitis (5). However, potential compensatory responses from

nonβcell sources in human pancreata with longstanding T1D remain poorly understood, as only

a few studies have been performed. Increased Ki67+ islet cells have been observed in both α

and βcells of pancreata from individuals with recentonset T1D (6). Ki67+ ductal cells have also

been described in transplanted of patients with T1D (7). Increased cell proliferation has

also been reported in pancreatic duct glands of T1D pancreata (8). Taken together, these

observations hint at a role for nonβcell sources in T1D pathophysiology or compensation.

Given the lack of consensus, we considered the possibility that other islet endocrine cells

could participate or respond to autoimmunity with attempted regeneration. We surveyed human

islet proliferation in nondiabetic control and T1D pancreata from the JDRF nPOD collection,

applying high throughput imaging and analysis using similar techniques as our previous study Diabetes Page 4 of 74

(1). We find that islet proliferation did not increase in response to T1D. But, islet cell proliferation was sharply increased in many adolescent and young adult pancreata of non

diabetic and T1D individuals. We identify a novel population of highly proliferative, αrelated

cells within many adolescent and young adult pancreata.

Page 5 of 74 Diabetes

RESEARCH DESIGN AND METHODS

Human Pancreatic Samples. Paraffin embedded pancreas tissue sections were obtained

from the JDRF Network for Pancreatic Organ Donors with Diabetes (nPOD) after a waiver from

our institutional review board (IRB). Pancreata were studied based on availability. Tissues were

processed by nPOD by standardized operating procedures (http://www.jdrfnpod.org/for

investigators/standardoperatingprocedures/). Paraffinembedded tissues were fixed in 10%

neutral buffered formalin for 24 h, up to 40 h for pancreata with high fat content (1).

Sample Population: 59 nondiabetic controls and 47 T1Ds were studied, selected to

include various ages: infants (01.4 yrs), children (1.513.9 yrs), adolescents (1420.9 yrs), young

adults (2139 yrs), and older adults (≥40yrs), as previously (1). Recent onset T1D was defined as

disease duration ≤10 years. See Table S12 for further information.

Immunohistochemistry. Paraffin sections were incubated with primary antisera (Table

S3), followed by the appropriate secondary antisera conjugated to AMCA, Cy2, Cy3, or Cy5

(Jackson ImmunoResearch) and DAPI (Molecular Probes, Eugene, OR), as previously (1).

Primary antisera (1:100) ARX (R&D systems, AF7068), β3 tubulin (Novus NB1001612), CD3

(ThermoFisher PA137282), CD31 (Abcam, ab28364), chromagranin A (Abcam, ab8204),

ghrelin (Phoenix Pharmaceuticals, H03177), GLUT1 (Millipore, 071401), ISL1&2 (DSHB,

39.4D5), INSM1 (Santa Cruz, sc271408), NeuN (Millipore, MAB377), Nkx2.2 (Abcam,

ab191077), Nkx6.1 (DSHB, F55A12), pancreatic polypeptide (Invitrogen, 180043), PCNA

(Cell Signaling, 2586S), PC1/3 (Millipore, AB10553), Pdx1 (Novus Biologicals, NBP238865),

phosphohistone H3 (Cell Signaling, 9701S), proinsulin (DSHB, GNID4), SNAP25 (Millipore,

MAB331), somatostatin (Invitrogen, 180078), synaptotagmin 1A (Abcam, ab133856), Sox9

(Millipore, AB5535), Sox9 (pS181) (abcam, ab59252),, and synaptophysin (ThermoFisher, 18 Diabetes Page 6 of 74

0130; Abcam, AB6245); (1:250) glucagon (Abcam, ab8055 & ab10988) and Ki67 (BD

Biosciences, #550609); (1:1500) insulin (Dako, A0564).

Islet morphometry. Islet endocrine and αcell morphometry with Volocity 6.1.1

(PerkinElmer) as previously (9). Zeiss AxioImager M1 (Carl Zeiss Microscopy) with automated

XY stage and Orca ER camera (Hamamatsu) acquired images of tens of thousands of individual nuclei/sample (Suppl. Table 5).

Proliferation analysis. Ki67+ islet endocrine (synaptophysin), αcell (glucagon), PP, SS,

ghrelin, and Sox9Cyt proliferation were calculated as % total cells. A subset of high proliferators

was quantified as % intraislet Ki67+ cells for insulin and all other markers. High proliferation

was defined as having an islet endocrine cell replication rate >0.71%, corresponding to zscore of

+0.5.

TUNEL. Apoptosis analysis was performed in a subset of available control and T1D samples, as previously (1). Total terminal deoxynucleotide transferasemediated dUTP nick end labeling (TUNEL)positive islet endocrine cells were assessed in >85,000 islet cells/condition.

Total TUNEL+ Sox9Cyt cells were assessed in 993 islet cells/condition. In every sample,

TUNEL+ pancreatic ducts were imaged to ensure adequate TUNEL staining. Page 7 of 74 Diabetes

RESULTS

Increased islet endocrine cell proliferation in some adolescent and

young adults, irrespective of T1D status

We previously quantified βcell proliferation in control and T1D nPOD pancreas organ

donor samples and found no evidence for a βcell regenerative response to T1D at any age group

(1). During our studies, we noted some samples had islets with abundant Ki67+ cells, indicating

islet proliferation (Fig. 1ac). Samples with highly proliferative islets represented only a portion

of pancreatic donors, largely from adolescents and young adults. Proliferative islet cells were

present in control and T1D samples; T1D did not influence the proliferative islet cell phenotype

(Fig. 1df; Table S5). Cell cycle entry within islets, as measured by the percentage of Ki67+ islet

cells amongst total islet nuclei, was equivalent between control and T1D for agematched cohorts

of children and adolescents (0.63 v. 0.81%) or adults (0.38 % v. 0.24%), with proliferation more

variable in controls (Fig. 1gj; Table S5). Most proliferative islet cells did not express insulin,

suggesting they were not βcells (Fig. 1ab). We quantified Ki67+ βcells as a fraction of the

total Ki67+ islet cells amongst the highly proliferative pancreatic samples. The vast majority of

Ki67+ islet cells did not contain insulin; 89.8% of Ki67+ intraislet cells of controls and 98.86%

of Ki67+ intraislet cells of T1Ds did not express insulin (Fig. 1k; Table S6). Moreover, Ki67+

islet cells were not CD3+ or CD31+, thereby excluding lymphocytes or endothelial cells,

respectively (Fig. S1). We therefore considered the possibility of proliferative nonβ islet

endocrine cells within our samples.

Increased islet endocrine cell proliferation in pancreata from some

adolescent and young adults, irrespective of T1D status Diabetes Page 8 of 74

We imaged and quantified total islet endocrine cell proliferation using Ki67 and

synaptophysin (marker of islet endocrine cells) in 59 control and 47 T1D pancreata to determine

the identity of the proliferative islet cells and to test for a proliferative response to T1D. Similar

to previous findings of βcell proliferation (1; 10; 11), islet endocrine cell proliferation was greatest in pancreatic samples from nondiabetic infants and children (up to 8.68%) and declined with age (Fig. 2ah; Table S78). Islet endocrine cell proliferation was comparable between control and T1D samples from agematched cohorts of children (0.94±0.59% v. 1.50±1.03%; p =

0.66) (Fig. 2ij; Table S78). However, a subset of control and T1D adolescents and young adults exhibited many Ki67+ islet cells (0.486.39%; hereby referred to as ‘high proliferators’; Table

S58). Islet cell proliferation was not associated with duration of diabetes and was minimal in the other samples from control and T1D adolescents and young adults (Fig. 2kl; Table S78).

Pancreatic samples from older control and T1D adults had very few Ki67+ cells and minimal islet endocrine cell proliferation (Fig. 2gh; Table S78). Synaptophysin+ Ki67+ cells represented the vast majority of intraislet Ki67+ cells in both control and T1D samples (Fig. 2m;

Table S9). Islet endocrine cell proliferation was verified with other markers of cell cycle entry.

Abundant synaptophysin+ phosphohistone H3+ (pHH3) and PCNA+ nuclei were observed, confirming increased cell cycle entry (Fig. S2).

To test for regional variation of the islet cell proliferative phenotype, we studied samples from the opposite region of the pancreas (e.g. head/body when tail had been previously measured) from four adolescent and young adult cases and compared synaptophysin+ Ki67+.

Reassuringly, there was minimal intrasample variation of islet cell proliferation (Fig. S3, Table

S10). Thus, the proliferative islet endocrine cell population did not substantially vary within Page 9 of 74 Diabetes

pancreatic region. Taken together, these studies indicate that proliferative islet endocrine cells

are present within a significant population of pancreata from adolescent and young adult donors.

αcell proliferation declines with age and is greatly increased in some

adolescent and young adult pancreata

We considered the possibility that αcells could represent the proliferating islet endocrine

cells of pancreata from adolescents and young adults. We measured αcell proliferation in

control samples, quantifying glucagon+ Ki67+ nuclei (Fig. 3af; Table S7). Infants exhibited

very high (up to 8.93%) and older adults very little (0 to 0.42%) αcell proliferation. (Fig. 3g;

Table S7). However, αcell proliferation was quite elevated (up to 3.4% of αcells were Ki67+)

in samples from a fraction (~1/3) of adolescents and young adults. Thus, αcell proliferation

gradually decreased with age, consistent with previous findings in islets (above), αcells (12),

and in βcells (1; 10; 11). Notably, many pancreata from adolescents and young adults with

increased islet endocrine cell proliferation also had abundant αcell proliferation (Table S8).

We tested for a proliferative response of αcells to T1D. Glucagon+ Ki67+ cells were

present in some T1D samples of children, adolescents, and young adults (Fig. 3df). Abundant α

cell proliferation was present in a fraction of pancreata from children, adolescents, and young

adults (Fig. 3h; Table S8). Similar to controls, αcell proliferation declined as a function of age to

very low levels in older T1D adults (00.07%). Notably, αcell proliferation was decreased in

T1D samples from children/adolescents and young/older adults (Fig. 3ij; Table S78). Similarly,

Ki67+ αcells per islet was decreased in T1D pancreata from children, adolescents, and young

adults (Table S11). T1D individuals with the most αcell proliferation were mainly children and

adolescents with short disease duration (Fig. 3kl; Suppl. Table S8). αcell proliferation was Diabetes Page 10 of 74

present in the same subset of control and T1D adolescent and young adult samples that exhibited

islet endocrine cell proliferation (Table S78).

Increased αcell proliferation represents a fraction of total islet cell proliferation

Given parallel trends of proliferation between islet endocrine cells and αcells, we considered the possibility that αcells could represent the majority of proliferative islet cells.

However, glucagon+ Ki67+ cells only accounted for 24% and 30% of total intraislet cell proliferation in the highly proliferative control and T1D samples, respectively (Fig. 3m; Table

S12). Since βcell proliferation comprised only 10.2% and 1.1% of total intraislet cell proliferation in control and T1D pancreata (Fig. 1g; Table S6), respectively, most islet endocrine proliferation could not be accounted for within α and βcells. Thus, our studies revealed the presence of another population of highly proliferative islet endocrine cells within adolescent and young adults.

PP, somatostatin, and ghrelin cells exhibit minimal proliferation

In a further attempt to identify the highly proliferative islet endocrine cells, we separately quantified Ki67 staining with pancreatic polypeptide (PP), somatostatin, and ghrelin. However, there were very few proliferating PP, somatostatin, and ghrelin cells within a random sampling of adolescent and young adult pancreata (Fig. 4ai; Table S13). No difference was noted between control and T1D for any cell populations. A separate analysis quantified PP, SS, and ghrelin proliferation as a percentage of intraislet proliferation (Fig. 4jl), using the subset of nondiabetic and T1D donors identified with high levels of proliferation. PP, somatostatin, and ghrelin cell proliferation accounted for very little of the total intraislet proliferation within control and T1D pancreata (Fig. 4jl; Table S14). Thus, most of the islet cells entering cell cycle within the Page 11 of 74 Diabetes

proliferative samples did not contain any of the five known islet endocrine hormones, although

some Ki67+ cells were glucagon+. Our studies therefore reveal the presence of highly

proliferative islet endocrine cells that do not express any of the known islet hormones.

No association of islet endocrine cell proliferation with pancreas

harvest conditions

Since increased islet endocrine cell proliferation was only present within a fraction of

pancreata from adolescents and young adults in control (9 of 34) and T1D (2 of 31), we

considered the possibility that islet cell cycle entry might be influenced by postmortem state or

conditions of organ harvest. We compared synaptophysin+ Ki67+ cell content of pancreatic

samples versus donor clinical parameters. Reassuringly, there was no association between

duration of intensive care unit (ICU) stay and islet cell proliferation in control or T1D (Fig. S4a

b; Table S15). Similarly, there was no association between αcell proliferation and ICU stay (Fig.

S4cd; Table S15).

Concerns have been raised regarding the potential impact of warm or cold ischemia to

reduce Ki67 immunoreactivity and thus confound measurement of human islet cell proliferation

(13). Although pancreatic transit time varied dramatically, there was no correlation with islet cell

proliferation or αcell proliferation (Fig. S4eh; Table S15). Thus, impaired sample quality did

not seem to explain the variability of islet endocrine proliferation in our population.

Cytoplasmic Sox9 in proliferative islet cells

We considered the possibility that highly proliferative islet endocrine cells could express

markers of islet endocrine progenitors. Ngn3, a key islet endocrine cell progenitor, was not

detected within either control or T1D pancreata (data not shown). We then tested for Sox9

expression, which influences development of pancreatic progenitor cells and adult exocrine cells, Diabetes Page 12 of 74

amongst other organs (1416). Surprisingly, most Ki67 or PCNA proliferative cells showed Sox9

immunoreactivity in the cytoplasm (Sox9Cyt), in sharp contrast to pancreatic ducts (Fig. 5ab;

Fig. S5ad). To further test Sox9Cyt immunoreactivity, we stained pancreata with phospho specific antisera against serine 181 of Sox9 (pSox9). Consistent with earlier Sox9 studies (17

23), pSox9 antisera yielded cytoplasmic immunoreactivity in scattered islet endocrine cells that were uniformly ARX+ (Fig. S6ad). Many pSox9+ ARX+ cells also expressed glucagon in variable amounts. (Fig. S6cd). In contrast to the above Sox9 studies, pSox9+ antisera did not stain nuclear antigens in pancreatic acini and only weakly detected nuclei within duct structures

(Fig. S6ef). Collectively, these studies with pSox9+ antisera support the possibility of Sox9Cyt

immunoreactivity within the highly proliferative ARX+ glucagon variable islet endocrine cells.

Quantification revealed very high amounts of Sox9Cyt Ki67+ cells (up to ~13%) in some

adolescent controls and T1Ds (Fig. 5c; Table S16). Indeed, Sox9Cyt immunoreactive cell proliferation accounted for ~72% of total intraislet proliferation in the subset of controls and

T1Ds with high endocrine cell proliferation (Fig. 5d; Table S16). Thus, Sox9Cyt Ki67+ cells

represented the proliferative hormone negative intraislet cells, which were also detected by p

Sox9 antisera (Fig. S6gh). Notably, Sox9Cyt Ki67+ cells were specific to islets and not primarily associated with pancreatic ducts or pancreatic parenchyma, as detected by ductal structures or cytokeratin19 (Fig. S5eg; Table S17).

Absence of neuronal markers in cytoplasmic Sox9 immunoreactive

cells

Synaptophysin is a neuroendocrine marker and could also detect neurons in the pancreas or islet. Hence we employed additional neuronal markers to test if Sox9Cyt cells represented de Page 13 of 74 Diabetes

differentiated neurons. Sox9Cyt cells did not express β3 tubulin or NeuN, which detect peripheral

neurons (Fig. S6). Thus, proliferative intraislet cells did not express neuronal related markers.

Absence of βcell specific markers in proliferative islet cells

We employed additional βcell and endocrine differentiation markers to test if

proliferating intraislet cells represented dedifferentiated βcells. The Ki67+ islet cells did not

express Pdx1 (Fig. S8a), which defines mature βcells and a few somatostatin islet cells. Islet

Sox9Cyt cells also did not express the mature βcell marker, Nkx6.1, which was always found

within insulin+ cells and absent from glucagon+ cells (Fig. S8b) (1). Similarly, Ki67+ cells did

not express MafA, GAD65, PC1/3, and GLUT1 (Fig. S8cf). These studies indicate that the

proliferative intraislet cells did not express βcell related markers.

Proliferative islet endocrine Sox9cyt cells express αcell markers (ARX

and variable glucagon)

Further analysis of islet Sox9Cyt cells demonstrated that virtually all Sox9Cyt coexpressed

synaptophysin (Control = 99.9%, T1D = 99.6%; Fig. 6ab; Table S18), which is consistent with

our synaptophysinKi67 studies. Having excluded βcell related markers, we considered the

possibility that the proliferative islet endocrine Sox9Cyt cells might be related to αcells. We

looked for αcell progenitors after finding increased αcell proliferation, given that proliferative

αcells did not represent the majority of proliferative islet cells. We stained pancreata with

antisera against ARX, a marker of αcell related fate. Indeed, virtually all Sox9Cyt cells were also

ARX+ (Control = 99.3%, T1D = 98.4%; Fig. 6cd; Table S19). ARX+ Sox9Cyt cells variably

expressed glucagon: some ARX+ Sox9Cyt cells contained glucagon while others were glucagon

negative (Fig. 6cd). Sox9Cyt cells also variably expressed GLP1 and many GLP1+ cells co

expressed glucagon (Fig. S9). Notably, many ARX+ glucagon negative cells were Ki67+ (Fig. Diabetes Page 14 of 74

6ef; Table S20). These studies of ARX+ Sox9Cyt Ki67+ glucagon cells reveal that many of the proliferative islet endocrine cells have an αcell related phenotype.

We tested for other islet endocrine markers of ARX+ Sox9Cyt cells. We first looked for

INSMI, a transcription factor present within (24) and in murine α, β, somatostatin,

and PP cells (25). INSM1 expression was consistently observed in β and αcells of young adult

control and TID samples and also in ARX+ Sox9Cyt cells (Fig. S10ad). Similarly, Isl1&2 was

readily detected in ARX+ Sox9Cyt cells (Fig. S10e). Additionally, Nkx2.2 marked both α/βcells

and was observed in highly proliferative Ki67+ insulin negative islet cells (Fig. S10fg). Thus,

ARX+ Sox9Cyt Ki67+ cells seem to express many markers common to islet endocrine cells.

To further characterize the endocrine properties of the proliferative cells, we tested for chromogranin A and other vesicular or exocytosisrelated proteins. ARX+ Sox9Cyt cells

expressed chromagranin A, as well as exocytotic machinery components synaptotagmin 1a and

SNAP25 (Fig. S11af). Interestingly, secretogranin III, which is typically contained within islet

endocrine cells including α, βcells (26; 27), was absent from Ki67+ cells or some ARX+ cells

(Fig. S11gh). Thus, the ARX+ Sox9Cyt islet endocrine cells exhibit many (but not all) of the

common features of hormone secreting αcells.

ARX+ Sox9Cyt islet endocrine cells are conserved in infant and

children pancreata

To determine if the proliferative islet endocrine cells are unique to adolescents and young

adults, we studied additional pancreata from control infants and young children. Sox9Cyt

synaptophysin+ cells were abundant in islets from infants and young children (Fig. 7ab). ARX+

Sox9Cyt cells were readily detected in islets from infants and young children, with glucagon present in some but not all cells (Fig. 7cd). Similar to adolescents and young adults, most of the

Page 15 of 74 Diabetes

ARX+ Ki67+ cells in younger samples did not express glucagon (Fig. 7ef). ARX+ Sox9Cyt cells

consistently expressed INSM1 (Fig. 7gh). These studies reveal that ARX+ Sox9Cyt islet

endocrine cells are developmentally conserved and readily detected within pancreata across a

wide range of ages.

Cell death within proliferative islet cells

We hypothesized that vast proliferation of ARX+ Sox9Cyt islet endocrine cells might be

counterbalanced by increased cell death. We quantified islet endocrine cell death via TUNEL

assay. Some adolescent and young adult control and T1D individuals exhibited intraislet

TUNEL nuclei (Fig. S12ac, fg; Table S21). However, Sox9 cells were not routinely TUNEL+

(Fig. S12de; Table S22). Thus, the ARX+ Sox9Cyt islet endocrine cells seem to be a stable

population that does not immediately undergo cell death. However, overall islet endocrine cell

death seemed to be dramatically increased within some samples, especially those from

adolescents and young adults.

Increased cell death could limit the net expansion of islet endocrine cells. To directly test

the impact of increased islet endocrine cell proliferation, we quantified islet endocrine cell mass

using synaptophysin as a panendocrine islet marker. While islet area and mass were decreased

in T1D samples compared to controls, islet endocrine area and mass did not correlate with age in

either cohort (Fig S13; Table S23). Thus, the proliferative islet endocrine cells do not appear to

result in accumulation of islet endocrine mass.

Diabetes Page 16 of 74

DISCUSSION

We analyzed human islet cell proliferation and found high amounts of islet endocrine and

αcell proliferation in some control and T1D pancreata from adolescents and young adults. The proliferative cells appear to be related to αcells and express ARX, Sox9Cyt, and various markers

of islet endocrine cells including INMS1, Isl1&2, and Nkx2.2 (Table 1). Sox9Cyt cells comprised the majority of islet endocrine cell proliferation (up to ~72%). ARX+ Sox9Cyt cells expressed

markers of secretory vesicles and machinery, suggesting some capacity for hormone secretion.

ARX+ Sox9Cyt cells were abundant in nonproliferative individuals in a wide age range. Our studies reveal a novel population of highly proliferative αrelated cells and suggest previously unappreciated replicative capacity and plasticity within islet populations of human pancreata in adolescents and young adults.

Although βcell proliferation decreases dramatically after infancy (1; 10; 11), we found that islet endocrine and αcell proliferation was high in a subset of adolescents and young adults.

Interestingly, αcell proliferation was decreased in T1D compared to controls, suggesting that islet proliferation in adolescents and young adults may be impaired by diabetes. Furthermore, we observed an increase in hormone negative αrelated cells with substantial proliferation suggesting that adolescent and young adult pancreata may harbor cells with retained plasticity and replicative capacity. These αrelated cells were relatively abundant and comprised the majority of islet Ki67+ nuclei within donors with highly proliferative islets. They did not exhibit mature βcell markers: Pdx1, Nkx6.1, MafA, and GAD65. Notably, islet cell proliferation in

adolescent T1D pancreata was equivalent to control nondiabetic pancreata. Although a

regenerative response to T1D was not observed, few samples were obtained from very recent

T1D onset. In contrast, Willcox et. al demonstrated that individuals with less than 18 months Page 17 of 74 Diabetes

disease duration may have compensatory α and βcell proliferation (6). However, the high rates

of islet and αcell proliferation observed in some T1D adolescents do not appear to be attempted

βcell regeneration from T1D associated βcell deficiency. Rather, these highly proliferative cells

seem to represent previously unrealized developmental plasticity within islet endocrine lineages,

unrelated to T1D. While most islet proliferation occurs during the perinatal period (28), islet cell

proliferation and apoptosis were comparable in our study further suggesting adolescence and

young adulthood as a unique period of high proliferation.

Sox9Cyt cells, which express many islet and αcell markers, might be in a transition state.

However, whether they are transitioning to or from αcells remains unclear. Sox9 is an important

transcription factor in developing pancreas for islet endocrine differentiation and development

(29). In contrast to typical nuclear Sox9 localization (30), we find highly proliferative cells with

Sox9Cyt immunoreactivity. Interestingly, Sox9 activity has been described to change with its

localization in the cytoplasm and nucleus within , chondrocytes, breast, and gastric tissues

(1723). In cultured cells nuclear translocation of Sox9 has been linked to βcatenin degradation

and thus inhibition of Wnt signaling (22). In mature islets, future studies will determine whether

Sox9Cyt plays a role in cell proliferation or differentiation.

Our study has notable strengths but also limitations inherent to autopsy specimens. We

studied a large number of control and T1D samples across a wide age range and quantified vast

numbers of cells within several different cell types. Thus, our findings of highly proliferative

islet endocrine cells seem to represent a genuine phenomenon, and these Ki67+ cells can be

readily detected. However, studies of autopsy tissues are complicated by potential confounding

variables, including the cause and conditions of death of the patient, tissue transport conditions,

and other preexisting medical conditions prior to the patient’s demise. For example, hypoxemia Diabetes Page 18 of 74

or other conditions of ICU stay could alter pancreas physiology and possibly influence islet

endocrine cell proliferation. Thus, it will be difficult to resolve the highly proliferative αrelated

cells in vivo given the challenges of pancreatic biopsy from T1D individuals, which include pancreatitis (31). Although samples can be obtained from patients who require pancreatic

resection for cancer or tumors (32), such lesions typically occur in the middle aged and elderly.

Consequently, it might be difficult to obtain pancreatic samples from healthy adults. Therefore,

nPOD autopsy specimens represent a unique window into human physiology, albeit with

limitations.

In conclusion, we find no compensatory islet proliferation in T1D. However, we find a highly proliferative population of αrelated islet endocrine cells in adolescents and young adults.

The presence of proliferative ARX+ Sox9Cyt cells across a range of ages (infants to young adults)

demonstrates developmental conservation of this αrelated cell population and hints that αcells

may play an essential role in islet function and growth.

Page 19 of 74 Diabetes

ACKNOWLEDGEMENTS

The authors thank the pancreas donors and their families. This research was performed

with the support of nPOD, a collaborative T1D research project sponsored by the Juvenile

Diabetes Research Foundation International (JDRF). Organ Procurement Organizations,

partnering with nPOD to provide research resources, are listed at www.jdrfnpod.org/our

partners.php. We thank M. Yang, I. Kusmartseva, A. Pugliese, C. Wasserfal, M. Campbell

Thompson, and M. Atikinson for their generous and essential contributions to this work.

Additionally, we thank A. Myers, M. Beery, and E. Verney for helping us acquire samples for

this study.

This study was supported by funding from the Robert and Janice McNair Foundation,

NIH (1R01AG040110), and Diabetes Research Center of the Baylor College of Medicine (DRC

P30DK079638).

CJL, ARC, DRJ, MMR, & JAK conceived and designed the experiments. CJL, DRJ,

MMR, ARC performed the experiments. CJL, ARC, DRJ, MMR, & JAK analyzed the data. CJL,

ARC, & JAK wrote the paper. JAK is the guarantor of this work and, as such, had full access to

all the data in the study and takes responsibility for the integrity of the data and the accuracy of

the data analysis.

CJL, ARC, MMR, DRJ, and JAK declare no conflict of interest. JAK serves on the

scientific advisory board for Lexicon and Know Foods. MMR is a current employee of Janssen

Pharmaceuticals of Johnson and Johnson.

Diabetes Page 20 of 74

REFERENCES

1. Lam CJ, Jacobson DR, Rankin MM, Cox AR, Kushner JA: beta Cells Persist in T1D Pancreata Without Evidence of Ongoing betaCell Turnover or Neogenesis. J Clin Endocrinol Metab 2017;102:26472659

2. Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, Herrera PL: Conversion of adult pancreatic alphacells to betacells after extreme betacell loss. Nature 2010;464:11491154

3. van der Meulen T, Mawla AM, DiGruccio MR, Adams MW, Nies V, Dolleman S, Liu S, Ackermann AM, Caceres E, Hunter AE, Kaestner KH, Donaldson CJ, Huising MO: Virgin Beta Cells Persist throughout Life at a Neogenic Niche within . Cell Metab 2017;25:911926 e916

4. BenOthman N, Vieira A, Courtney M, Record F, Gjernes E, Avolio F, Hadzic B, Druelle N, Napolitano T, NavarroSanz S, Silvano S, AlHasani K, Pfeifer A, LacasGervais S, Leuckx G, Marroqui L, Thevenet J, Madsen OD, Eizirik DL, Heimberg H, KerrConte J, Pattou F, Mansouri A, Collombat P: LongTerm GABA Administration Induces Alpha CellMediated Betalike Cell Neogenesis. Cell 2017;168:7385 e11

5. Chung CH, Hao E, Piran R, Keinan E, Levine F: Pancreatic betacell neogenesis by direct conversion from mature alphacells. Stem Cells 2010;28:16301638

6. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG: Evidence of increased islet cell proliferation in patients with recentonset type 1 diabetes. Diabetologia 2010;53:20202028

7. MartinPagola A, Sisino G, Allende G, DominguezBendala J, Gianani R, Reijonen H, Nepom GT, Ricordi C, Ruiz P, Sageshima J, Ciancio G, Burke GW, Pugliese A: Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity. Diabetologia 2008;51:18031813

8. Moin AS, Butler PC, Butler AE: Increased Proliferation of the Pancreatic Duct Gland Compartment in Type 1 Diabetes. J Clin Endocrinol Metab 2017;102:200209

9. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA: Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 2007;12:817826

10. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, Rizza RA, Butler PC: Betacell replication is the primary mechanism subserving the postnatal expansion of betacell mass in humans. Diabetes 2008;57:15841594

11. Cnop M, Hughes SJ, IgoilloEsteve M, Hoppa MB, Sayyed F, van de Laar L, Gunter JH, de Koning EJ, Walls GV, Gray DW, Johnson PR, Hansen BC, Morris JF, PipeleersMarichal M, Cnop I, Clark A: The long lifespan and low turnover of human islet beta cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 2009;53:321330 Page 21 of 74 Diabetes

12. Cnop M, IgoilloEsteve M, Hughes SJ, Walker JN, Cnop I, Clark A: Longevity of human islet alpha and betacells. Diabetes Obes Metab 2011;13 Suppl 1:3946

13. Sullivan BA, HollisterLock J, BonnerWeir S, Weir GC: Reduced Ki67 Staining in the Postmortem State Calls Into Question Past Conclusions About the Lack of Turnover of Adult Human betaCells. Diabetes 2015;64:16981702

14. Seymour PA, Freude KK, Dubois CL, Shih HP, Patel NA, Sander M: A dosagedependent requirement for Sox9 in pancreatic endocrine cell formation. Dev Biol 2008;323:1930

15. McDonald E, Li J, Krishnamurthy M, Fellows GF, Goodyer CG, Wang R: SOX9 regulates endocrine cell differentiation during human fetal pancreas development. Int J Biochem Cell Biol 2012;44:7283

16. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, Masui T, Kawaguchi M, Takaori K, Doi R, Nishi E, Kakinoki R, Deng JM, Behringer RR, Nakamura T, Uemoto S: Continuous cell supply from a Sox9expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2011;43:3441

17. Gasca S, Canizares J, De Santa Barbara P, Mejean C, Poulat F, Berta P, BoizetBonhoure B: A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc Natl Acad Sci U S A 2002;99:11199 11204

18. Chakravarty G, Moroz K, Makridakis NM, Lloyd SA, Galvez SE, Canavello PR, Lacey MR, Agrawal K, Mondal D: Prognostic significance of cytoplasmic SOX9 in invasive ductal carcinoma and metastatic breast cancer. Experimental biology and medicine 2011;236:145155

19. Chakravarty G, Rider B, Mondal D: Cytoplasmic compartmentalization of SOX9 abrogates the growth arrest response of breast cancer cells that can be rescued by trichostatin A treatment. Cancer Biol Ther 2011;11:7183

20. Malki S, Nef S, Notarnicola C, Thevenet L, Gasca S, Mejean C, Berta P, Poulat F, Boizet Bonhoure B: Prostaglandin D2 induces nuclear import of the sexdetermining factor SOX9 via its cAMPPKA phosphorylation. EMBO J 2005;24:17981809

21. Moniot B, Farhat A, Aritake K, Declosmenil F, Nef S, Eguchi N, Urade Y, Poulat F, Boizet Bonhoure B: Hematopoietic prostaglandin D synthase (HPgds) is expressed in the early embryonic gonad and participates to the initial nuclear translocation of the SOX9 protein. Dev Dyn 2011;240:23352343

22. Topol L, Chen W, Song H, Day TF, Yang Y: Sox9 inhibits Wnt signaling by promoting beta catenin phosphorylation in the nucleus. J Biol Chem 2009;284:33233333

23. Leung VY, Gao B, Leung KK, Melhado IG, Wynn SL, Au TY, Dung NW, Lau JY, Mak AC, Chan D, Cheah KS: SOX9 governs differentiation stagespecific gene expression in growth plate Diabetes Page 22 of 74

chondrocytes via direct concomitant transactivation and repression. PLoS genetics 2011;7:e1002356

24. Zhang T, Chen C, Breslin MB, Song K, Lan MS: Extranuclear activity of INSM1 transcription factor enhances insulin receptor signaling pathway and Nkx6.1 expression through RACK1 interaction. Cell Signal 2014;26:740747

25. Jia S, Ivanov A, Blasevic D, Muller T, Purfurst B, Sun W, Chen W, Poy MN, Rajewsky N, Birchmeier C: Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic beta cell function. EMBO J 2015;34:14171433

26. Sakai Y, Hosaka M, Yoshinaga A, Hira Y, Harumi T, Watanabe T: Immunocytochemical localization of secretogranin III in the endocrine pancreas of male rats. Arch Histol Cytol 2004;67:5764

27. Stridsberg M, Grimelius L, PortelaGomes GM: Immunohistochemical staining of human islet cells with regionspecific antibodies against secretogranins II and III. J Anat 2008;212:229 234

28. Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B: Betacell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 2000;49:13251333

29. Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, Scherer G, Sander M: SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci U S A 2007;104:18651870

30. Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, Ma J, Sander M: Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 2011;138:653665

31. Krogvold L, Edwin B, Buanes T, Ludvigsson J, Korsgren O, Hyoty H, Frisk G, Hanssen KF, DahlJorgensen K: Pancreatic biopsy by minimal tail resection in live adult patients at the onset of type 1 diabetes: experiences from the DiViD study. Diabetologia 2014;57:841843

32. Inaishi J, Saisho Y, Sato S, Kou K, Murakami R, Watanabe Y, Kitago M, Kitagawa Y, Yamada T, Itoh H: Effects of obesity and diabetes on alpha and mass in surgically resected human pancreas. J Clin Endocrinol Metab 2016:jc20161374

Page 23 of 74 Diabetes

TABLE 1

Table 1. Adolescent and young adult pancreata contain a population of highly proliferative

αrelated cells that mostly glucagon negative. A summary of markers found to be detected or

absent in α, α’, β, γ, δ, and εcells.

αcell α’cell βcell γcell δcell εcell Glucagon Arx Insulin Pancreatic Somatostatin Ghrelin Polypeptide GLP1 Sox9Cyt Nkx6.1 Arx Nkx2.2 MafA D Sox9Cyt Insm1 GAD65 e t Nkx2.2 Isl1&2 Insm1 e Insm1 Synaptophysin Isl1&2 c Isl1&2 CgA Nkx2.2 t Synaptophysin SCG3 Synaptophysin e SCG3 SNAP25 CgA d SNAP25 SYT1 SCG3 SYT1 Ki67 SNAP25 CgA PCNA SYT1 Ki67 pHH3 Insulin Glucagon Glucagon Ki67 Ki67 Ki67 A Nkx6.1 GLP1 b MafA Insulin Arx Cyt s GAD65 Nkx6.1 Sox9 e MafA Ki67 n GAD65 t Pdx1 SCG3

Diabetes Page 24 of 74

FIGURE LEGENDS

Fig. 1. High levels of intraislet proliferation within some adolescents and young adults

but not within βcells. Islet images for (a) control and (b) T1D pancreata stained for

DAPI (blue), insulin (Ins; green) and Ki67 (red). (cd) Quantification of intraislet

cell proliferation in (c) control and (d) T1D represented by age (years) demonstrate

high intraislet proliferation in both control and T1D islets. Data points represent the

mean value for each of 33 controls and 18 T1D pancreata. (ef) Ki67+ intraislet cells

(% total) in T1D were very similar to control (e) children & adolescent pancreata and

(f) young & older adults pancreata. Results expressed as mean ± SEM for 11 control

and 12 T1D children & adolescents, 17 control and 6 young and older adults. (g)

Ki67+ βcells represent a small fraction of the total intraislet Ki67+ cells in a subset

of highly proliferating control (n=12) and T1D (n=6) pancreata, identified as

described in methods.

Fig. 2. Islet endocrine cell proliferation is greatly increased in some adolescent and

young adult pancreata. Analysis of islet endocrine cells in control and T1D

pancreata. Islet images for (ac) control and (df) T1D stained for DAPI (blue),

synaptophysin (Syn; green), and Ki67 (red). Scale bar: 100m. (gh) Quantification

of islet endocrine cell proliferation in (g) control and (h) T1D represented by age

(years). Data points represent the mean value for each of 59 controls and 46 T1D

pancreata. Ki67+ Syn+ (% total) in control and T1D v. age (years) demonstrate that

islet endocrine cell proliferation generally declines with age with notable proliferation

in adolescents and young adults. (ij) Ki67+ Syn+ (% total) in T1D was very similar Page 25 of 74 Diabetes

to control (i) children & adolescent pancreata but reduced compared to control (j)

young & older adults pancreata. Results expressed as mean ± SEM for 23 control and

23 T1D children & adolescents, 28 control and 23 young & older adults. (kl) Islet

endocrine cell proliferation v. T1D duration (years) reveals that most pancreata from

T1D individuals exhibited low rates of islet endocrine cell proliferation. (m) Ki67+

islet endocrine cells represent a small fraction of the total intraislet Ki67+ cells in a

subset of highly proliferating control (n=12) and T1D (n=6) pancreata.

Fig. 3. αcell proliferation is greatly increased in some adolescent and young adult

pancreata; no compensatory βcell proliferation in T1D. Analysis of αcell in

control and T1D pancreata. Islet images for (ac) control and (df) T1D stained for

DAPI (blue), glucagon (Gcg; green), and Ki67 (red). Scale bar: 100m. (gh)

Quantification of αcell proliferation in (g) control and (h) T1D represented by age

(years). Data points represent the mean value for each of 59 controls and 47 T1D

pancreata. Ki67+ αcell (% total) in control and T1D v. age (years) demonstrates that

αcell proliferation declines with age with notable proliferation in adolescents and

young adults. (ij) Ki67+ αcell (% total) in T1D was reduced compared to control (i)

children & adolescent pancreata and (j) young & older adults pancreata. Results

expressed as mean ± SEM for 23 control and 24 T1D children & adolescents, 28

control and 23 T1D young & older adults. (kl) αcell proliferation v. T1D duration

(years) demonstrates that most pancreata from T1D individuals exhibited low rates of

αcell proliferation. (m) Ki67+ αcells represent a fraction of the total intraislet

Ki67+ cells in a subset of highly proliferating control (n=12) and T1D (n=6)

pancreata.

Diabetes Page 26 of 74

Fig. 4. PP, somatostatin, and ghrelin cells exhibit minimal proliferation in control and

T1D. (a, d, g) Control and (b, e, h) T1D islets stained for DAPI (blue) and Ki67 (red)

with an islet endocrine hormone (green); (ab) pancreatic polypeptide (PP), (de)

somatostatin (SS), or (gh) ghrelin. Scale bar: 100m. (c, f, i) Quantification of PP,

SS, and ghrelin cell proliferation for adolescent control and T1D pancreata. Results

expressed as mean ± SEM for 5 controls (PP/Ghrelin), 6 controls (SS) and 9 T1D. (j)

PP, (k) somatostatin, and (l) ghrelin cells represent a small fraction of the total intra

islet Ki67+ cells in a subset of highly proliferating control (n=3) and T1D (n=3)

pancreata.

Fig. 5. Proliferative Sox9Cyt cells in adolescent and young adult samples represent the

majority of proliferating islet cells. (ab) Islet images for (a) control and (b) T1D

stained for insulin (Ins; blue), Sox9 (green), and Ki67 (red). Insets indicate Ki67+

Sox9Cyt+ cells. Scale bar: 100 m. (c) Quantification of Sox9Cyt cell proliferation in a

random sampling of adolescent control (n=6) and T1D (n=6) pancreata, represented

as % total Sox9Cyt cells. Results expressed as mean ± SEM for controls (n=6) and

T1D pancreata (n=6). (d) Ki67+ Sox9Cyt+ cells comprise the majority of proliferating

intraislet cells measured in a subset of highly proliferative controls (n=3) and T1D

(n=3) pancreata.

Fig. 6. Highly proliferative Sox9Cyt cells are endocrine cells, expressing ARX and

variable glucagon. (a, c, e) Control and (b, d, f) T1D islets stained for endocrine,

Sox9, Ki67, and αcell markers. (ab) Islets stained for synaptophysin (Syn; green)

and Sox9 (red) show synaptophysin, Sox9Cyt copositive cells. (cd) Islets stained for

Sox9 (green), ARX (red), and glucagon (white) indicate some Sox9Cyt, ARX,

Page 27 of 74 Diabetes

glucagon triple positive cells (inset c), and some Sox9Cyt ARX+ cells that are clearly

glucagon negative as visible in the inset of (d). (ef) Islets stained for glucagon

(white), ARX (green), Ki67 (red) indicate ARX and Ki67 copositive cells that do not

express glucagon. Scale bar: 100m.

Fig. 7. Highly proliferative cytoplasmic Sox9 cells that express ARX, INSM1 and

variable glucagon are also present in infant and children pancreata. Control

islets of (a, c, e, g) infants and (b, d, f, h) children stained for islet endocrine, Sox9,

Ki67, and αcell markers. (ab) Islets stained for synaptophysin (Syn; green) and

Sox9 (red). Insets indicate synaptophysin, Sox9Cyt copositive cells. (cd) Islets stained

for Sox9 (green), ARX (red), and glucagon (Gcg; white). Insets indicate cytoplasmic

Sox9, ARX, glucagon triple positive cells, with a Sox9Cyt ARX+ cell that is clearly

glucagon negative visible in the inset of (d). (ef) Islets stained for glucagon (white),

ARX (green), Ki67 (red). Insets indicate ARX and Ki67 copositive cells that do not

express glucagon. (gh) Islets stained for Sox9 (white), ARX (green), and INSM1

(red). Insets indicate Sox9Cyt ARX+ cells expressing INSMI. Scale bar: 100m.

a Control DAPI Ins Ki67 b Control DiabetesDAPI Syn pHH3 c Control DAPIPage Syn 28 PCNA of 74 6279 6131 6235 19 yrs 24.2 yrs 30 yrs

d T1D DAPIf Ins Ki67 e T1D DAPI Syn pHH3 f T1D DAPI Syn PCNA 6052 6052 6261 12 yrs 12 yrs 16 yrs

1 yr duration 1 yr duration 14.2 yr duration g 12 Control Intraislet Cell h 12 T1D Intraislet Cell i 8 Children & Adolescents 10 Proliferation 10 Proliferation Infants 6 8 Children 8 Children Adolescents Adolescents 6 6 Young Adults Young Adults 4 4 Older Adults 4 2 2 2 Intraislet Cells (% Total) (% Intraislet Cells Intraislet Cells (% Total) (% Intraislet Cells Intraislet Cells (% Total) (% Intraislet Cells + + + 0 0 0

0 10 20 30 40 50 60 70 Ki67 0 10 20 30 40 50 60 70 Ki67 Ki67 Control T1D Age (Years) Age (Years) j k Control & T1D β-Cell Proliferation 4 Young & Older Adults Control T1D Ki67+ Insulin+ 3 Ki67+ Insulin- 2

1 Intraislet Cells (% Total) (% Intraislet Cells + 0

Ki67 Control T1D

Lam et al Fig. 1 aPage Control 29 of 74 DAPI Syn Ki67 b Control DiabetesDAPI Syn Ki67 c Control DAPI Syn Ki67 6200 6235 6020 Newborn, 2 days 30 yrs 60 yrs

d T1D DAPI Syn Ki67 e T1D DAPI Syn Ki67 f T1D DAPIf Syn Ki67 6052 6261 6138 12 yrs 16 yrs 49.2 yrs

1 yr duration 14.2 yr duration 41 yr duration g Control Islet Endocrine Proliferation h T1D Islet Endocrine Proliferation i 12 12 15 Children & Adolescents 10 10 Infants 8 Children 8 Children 10 Adolescents Adolescents 6 6 cells (% Total) (% cells cells (% Total) (% cells cells (% Total) (% cells Young Adults Young Adults + + + 4 Older Adults 4 Older Adults 5 Syn Syn Syn + + + 2 2 Ki67 Ki67 Ki67 0 0 0 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Control T1D AgeAge (Years) AgeAge (Years) (Years) j k T1D Islet Endocrine Proliferation l T1D Islet Endocrine Proliferation 12 12 4 Young & Older Adults 10 10 3 * 8 Children 8 Children Adolescents Adolescents 2 6 6 cells (% Total) (% cells

Young Adults Total) (% cells cells (% Total) (% cells Young Adults + + + 4 Older Adults 4 Older Adults 1 Syn Syn Syn + + 2 + 2

Ki67 0 Ki67 0 Ki67 0 Control T1D 0 10 20 30 40 50 60 70 0 2 4 6 8 10 Duration of Diabetes (Years) Duration of Diabetes (Years) m Control & T1D Islet Endocrine Cell Proliferation Control T1D Ki67+ Synaptophysin+ Ki67+ Synaptophysin-

Lam et al Fig. 2 a Control DAPI Gcg Ki67 b Control DiabetesDAPI Gcg Ki67 c Control DAPIPage Gcg 30 Ki67 of 74 6092 6279 6009 6 mths 19 yrs 45 yrs

d T1D DAPI Gcg Ki67 e T1D DAPI Gcg Ki67 f T1D DAPIf Gcg Ki67 6228 6261 6150 13 yrs 16 yrs 41.2 yrs

0 yr duration 14.2 yr duration 36 yr duration

10 g Control α-cell Proliferation h 10 T1D α-cell Proliferation i 10 Children & Adolescents

8 Infants 8 8 * Children Children 6 Adolescents 6 Adolescents 6 Young Adults Young Adults

-cells (% Total) (% -cells 4 4 -cells (% Total) (% -cells 4 Older Adults Older Adults Total) (% -cells α

α

α + + 2 + 2 2 Ki67 Ki67 0 Ki67 0 0 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Control T1D Age (Years) AgeAge (Years) (Years) 10 10 j 5 Young & Older Adults k T1D α-cell Proliferation l T1D α-cell Proliferation 8 8 4 * Children Children 3 6 Adolescents 6 Adolescents Young Adults Young Adults 4 4 -cells (% Total) (% -cells 2 Total) (% -cells -cells (% Total) (% -cells Older Adults Older Adults α

α α + + 1 + 2 2 Ki67 Ki67 0 Ki67 0 0 Control T1D 0 10 20 30 40 50 60 70 0 2 4 6 8 10 Duration ofof Diabetes Diabetes (years) (Years) DurationDuration of of Diabetes Diabetes (years)(Years) m Control & T1D Islet α-cell Proliferation Control T1D Ki67+ Glucagon+ Ki67+ Glucagon-

Lam et al Fig. 3 aPage Control 31 of 74 DAPI PP Ki67 b T1D DiabetesDAPI PP Ki67 c T1D 4 PP-cell Proliferation 6153 6087 15.2 yrs 17.5 yrs 3

2

PP Cells (% Total) (% Cells PP 1 +

4 yr duration Ki67 0 Control T1D d Control DAPI SS Ki67 e T1D DAPI SS Ki67 f SS-cell Proliferation 6075 6084 4 16 yrs 14.2 yrs 3

2

SS Cells (% Total) (% Cells SS 1 +

4 yr duration Ki67 0 Control T1D g Control DAPI Ghrelin Ki67 h T1D DAPI Ghrelin Ki67 i Ghrelin-cell Proliferation 6075 6087 4 16 yrs 17.5 yrs * 3

2

1

Total) (% Ghrelin Cells + 4 yr duration 0 Ki67 Control T1D j Control & T1D Islet Pancreatic k Control & T1D Islet Somatostatin l Control & T1D Islet Ghrelin cell Polypeptide (PP) cell Proliferation (SS) cell Proliferation Proliferation Control T1D Control T1D Control T1D

Ki67+ PP+ Ki67+ SS+ Ki67+ Ghrelin+ Ki67+ PP- Ki67+ SS- Ki67+ Ghrelin-

Lam et al Fig. 4 Control Diabetes Page 32 of 74 a ControlControl Ins Sox9 Ki67 b T1D Ins Sox9 Ki67 6057 6052 22 yrs 12 yrs

1 yr duration c Sox9Cyt Proliferation d Control & T1D Islet Sox9Cyt cell proliferation 15 Control T1D

10 Cells (% Total) (% Cells cyt 5 Sox9

+ Cyt Ki67+ Sox + Ki67+ SoxCyt + 0 Ki67+ SoxCyt - Ki67 Control T1D

Lam et al Fig. 5 aPage Control 33Control of 74 Syn Sox9 Diabetesb T1DControl Syn Sox9 6004 6083 33 yrs 15.2 yrs

11 yr duration c Control Sox9 ARX Gcg d T1D Sox9 ARX Gcg 6227 6088 17 yrs 31.2 yrs

5 yr duration e Control Gcg ARX Ki67 f T1D Gcg ARX Ki67 6234 6261 20 yrs 16 yrs

14.2 yr duration

Lam et al Fig. 6 a Control Infant Syn Sox9 Diabetesb Control Child Syn Sox9 Page 34 of 74 6218 6094 5 wks 2.9 yrs

c Control Infant Sox9 ARX Gcg d Control Child Sox9 ARX Gcg 6117 6112 4 mths 6.3 yrs

e Control Infant Gcg ARX Ki67 f Control Child Gcg ARX Ki67 6222 6007 2 mths 9 yrs

g Control Sox9 ARX INSM1 h Control Sox9 ARX INSM1 Infant Child 6214 6106 5 days 2.9 yrs

Lam et al Fig. 7 Page 35 of 74 Diabetes

SUPPLEMENTAL FIGURE LEGENDS

Fig. S1. T-cells or endothelial cells are not proliferating within islets. (a) Lymphocytes or

(b-c) islet images for control pancreata stained for DAPI (blue), CD3 (green), CD31

(green) and Ki67 (red) reveal that proliferating cells are not T-cells or endothelial

cells as indicated by (a-b) CD3 or (c) CD31, respectively; (a) CD3+ lymphocytes

indicate a positive control for CD3 staining. Scale bar: 100m.

Fig. S2. Proliferating islet endocrine cells verified by multiple proliferative markers. Islet

images for (a, c) control and (b, d) T1D stained for DAPI (blue), synaptophysin (Syn;

green) and proliferative markers (red). Proliferating islet endocrine cells (c-d) Syn+

pHH3+ and (c-d) Syn+ PCNA+ cells found in both control and T1D islets.

Fig. S3. Islet endocrine cell proliferation is consistent across different regions of the

pancreas. (a-d) Representative islet images for control pancreata stained for DAPI

(blue), synaptophysin (Syn; green), and Ki67 (red) demonstrate similar proliferation

rates in head and tail regions of the pancreas. (e) Correlation analysis of islet cell

proliferation measured as % total confirm similar rates of islet cell proliferation in the

differing regions of the pancreas.

Fig. S4. Duration of ICU stay and pancreas transit time are not associated with islet

endocrine cell or α-cell proliferation. (a-d) Duration of ICU stay (days) v. (a-b)

islet cell proliferation (% total) or (c-d) α-cell proliferation (% total) for (a,c) control

and (b,d) T1D pancreata. (e-h) Pancreas transit time (h) v. (e-f) islet cell proliferation

(% total) or (g-h) α-cell proliferation (% total) for (e, g) control and (f, h) T1D

pancreata.

Diabetes Page 36 of 74

Fig. S5. Proliferating islet endocrine Sox9Cyt cells verified by multiple proliferative

markers. Islet images of (a, c, e, g) control and (b, d, f) T1D stained for DAPI (blue),

Sox9 (green), and proliferative markers (PCNA/Ki67; red). Proliferating Sox9Cyt cells

are verified by (a-b) Sox9Cyt+ PCNA+ and (c-f) Sox9Cyt+ Ki67+ cells found in (a, c,

e) control and (b, d, f) T1D islets. (e-f) Ki67+ Sox9Cyt+ cells are not associated with

pancreatic ducts (d, white dashed lines). (g) Nuclear Sox9 in ducts. Sox9Cyt+ cells are

not associated with pancreatic ducts, as detected by CK-19 (green). Scale bar: 100m.

Fig. S6. Sox9Cyt cells detected by Sox9 (pS181) antibody. Islet and ductal images of (a, c, e,

g) control and (b, d, f, h) T1D samples – stained for DAPI (blue), Sox9 (pS181)s

(green), Ki67 (red) and α-cell markers, ARX (red; blue) and glucagon (Gcg; red). (a-

f) pSox9Cyt intraislet cells express ARX, variable amounts of glucagon, and Ki67. (g-

h) Ductal cells contain occasional pSox9Cyt+ cells. Scale bar: 100m.

Fig. S7. Sox9Cyt cells do not co-express neuronal markers. (a-b) Control young adult islets

stained for DAPI (blue), Sox9 (green), and neuronal marker, (a) β3 tubulin (red) or

(b) NeuN (red). Scale bar: 100m.

Fig. S8. Highly proliferative cells do not express β-cell specific markers. Control

adolescent and young adult islets stained for Sox9, Ki67, and various β-cell markers.

Most Ki67+ cells do not express β-cell markers: (a) Pdx1 (green), insulin (blue), Ki67

(red) (b) Nkx6.1 (green), insulin (blue), Sox9 (red) (c) MafA (green), insulin (blue),

Ki67 (red) (d) GAD65 (magenta), insulin (white), Ki67 (green) (e) PC1/3 (magenta),

insulin (white), Ki67 (green). (f) GLUT1 (magenta), insulin (white), Ki67 (green).

Scale bar: 100m.

Page 37 of 74 Diabetes

Fig. S9. Sox9Cyt cells co-express α-cell marker, GLP1. Islet images for (a-b) control and (c)

T1D stained for GLP1 and various markers. (a) α-cells express ARX (blue), glucagon

(green), and GLP1 (red). (b-c) Sox9Cyt (green) cells express variable GLP1 (red). (c)

DAPI (blue), Sox9 (green), and GLP1 (red). Scale bar: 100m.

Fig. S10. Sox9Cyt cells co-express INSM1 and Isl1&2, which is common to human α- and

β-cells. (a-b) Islet images for (a) control and (b) T1D stained for insulin (Ins; green),

glucagon (Gcg; white), and INSMI (red) show INSMI expression in both human β-

and α-cells. (c) Control and (d) T1D stained for Sox9 (white), ARX (green), and

INSM1 (red) reveal Sox9Cyt ARX+ cells expressing INSMI. (e) Control islet stained

with Sox9 (white), Isl1&2 (red), and ARX (green) reveal that Sox9Cyt+ cells within

islets contain Isl1&2. (f) Human islets contain Nkx2.2 as shown in control islet

stained with insulin (Ins; green), glucagon (Gcg, white) and Nkx2.2 (red). (g) Control

islet stained with insulin (Ins; white), Nkx2.2 (red), and Ki67 (green) reveals that

Ki67+ insulin negative cells within islets contain Nkx2.2. Scale bar: 100m.

Fig. S11. Highly proliferative cells express markers of secretory vesicles and exocytotic

machinery. (a-c) Control islets stained for chromagranin A (CgA; green/red), insulin

(blue), glucagon (green), ARX (blue), and pHH3 reveal that pHH3+ ARX+ intra-islet

cells contain CgA which is differentially expressed at higher levels in α-cells than in

β-cells. (c-f) Islet images stained for DAPI (blue), synaptophysin (Syn; green),

Sox9Cyt (green/red), CgA (red), ARX (white), and related secretory vesicular markers

(green). Sox9Cyt cells are islet endocrine cells that express (c) Syn, (d) CgA, (e)

synaptoptagmin 1A (SYT1), and (f) SNAP25. (g-h) SCG3 is absent in (g) some

ARX+ cells or in (h) Ki67+ cells. Scale bar: 100m.

Diabetes Page 38 of 74

Fig. S12. Adolescent and young adults exhibit increased islet endocrine cell death but no

Sox9Cyt cell death. (a-e) Images stained for DAPI (blue), synaptophysin (Syn; green),

Sox9Cyt (green), and TUNEL (red). (a) Positive control for TUNEL staining within

ductal cells. (b-c) Control islets from (b) low and (c) high proliferating individuals

reveal very low TUNEL rates in islet endocrine cells, with some TUNEL+ islet

endocrine cells increased in highly proliferating adolescent and young adult islets. (d-

e) Control islets images from (d) low and (e) high proliferating individuals are

representative of no TUNEL+ Sox9Cyt cells found in analysis. Scale bar: 100m. (f-g)

TUNEL+ islet endocrine cells (% total) v. age (years) in (f) control and (g) T1D

pancreata.

Fig. S13. Islet endocrine area and mass do not accumulate with age after adolescence or

with T1D. (a-b) Islet endocrine cell area and mass are reduced in T1D pancreata. (a)

Islet endocrine area (% total) is reduced in T1D pancreata. Results expressed as mean

± SD for (a) controls (n=43) and T1D (n=37). (b) Islet endocrine cell mass (g) is

reduced in T1D pancreata. Results expressed as mean ± SD for controls (n=28) and

T1D pancreata (n=33). (c-d) Correlation analysis of (c) islet endocrine area v. age

(years) and (d) islet endocrine mass v. age (years). No correlation between age and

islet endocrine cell (c) area or (d) mass for adolescents, young, & older adults.

Page 39 of 74 Diabetes

Control Control a Control DAPI CD3 b Control Ins CD3 Ki67 6230 6230 16 yrs 16 yrs

c Control Ins CD31 Ki67 6057 22 yrs

Lam et al Suppl. Fig. 1 Diabetes Page 40 of 74 a Control DAPI Syn pHH3 b T1D DAPI Syn pHH3 6131 6052 24.2 yrs 12 yrs

1 yr duration

c Control DAPI Syn PCNA d T1D DAPI Syn PCNA 6235 6261 30 yrs 16 yrs

14.2 yr duration

Lam et al Suppl. Fig. 2 Page 41 of 74 Diabetes

a ControlControl – Head DAPI Syn Ki67 b ControlControl – Tail DAPI Syn Ki67 6029 6029 24 yrs 24 yrs

c Control – Head DAPI Syn Ki67 d Control – Tail DAPI Syn Ki67 6131 6131 24.2 yrs 24.2 yrs

e 4 r2=0.9775 p < 0.05

3

2 Region1 1

0 Islet Cell Proliferation (% total) (% Proliferation Cell Islet 0 1 2 3 4 Region 2 Islet Cell Proliferation (% Total)

Lam et al Suppl. Fig. 3 Diabetes Page 42 of 74

Infants to Older Adults a 15 Control Islet Cell Proliferation b 15 T1D Islet Cell Proliferation vs. Duration of ICU Stay vs. Duration of ICU Stay

10 r2 = 0.01887 10 r2 = 0.007468 p = 0.3127 p = 0.5770 cells (% Total) (% cells cells (% Total) (% cells + + 5 5 Syn Syn + + Ki67 0 Ki67 0 0 10 20 30 0 5 10 15 20 25 Duration of ICU Stay (days) Duration of ICU Stay (days) c 15 Control !-cell Proliferation d 15 T1D !-cell Proliferation vs. Duration of ICU Stay vs. Duration of ICU Stay

10 10 r2 = 0.00015 r2 = 0.000002 p = 0.9286 p = 0.9758 -cells (% Total) (% -cells -cells (% Total) (% -cells 5 5 ! !

+ + Ki67 Ki67 0 0 0 10 20 30 0 5 10 15 20 25 Duration of ICU Stay (days) Duration of ICU Stay (days) e 15 Control Islet Cell Proliferation f 15 T1D Islet Cell Proliferation vs. Pancreas Transit Time vs. Pancreas Transit Time

10 r2 = 0.05134 10 r2 = 0.008346 p = 0.0994 p = 0.5602 cells (% Total) (% cells cells (% Total) (% cells + + 5 5 Syn Syn + + Ki67 0 Ki67 0 0 10 20 30 40 50 0 10 20 30 40 Pancreas Transit Time (h) Pancreas Transit Time (h) g 15 Control !-cell Proliferation h 15 T1D !-cell Proliferation vs. Pancreas Transit Time vs. Pancreas Transit Time

10 r2 = 0.005854 10 r2 = 0.001809 p = 0.5824 p = 0.7790

-cells (% Total) (% -cells 5 Total) (% -cells 5 ! !

+ +

Ki67 0 Ki67 0 0 10 20 30 40 50 0 10 20 30 40 Pancreas Transit Time (h) Pancreas Transit Time (h)

Lam et al Suppl. Fig. 4 Page 43 of 74 Diabetes Diabetes Page 44 of 74

a Control DAPI p-Sox9 ARX b T1D DAPI p-Sox9 ARX 6057 6084 22 yrs 14.2 yrs

4 yr duration

c Control p-Sox9 ARX Gcg d T1D p-Sox9 ARX Gcg 6075 6089 16 yrs 14.3 yrs

8 yr duration e Control DAPI p-Sox9 f T1D DAPI p-Sox9 6235 6084 30 yrs 14.2 yrs

4 yr duration

g Control DAPI p-Sox9 Ki67 h T1D DAPI p-Sox9 Ki67 6131 6261 24.2 yrs 16 yrs

14.2 yr duration

Lam et al Suppl. Fig. 6 Page 45 of 74 Diabetes

a Control DAPI Sox9 "3 Tubulin b Control DAPI Sox9 NeuN 6057 6030 22 yrs 30.1 yrs

Lam et al Suppl. Fig. 7 Diabetes Page 46 of 74

a Control Ins Pdx1 Ki67 b Control Ins Nkx6.1 Sox9 6232 6235 14 yrs 30 yrs

c Control Ins MafA Ki67 d Control Ins GAD65 Ki67 6232 6279 14 yrs 19 yrs

e Control Ins PC1/3 Ki67 f Control Ins GLUT1 Ki67 6235 6153 30 yrs 15.2 yrs

Lam et al Suppl. Fig. 8 Page 47 of 74 Diabetes

a Control ARX Gcg GLP1 b Control DAPI Sox9 GLP1 6030 6162 30.1 yrs 22.7 yrs

c T1D DAPI Sox9 GLP1 6083 15.2 yrs

11 yrs duration

Lam et al Suppl. Fig. 9 Diabetes Page 48 of 74

Control Control a Control Ins Gcg INSM1 b T1D Ins Gcg INSM1 6235 6245 30 yrs 22 yrs

1 yr duration c Control Sox9 ARX INSM1 d T1D Sox9 ARX INSM1 6174 6039 20.8 yrs 28.7 yrs

12 yr duration e Control Sox9 ARX Isl1&2 f Control Ins Gcg Nkx2.2 6232 6234 14 yrs 20 yrs

g Control Ins Nkx2.2 Ki67 6233 14 yrs

Lam et al Suppl. Fig. 10 Page 49 of 74 Diabetes

a Control ARX CgA pHH3 b Control Ins Gcg CgA 6153 6053 15.2 yrs 25 yrs

c Control ARX Syn CgA d Control DAPI Sox9 CgA 6162 6174 22.7 yrs 20.8 yrs

e f Control SYT1 Sox9 ARX Control SNAP25 Sox9 ARX 6098 6096 17.8 yrs 16 yrs

g ControlControl Ins SCG3 ARX h Control Ins SCG3 Ki67 6233 6235 14 yrs 30 yrs

Lam et al Suppl. Fig. 11 Diabetes Page 50 of 74 a Control – DAPI TUNEL b Control – DAPI Syn TUNEL c Control – DAPI Syn TUNEL Low Cell Low Cell High Cell Turnover Turnover Turnover 6099 6099 6235 14.2 yrs 14.2 yrs 30 yrs

d Control – DAPI Sox9 TUNEL e Control – DAPI Sox9 TUNEL Low Cell High Cell Turnover Turnover 6099 6235 14.2 yrs 30 yrs

1 yr duration 14.2 yr duration f Control Islet Endocrine Cell Death g T1D Islet Endocrine Cell Death 0.5 0.5

0.4 Infants 0.4 Children Children 0.3 Adolescents 0.3 Adolescents Young Adults Young Adults 0.2 0.2 TUNEL TUNEL Older Adults TUNEL 0.1 0.1

(% Total Endocrine Cells) Endocrine Total (% 0.0 Cells) Endocrine Total (% 0.0 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 Age (Years) Age (Years)

Lam et al Suppl. Fig. 12

Page 51 of 74 Diabetes

a Islet Endocrine Area – b Islet Endocrine Mass– adolescent, young, & older adult adolescent, young, & older adult

5 **** 4 **** 4 3 3 2 2 1 1

0 (g) Mass Endocrine Islet 0

Islet Endocrine Area (% Total) (% Area Endocrine Islet Control T1D Control T1D c Islet Endocrine Area v. Age – d Islet Endocrine Mass v. Age – adolescent, young, & older adult adolescent, young, & older adult

5 Control 4 Control T1D T1D 4 3 3 2 2

1 1

0 (g) Mass Endocrine Islet 0 0 20 40 60 80 0 20 40 60 80 Islet Endocrine Area (% Total) (% Area Endocrine Islet Age (Years) Age (Years)

Lam et al Suppl. Fig. 13

Diabetes Page 52 of 74 9OKKGAHAIN=G :=>GA '$ 5JI#0E=>ANE? 9=HKGA 7JKOG=NEJI% I:94 ?=MA IOH>AL# =CA !SA=LM"# MAR# ANDIE?ENS# ?=OMA JB @A=ND# 3$ KAKNE@A !IC&HG"# 6>1(? ! "# 287# >J@S QAECDN !FC"# K=I?LA=M M=HKGA LACEJI# ?JLLAMKJI@EIC >GJ?F IOH>AL# =I@ HANDJ@ JB NEMMOA LA?JPALS% "I&=" EI@E?=NAM 3$KAKNE@A HA=MOLAHAINM QALA IJN HA=MOLA@ BJL ND=N ?=MA% /JINLJG 2>-'? .J@R 7=I?LA=M I760 -CA /#KAKNE@A 2>-'? .GJ?F :EMMOA 9AQ 1NDIE?ENR /=OMA JB 0A=ND !HHJG% .43 ;AECDN 9=HKGA /=MA # !

3IB=INM !&#'$*" -((, '%+)' 8 3=O?=ME=I 1IJRE= +%,0 I&= I&= (.%( .%' :=I<=EG ') 9LC=I 4JIJL -'0) '%,'' 5 1BLE?=I 1HALE?=I 1IJRE= '%*, I&= I&= (*%/ 0%' :=I<=EG ') 9LC=I 4JIJL -('* (%, 8 3=O?=ME=I 1IJRE= '%0/ -%( +* (-%/ /%' :=I<=EG '+ 9LC=I 4JIJL -('. )%) 8 1BLE?=I 1HALE?=I 1IJRE= ,%0 ,%) ** (,%0 (,%' :=I<=EG '+ 9LC=I 4JIJL -'0+ )%0 8 1BLE?=I 1HALE?=I 1IJRE= *%,, I&= I&= (,%/ (+%' :=I<=EG '- 9LC=I 4JIJL -('- )%0 8 3=O?=ME=I 1IJRE= .%*- I&= I&= (/%( (-%' :=I<=EG '+ 9LC=I 4JIJL -'', ,%' 5 3=O?=ME=I 3ALA>LJP=M?OG=L&;NLJFA I&= I&= I&= (,%. (-%/ :=I<=EG '+ 9LC=I 4JIJL -(() -%* 5 6EMK=IE? 6A=@

/DEG@LAI !'$+#')$," -)./ ('%' 5 1BLE?=I 1HALE?=I 1IJRE= +%,+ -%* +, )(%* ,)%+ :=I2J@S ') 9LC=I 4JIJL -)*) (+%' 5 3=O?=ME=I 6A=@ %= (+%0 *'%' :=I<=EG '(&') 9LC=I 4JIJL -'0- (-%' 5 1BLE?=I 1HALE?=I 6A=@ LJP=M?OG=L&;NLJFA )%., I&= I&= )-%+ .+%- :=I2J@S '+ 9LC=I 4JIJL -).( (.%' 8 3=O?=ME=I 6A=@

-@JGAM?AINM !'*#(&$," -).0 (0%' 8 3=O?=ME=I 6A=@ LJP=M?OG=L&;NLJFA * I&= I&= (0%, .,%' :=I2J@S '- 9LC=I 4JIJL -')+ )(%' 8 3=O?=ME=I 6A=@ LJP=M?OG=L&;NLJFA I&= I&= I&= ))%- -'%' :=I<=EG ') 9LC=I 4JIJL -(*( )+%) 8 3=O?=ME=I 1IJRE= (%'( I&= I&= )+%/ /*%' :=I6A=@ ', 9LC=I 4JIJL -',* ),%' 8 3=O?=ME=I 6A=@ LJP=M?OG=L&;NLJFA (.%0( I&= I&= )'%- ,-%' :=I<=EG '+ 9LC=I 4JIJL -)*, *'%' 8 3=O?=ME=I 6A=@

LJP=M?OG=L&;NLJFA I&= I&= I&= )-%* .'%' :=I6A=@ ') 9LC=I 4JIJL

! *&" -'(' +.%' 5 3=O?=ME=I 3ALA>LJP=M?OG=L&;NLJFA I&= I&= I&= (0%. ,-%/ :=I<=EG '0 9LC=I 4JIJL -''/ ,'%' 5 3=O?=ME=I 6A=@ LJP=M?OG=L&;NLJFA I&= -%) ++ ),%) .*%' :=I6A=@ ') 9LC=I 4JIJL -'(. ,0%' 5 3=O?=ME=I 3ALA>LJP=M?OG=L&;NLJFA 0%/0 I&= I&= )+%/ -/%' :=I6A=@ '/ 9LC=I 4JIJL -')' -'%' 8 3=O?=ME=I 3ALA>LJP=M?OG=L&;NLJFA )%/) I&= I&= )0%/ (')%' :=I6A=@ '/ 9LC=I 4JIJL -'(- -+%' 5 3=O?=ME=I 3ALA>LJP=M?OG=L&;NLJFA I&= I&= I&= *(%) //%' :=I6A=@ '/ 9LC=I 4JIJL 6G@AL -@OGNM ! 6G@AL -'(* -,%' 8 3=O?=ME=I 3ALA>LJP=M?OG=L&;NLJFA )%/ I&= I&= )+%) 0'%' :=I6A=@ '- 9LC=I 4JIJL Page 53 of 74 Diabetes

EIGHR 5% 7KWKHWGR 9JKSG )'* T(G T(G & $ $ $ , *+ *.') BGT6UJ^ )- 5ZYUVX^ /)/+ *)'0 /') @ 5LWOIGT 5SKWOIGT 8>5% 7KWKHWGR 9JKSG T(G *+'- **+ T(G T(G T(G T(G T(G +*'2 -1') BGTDGOR ), AWMGT 8UTUW E E /+/. **') 1') @ 7GZIGXOGT 7KWKHWU[GXIZRGW(CYWUQK )')/ T(G T(G $ & $ & + *+'2 +/') BGT6UJ^ )+ AWMGT 8UTUW /).+ *+') *') @ 5LWOIGT 5SKWOIGT 7KWKHWGR 9JKSG )'*1 T(G T(G & $ $ & + +)', ./') BGTDGOR )+ AWMGT 8UTUW /+/1 *+') ,') : 7GZIGXOGT 5TU]OG )'). 2'1 1- & & $ & * +,'. /1') BGTDGOR )* AWMGT 8UTUW E /+/- *+') 2') : 7GZIGXOGT 8>5 )'))* 1'2 0- & & & & ) ++ ,-') BGT6UJ^ )+ AWMGT 8UTUW E E /++1 *,') )') @ 7GZIGXOGT 5TU]OG )'* *,', *++ $ $ & $ , *0'- -.') BGT6UJ^ )- AWMGT 8UTUW E

1HIKDPEM "(%,$(*%.# /+-, *,') .') @ 7GZIGXOGT 7KWKHWU[GXIZRGW(CYWUQK )'-+ *,'* *+) & & $ & * +*', .1'* BGT5% 7KWKHWGR 9JKSG 4)'). T(G T(G & & $ & * *1'- .)') BGTDGOR )- AWMGT 8UTUW /+)0 */') *)') : 5LWOIGT 5SKWOIGT 7KWKHWU[GXIZRGW(CYWUQK )'))* T(G T(G & $ $ $ , +-'- //'+ BGTNKGJ )+ AWMGT 8UTUW /+/* */') *-'+ @ 7GZIGXOGT 5TU]OG )'))* 0'+ .. $ & $ & + +)'0 /,'. BGTAYNKW )1 AWMGT 8UTUW E E /*-1 *0'* 0') @ 7GZIGXOGT 5TU]OG )'))* T(G T(G $ & $ & + +,'2 /.') BGT6UJ^ )+ AWMGT 8UTUW /)10 *0'. -') @ 7GZIGXOGT

/DSKRQ /*,1 -2'+ -*') : 7GZIGXOGT 5TU]OG 4)'). T(G T(G & & $ & * ,,'0 2.') BGT6UJ^ )- AWMGT 8UTUW /)-) .)') +)') : 7GZIGXOGT 7KWKHWU[GXIZRGW(CYWUQK 4)'). 0', ./ & & $ & * ,*'/ 1.') BGT

.B>>:5;5

,-()"-0 "*/(#+%(&.

"

2@D ALIIS (1('' @ 5 AZUVIPU 26.'-/ !* BWFWOMQ 4LMGNIQ (1('' >RXWU 3MRORKMGEOU >3(''$(-() 45* @EFFMV (1('' BLITPR 6MULIT ?2($*.)/) 45*( @EFFMV (1('' 2FGEP EF)/*-+ 4LTRPEKTEQMQ 2 =RWUI (1('' 2FGEP EF/)'+ 7LTIOMQ @EFFMV (1('' ?LRIQMY ?LETPEGIWVMGEOU 8$'*($.. 7OWGEKRQ @EFFMV (1),' 2FGEP EF/',, 7OWGEKRQ =RWUI (1),' 2FGEP EF('0// 7A=( =RWUI (1('' AEQVE 4TW[ UG$).(+'/ 9QUWOMQ 7WMQIE ?MK (1(,'' 5ENR 2',-+ ;M-. =RWUI (1),' 35 3MRUGMIQGIU #,,'-'0 >IW> =RWUI (1('' =MOOMSRTI =23*.. >NY)%) @EFFMV (1('' 2FGEP EF(0('.. >NY-%( =RWUI (1('' 5A83 6,,2() ?EQGTIEVMG ?ROZSISVMHI @EFFMV (1('' 9QXMVTRKIQ (/$''+* ?4>2 =RWUI (1('' 4IOO AMKQEOMQK ),/-A ?4(&* @EFFMV (1('' =MOOMSRTI 23(',,* ?HY( @EFFMV (1('' >RXWU 3MRORKMGEOU >3?)$*//-, ?LRUSLR$8MUVRQI 8* @EFFMV (1('' 4IOO AMKQEOMQK 0.'(A ?TRMQUWOMQ @EV (1('' 5A83 7>$95+ A>2?), =RWUI (1('' =MOOMSRTI =23**( ARPEVRUVEVMQ @EFFMV (1('' 9QXMVTRKIQ (/$''./ AZQESVRVEKPMQ (2 4LMGNIQ (1('' 2FGEP EF(**/,- ARY0 @EFFMV (1('' =MOOMSRTI 23,,*, ARY0 !SA(/(" @EFFMV (1('' 2FGEP EF,0),) AZQESVRSLZUMQ @EFFMV (1('' BLITPR 6MULIT (/$'(*' AZQESVRSLZUMQ =RWUI (1('' 2FGEP 23-)+, .&$+*%"-0 "*/(#+%(&. $1A1:=7 .53=<41?C "

6KGGC>D>EJ:C 7:;C> '$ 6KDD:HM F? >LG>HBD>EJ:C =>J:BCI$ 186 2<4?62@ 5=<=?@ >2<4?62@ @64A9=<@ 2<5 46::@ 4=B6?7=?;65! "<"2" 9<5942A6@ A82A 52A2 2<2:D@9@ 9@ <=A 2C29:23:6 =? <=A >6?7=?;65 7=? A86 9<59492A65 4=8=?A!

0IC>J 3K< 1B()" +59" ,MJ 6FL* ,MJ 0IC>J !#<>CC "#<>CC 44 66 /AH>CBE 6FL* ,MJ 6FL* +59" .E=F -KJ .E=F !#<>CC !#<>CCI%BIC>J 44 66 /AH>CBE 6FL* 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE .E=F 6FL* 783.2 ,>CC 4HFCB?>H:JBFE H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE 4HFCB?>H:JBFE % 0EJH:BIC>J % 0EJH:BIC>J % 0EJH:BIC>J % 0EJH:BIC>J % 0EJH:BIC>J % 0EJH:BIC>J % 0EJH:BIC>J % 0EJH:BIC>J % 0EJH:BIC>J ,MJ % 0EJH:BIC>J ,>CC 783.2 4HFCB?>H:JBFE 1B()! 1B()! 1B()! 1B()! 1B()! 1B()! % 6FL* ! 1B()! 1B()! 1B()! 1B()!

/2<4?62@ (, (, (, ( ) ( ) $% $% $% & & & ) ) & & & $+ ) .=<=?@

/2<4?62@ (, (, (, ( ) ( ) $% $% $% & & & ) ) & & & $+ ) 064A9=<@ ,FEJHFC -6::@ )%'%&& $,''&$ $,''&$ %&%$ ,,)+ +*% (+%# $&&#)# &)+%( +(#(( $&*( )(&& )#' (+%# (%(+ %$('( $%)), (&)' $(',*' ,,& 9@:6A@ /2<4?62@ '+ '+ '+ , , , ) ) ) ) + * , ) ) & & & $% <"2 .=<=?@

/2<4?62@ 7&- '+ '+ '+ , , , ) ) ) ) + * , ) ) & & & $% <"2 064A9=<@ -6::@ '(+)%) %(,$*( %(,$*( $#++ +,'$ *,+ &%&# *#%,* ')'#& )#+, ),# '##+ %)$ &%&# $'*) $)#** $#$() $$)* +(*)) <"2 Diabetes Page 56 of 74

3GCC?:@:AF6? 467?: '% .A9>H>9G6? >AFD6>E?:F CDB?>;:D6F>BA ;DB@ ABA$9>67:F>8 6A9 4&, C6A8D:6F6% /9=;16<75= 06+," 3577< 9>825; 194 % =:=17!# =:=17 69=;16<75= 3577< 9>825;!$ +BAFDB? 4&, 4BF6? />()# 5:6DE 4BF6? />()# A21, *<: .AFD6>E?:F *<: .AFD6>E?:F .AFD6>E?:F .AFD6>E?:F A21, +6E: # I>F= .AFD6>E?:F .AFD6>E?:F +6E: # !5:6DE" !5:6DE" />()# 8:??E 8:??E ! 4BF6?" ,>67:F:E />()# 8:??E 8:??E ! 4BF6?" +'%% %$%%* )%( &'%,( ($() +'%. *$% %$( ). &,%,- %$'. +'&) %$%&) &+. +'+- '$,% +'+* &&$% -$% , &-() %$(- +&+) %$%(% +*. -%,( -$&+ +'+- &'$% ($% -. &'*-) %$,& +'&- %$%-% &&* -,+) &$(& +'+) &'$% .$% )) &)*.* %$(% +''' %$&,% ). *-&* %$-) +''- &($% %$% '++ &..+* &$(( *H:D6<: %$& ',. -&.. ($', +')( &($% *$% &( )(+) %$(% 3, %$& '*& ')-- '$.' +')( &($% *$% &( )(+) %$(% 3-0 %$% &&' &&&( &$(% +'%, &+$% &%$% '- &%-&& %$'+ +',- &%$% ,, &,%,- %$)* +'+& &+$% &)$' &&%) &-)-' *$., +'(' &)$% -% -'&- %$., +&)- &,$& ,$% + ,.'- %$%- +'(( &)$% &-( '((+- %$,- +'(, &-$% &'$% -( )*'(* %$&- +'(% &+$% &-' &,)%+ &$%* +&+& &.$' ,$% '& &%(() %$'% +'', &,$% && .%+& %$&' +'&' '%$% *$% ,* ((%&* %$'( +',& &,$% * &)+-+ %$%( *H:D6<: &)$( +$+ &(- &*)(% %$-& +'*( &.$% +( &),+- %$)( 3, )$% )$' '.- &'&*( &$*- +',. &.$% '-. &',.- '$'+ 3-0 &$& &$' -( ((,& %$))

+'() '%$% &&% &++(+ %$++ C$H6?G: !H% 8BAFDB?" %$& xxxxxx & & %$,' +'(- '%$% , .&'+ %$%- +'') '&$%xxxxxx &$* )& &-)+- %$'' +&,) '%$- . &),.' %$%+ +&.- ''$% ($% &' +.(. %$&, *H:D6<: &,$% .' &)(*- %$+( +')* ''$% ,$% +) (+(,, %$&- 3, ($( .' ))+' %$+* +'), ')$% %$+ &' &),-% %$%- 3-0 &$% '- &()* %$'% +'&& ')$% )$% +& &,+*- %$(* +%') '&$% + &)-,+ %$%) +&.+ '+$% &*$% &)' (().- %$)' +&,. '&$- ,' &(%)- %$** *H:D6<: '($' *$' ** '&'-, %$') +&+' ''$, ' ,%'* %$%( 3, &$-( *$( )- &&(+- %$&( +%%( '($% '% &(%*) %$&* 3-0 %$,* '$' '% )+)& %$%* xxxxxx

+%'. ')$% + &*)%. %$%) C$H6?G: !H% 8BAFDB?" %$%) xxxxxx & % %$+% +&(& ')$' )&' &,-&, '$(& xxxxxx +%)- (%$% - &%(+* %$%- +'(* (%$% &., &''.( &$+% +%(% (%$& +% -**- %$,% +''. (&$% '% '.(&- %$%, +%&& )+$% * ((++ %$&* +%%- *%$% && *-+- %$&. +&+- *&$% (- &&&)' %$() +%&, *.$% & &&&)+ %$%& +%'% +%$% &, ...* %$&, +%&+ +)$% % (*,, %$%% +%&( +*$% % ..(. %$%% *H:D6<: (-$) *& &&*,+ %$(- 3, &+$* &%* +%), %$+) 3-0 )$% '* &)+, %$&* Page 57 of 74 Diabetes

2FBB>9?9@E5> 356>9 '% -@8=G=8F5> !$79>> BCA>=:9C5E=A@ 9IBC9DD98 5D A: =@EC5=D>9E .='(# 79>>D =@ @A@$8=569E=7 5@8 3&+ B5@7C95E5% 19,-" !$45:: ?=:965?2A9C5 @2;>:5@% *A@ECA> 3&+ 3AE5> .='(# 495CD 3AE5> .='(# @10+ );9 .='(# );9 .='(# -@EC5=D>9E !$79>>D @10+ *5D9 # H=E< -@EC5=D>9E !$79>>D *5D9 # !495CD" !$79>>D !495CD" !$79>>D .='(# 79>>D ! 3AE5>" +=569E9D .='(# 79>>D ! 3AE5>" ,()( '*%& '' ,/ '+%/* ,&+( '(%& '%& '& .*/ '%'. ,()) '*%& ', ',. /%+( ,(,. '(%& )%& & ./ &%&& ,'+) '+%( + )( '+%,) ,((. ')%& &%& '& )-+ (%,- ,&-+ ',%& , '&* +%-- ,'') ')%' '%, ' -( '%)/ ,()& ',%& (/ '-( ',%., ,&.* '*%( *%& + )'- '%+. ,(-/ '/%& '. (-& ,%,- ,(,' ',%& '*%( & '+', &%&& ,'-/ ('%. ) +/ +%&. )G9C5;9 ')%* *%& * +), '%'* ,&+- ((%& / (( *&%/' 2+ '%+( +%( + ++, '%&( ,')' (*%( + )-- '%)) 2,/ &%,( (%' ( ((- &%*( ,()+ )&%& . ',/ *%-) B$G5>F9 !G% 7A@ECA>" &%&' xxxxxx &%(' &%&( &%&- xxxxxx ,&)& )&%' & */ &%&& ,&&* ))%& & +' &%&& )G9C5;9 ('%) / '(/ '&%(& 2+ ,%. . '&. ''%). 2,/ (%& ( )' )%(/ Diabetes Page 58 of 74 8LHHD?E?FK;D 9;CMC>L;D CJD?K ?F>G=ICF? ;F> !$=?DD HIGDC@?I;KCGF @IGE FGF$>C;A=>8C@9<" 1CG=ICF? 0?DDJ !$=?DDJ 4C,-# 4C,-# F761 /A? 4C,-# 4C,-# 8NF# =?DDJ 8NF# =?DDJ !$=?DDJ !$=?DDJ 0;J? # !:?;IJ" 8NF# =?DDJ !$=?DDJ ! 9GK;D" ! 9GK;D" ,(&& &%&&+ ''+-) )(. (%.) .&/ + &%,( ,('* &%&'* +,)& ''/ (%'' /&. -* .%'+ ,',* &%&)& -+)+ ,+* .%,. ''+- +- *%/) ,('. &%&.& .&'& '&/ '%), '+,' *& (%+, ,((( &%'-& ++'' *. &%.- '*,/ (, '%-- ,''- &%))& .,+' '- &%(& )&-* (& &%,+ ,''+ &%*(& -')& '/ &%(- '/)* ) &%', ,&/( &%+&& )))) '(. )%.* ''/. '&- .%/) 3F@;FKJ !&$'%*" /M?I;A? &%( -'-( '-. (%+( '+'* *( )%*- 81 &%( (*+- (', (%-/ -(. ), )%*. 825 &%' .,/ -- &%// (+- ') '%() ,'&) '%+ +.)/ -+ '%(. (')) ** (%&, ,'&- (%( '*+-. -'. *%/) )()/ ('. ,%-) ,&/* (%/ **+& ) &%&- (('- ) &%'* ,'&, (%/ '&/&- '' &%'& .'&, '/ &%() ,&&+ +%& '//', '. &%&/ //( & &%&& ,''( ,%) '(+() *& &%)( )-(( )/ '%&+ ,&&- /%& (,&&( /+ &%)- (/-' -, (%+, ,(-. '&%& ',)(. ,+ &%*& ))(+ )) &%// /M?I;A? +%& ').'. '(. &%/* ))). +* '%-( 0BCD>I?F !'%+$')%." 81 )%( -''( (*' '%,, (''( -' (%(( 825 '%' (+'+ .+ &%+/ -*- (+ &%-/ ,()( '*%& .,), ,/ &%.& (..( *( '%*, ,()) '*%& ((+/) ',) &%-( '/&. (' '%'& ,&// '*%( '',+, - &%&, *+/+ ( &%&* ,'+) '+%( )+'( )( &%/' '+'' ), (%). ,&-+ ',%& /)&& '&* '%'( )-*& ,- '%-/ ,&/, ',%& -''( '' &%'+ ('-, ) &%'* ,()& ',%& ',(.+ '-( '%&, (&&( ,. )%*& ,((- '-%& .-.- . &%&/ .(* ' &%'( ,(-' '-%& '*/*+ ( &%&' ('.+ ' &%&+ ,&/. '-%. ,),& ) &%&+ *),, ' &%&( ,(+) '/%& '+(** *) &%(. ',/' + &%)& ,(-/ '/%& '()*( (-& (%'/ '&,- (( (%&, ,()* (&%& '),(, ') &%'& *')+ )/ &%/* />GD?J=?FKJ !'*$(&%." ,(). (&%& /),. ' &%&' *(,' ( &%&+ ,'-* (&%. '**(+ ' &%&' '/'. ( &%'& /M?I;A? '-%' '',') ,& &%+& (,'- (' &%/) 81 (%) *-.& .( &%,( '(-+ (* '%&- 825 &%+/ '()* (' &%', )(/ , &%(. ,&(* ('%& '*''' ) &%&( +.+ & &%&& ,'-/ ('%. '()-& +/ &%*. (.*. '+ &%+) ,&&' ((%& *.(* & &%&& ''*'* . &%&- ,&+- ((%& **/( (( &%*/ ((), * &%'. ,',( ((%- ,+&- ' &%&( ',)- - &%*) ,&&) ()%& ').', ') &%&/ +'(, / &%'. ,&(/ (*%& '+&/. ( &%&' +)+( ' &%&( ,')' (*%( '-')& )-- (%(& ())* -/ )%). ,&+) (+%& '((.& . &%&- )+&/ ') &%)- ,'(, (+%( +,.. - &%'( '&'* / &%./ ,&+. (-%& *&-& ) &%&- ((*& ' &%&* ,&*. )&%& '&'+- ( &%&( )(') & &%&& ,()+ )&%& '('&- ',/ '%*& '&,/* ''+ '%&. ,&)& )&%' .(+* */ &%+/ (&.. (/ '%)/ ,((/ )'%& (.++& '& &%&* '*,++ / &%&, :GLFA />LDKJ !('$)." :GLFA ,&)+ )(%& -)+& ' &%&' (+/* & &%&& ,&&* ))%& ,&)/ +' &%.* )+'+ ,/ '%/, ,&&( )/%& '*-+. '- &%'( */,- * &%&. ,&'+ )/%& .).& ( &%&( +'(- & &%&& /M?I;A? (-%+ '&.*' *( &%)+ **.' (& &%+, 81 +%, +/&. /& &%+. )-.( )( &%.. 825 '%) ')++ (' &%') .,. - &%(& ,&&/ *+%& --*+ ** &%+- (')* / &%*( ,&'' *,%& *&(+ ' &%&( *.)' ' &%&( ,&'& *-%& +-** & &%&& ((() & &%&& ,&&. +&%& +-*- ( &%&) ',.' & &%&& " *&" ,',. +'%& /..* )- &%)- '-(. * &%() ,&'- +/%& '&*./ & &%&& )&'+ & &%&& ,&(& ,&%& /*(- * &%&* (('* & &%&& ,&', ,*%& '')+* & &%&& .-', ' &%&' ,&') ,+%& ''-)& & &%&& *,,+ & &%&&

6D>?I />LDKJ ! 6D>?I /M?I;A? +*%' .*,' '& &%'( )*,- ( &%&. 81 -%/ (-,) '. &%(' ((/, ) &%'+ 825 (%, /(' , &%&- -,+ ' &%&+ Page 59 of 74 Diabetes

9MIIE@F@GLJDG@ @EE IJHEDA@JJ@L<% 4@D5= CH?5AD@A;HC69B"$ 2<./# 3H?# 79==C !?E>69B 5?8 D@D5="$ !%79==C !?E>69B"$ 2<./# !%79==C !?E>69B 5?8 D@D5="& "?'5" A=9 G5C ?@D 5F5<=56=9 :@B D;JDG@ 1@EEK !$>@EEK ;@@EEK >@EEK !$>@EEK !$>@EEK !;@@EEK !$>@EEK 2D<=@L@K ! :HL

1CDE?J@G !'%+$')%/" 0N@JHGLJHE" (&((* xxxxx (&(. (&10 (&./ (&*, (&*+ (&(0 .(0, ),&*xxxxx ,&( )(.)/ +)/ *&11 0.* ), )&.* .(01 ),&+ 0&( *.(0 - (&)1 )1*- * (&)( .(,1 )-&( )(&( /++/ ). (&** +10- ( (&(( .(0+ )-&* ))&( ,**0 / (&)/ ++,* ( (&(( .*(/ ).&( )(&( 1.*- 0 (&(0 ,1-1 - (&)( .*.) ).&( ),&* )0).) )).( .&+1 *)-1( 0,0 +&1+ .),0 )/&) /&( -*/- ( (&(( +(/0 * (&(. .(0/ )/&- ,&( +((- 0 (&*/ ),(., . (&(, .),- )0&( ))&( -.1/ + (&(- +*-( ( (&(( .*+/ )0&( )*&( +.(0- +* (&(1 /,)* / (&(1 .)1- )1&* -&( ?'5 ?'5 ?'5 -/*, ) (&(* .).) )1&* /&( .,0. 1 (&), -),0 . (&)* .(., )1&. 1&( )**1) ) (&() )**- ( (&(( 0?HE@K>@GLK !'*$(&%/" .*)* *(&( -&( *-),. +0 (&)- ),+0, )) (&(0 0N@JHGLJHE" (&1/ xxxxx (&1) (&,/ (&-+ (&(* (&,. (&*+ .**, *)&(xxxxx )&- )+.,. )) (&(0 ,0*- + (&(. .)10 **&( +&( -)1/ + (&(. +)-+ ) (&(+ .*,- **&( /&( *,/.( ). (&(. *)..) 1 (&(, .(*. **&, ),&( *(*) ) (&(- )/1+ ( (&(( .(/( **&. /&( *(0+( )) (&(- )/0(/ + (&(* .(.1 **&1 /&( 1(1/ . (&(/ +)* ( (&(( .(*- *+&0 )1&( /)1( ) (&() )--) ) (&(. .*,/ *,&( (&. )(,., ( (&(( 0)/( ) (&() .*)) *,&( ,&( )-//, *1 (&)0 -1./ * (&(+ .)1. *.&( )-&( *./-, -, (&*( +.*( )( (&*0 .(,) *.&+ *+&( ),0** - (&(+ *-(* + (&)* .(+1 *0&/ )*&( ),/() + (&(* ))(/ ) (&(1 .(00 +)&* -&( )0+/ ( (&(( ,+0, ( (&(( .(0) +)&, )-&( )0)1 ) (&(- 0++ ( (&(( .(+- +*&) *0&( ).001 , (&(* 0,. ) (&)* ;HMGB 0?MELK !('$)/" ;HMGB .(-, +-&) +(&( -/). ( (&(( .111 ) (&() .(+0 +/&* *(&( )(/.. * (&(* 01+/ ( (&(( .(+) +1&( +-&( *.), ( (&(( -+-+ ( (&(( 0N@J

xxxxx I$NHGLJHE" (&1+ (&0) (&)+ (&(, (&-) (&(+ (&(* xxxxx .)-( ,)&* +-&( ))/, ) (&(1 )+-- ( (&(( .)+- ,+&- *)&( .0+* . (&(1 1,1+ / (&(/

" *&" .(+. ,1&* +,&( 1**+ ) (&() ).+1 ( (&(( .)+0 ,1&* ,)&( )0*, ( (&(( ),*. ) (&(/ .(,( -(&( *(&( ).(0 ( (&(( )1)0 ( (&(( 0N@J

I$NHGLJHE" (&(/ xxxxx (&(+ (&++ (&,* (&0- (&1/ (&-)

xxxxx Diabetes Page 60 of 74

3GCC?:@:AF6? 467?: )% .A9>H>9G6? EKA6CFBC=KE>A 8:?? CDB?>;:D6F>BA :JCD:EE:9 6E B; >AFD6>E?:F />'(# 8:??E >A ABA$ 9>67:F>8 6A9 4&, C6A8D:6F6% 09+," 1D<" 45::@ ?=:965?2A9C5 @2;>:5@$ +BAFDB? 4&, 4BF6? 5:6DE 4BF6? A21, *<: />'(# 3KA# />'(# 3KA# *<: />'(# 3KA# />'(# 3KA# .AFD6>E?:F A21, +6E: # I>F= .AFD6>E?:F +6E: # !5:6DE" 8:??E ! 4BF6?" !5:6DE" 8:??E ! 4BF6?" />'(# 8:??E ,>67:F:E />'(# 8:??E +'(' &)$% +. ,. -,$() +%*' &'$% &$% *&% *)' .)$&% +'(( &)$% &+( &-( -.$%, +'+- &'$% ($% *+ -. +'$.' +&*( &*$' )) +* +,$+. +''- &($% %$% ''+ (,* +%$', +%,* &+$% &'% &*. ,*$), +&&( &($& &$+ +% ,( -'$&. +'(% &+$% &,' &-& .*$%( +%-) &)$' )$% '-) (&& .&$(' +',. &.$% ',% '-. .($)( +'+& &+$% &)$' &&+% &*&+ ,+$*' +&,. '&$- +' ,' -+$&& *H:D6<: &($) )$% (-( )-) ,,$-. +%*, ''$% (* )& -*$(, 3, &$*' *$' )&+ *(+ &)$&( +&(& ')$' (-' )&' .'$,' 3-0 %$+' '$& &,% '&. *$,, +'(* (%$% &,, &., -.$-* C$H6?G: !H% 8BAFDB?" %$%& xxxxxx %$%, %$%* %$&& xxxxxx +%(% (%$& ). +% -&$+, +%%) (($% &,- &-* .+$'' *H:D6<: '&$( &)( &+% -+$++ 3, +$- &%) &%. -$(- 3-0 '$% (% (& '$)' Page 61 of 74 Diabetes

3FBB>:?:@E6> 467>: &%$ 2:<=A@6> =D>:E :@9A8C=@: 8:>> BCA>=;:C6E=A@$ 47@9B;7C B;<=A@# 5F@" 9;>>C @E?8;B!# DAD7> 3=,-" 5F@" 9;>>C @E?8;B0 % DAD7>!$

16@8C:6D 16@8C:6D @10, *<: .=()# 3H@# .=()# 3H@# .=()# 3H@# .=()# 3H@# 36?B>: 3H@# 8:>>D 36?B>: 3H@# 8:>>D +6D: # !5:6CD" 8:>>D ! 4AE6>" 8:>>D ! 4AE6>" 2:<=A@ & 2:<=A@ '

,&-+ ', 2;7: '&,,* '(& '$') 67=> /)&& '&* '$'( ,(-/ '/ 1A:F '()*( (-& ($'/ 67=> '/.,/ +*& ($-( ,&(/ (* 2;7: .,'* ) &$&) 67=> '+&/. ( &$&' ,')' (*$( 2;7: '-')& )-- ($(& 67=> (*-+. -+( )$&* *G:C6<: (&$. @%7 '('.. '/) '$)/ @%7 '-(+, )+& '$-( 3, *$& @%7 ),)' ',+ '$&) @%7 ,,'& )+, '$*' 3-/ ($& @%7 '.'+ .( &$+( @%7 ))&+ '-. &$-' Diabetes Page 62 of 74 7KGGC>D>EJ:C 8:;C> &&$ .L>H:@> !#<>CC EKD;>H G>H BIC>J JB< :E= 8&0 I:DGC>I$ !#3577< (9>825;/ :5; 6<75= " 06+,! !#3577< (9>825;/ :5; 6<75= " 194 6<75=< (9>825; $ /FEJHFC 8&0 !#<>CCI !#<>CCI 3B+," 3B+," E650 .@> 3B+," !#<>CCI 9>:HI MBJA 3B+," !#<>CCI !#<>CCI 2IC>JI !#<>CCI E650 /:I> # .@> 9>:HI! !#<>CCI 2IC>JI !#<>CCI /:I> # 9>:HI! !#<>CCI G>H BIC>J! 0B:;>J>I !#<>CCI G>H BIC>J! G>H BIC>J! G>H BIC>J! +&%( &$* '&(( )) &%& '& '$& +%+( )$) ($% ,-.' ( &+, ), %$%' +&%, '$' ('(. '&- &&% '. +$, +'%. *$% %$( *(** ( &*& (* %$%' +%.) '$. ''&, ( ,( (% %$& +%+' &%$, +$% (-(& (& &&+ (( %$', +&%+ '$. -&%+ &. ',+ '. %$' +'+* &&$% -$% &&*, % *. '% %$%% +%%* *$% ..' % &%, . %$% +%*' &'$% &$% (,+, ') *' ,' %$)+ +&&' +$( (,'' (. &%* (* &$% +'+- &'$% ($% )*', (* &)' (' %$'* +%%, .$% '.,& ,+ &&( '+ '$+ +'+) &'$% .$% *+'. ) '+, '& %$%& +',- &%$% (('* (( ++ *% &$% +''- &($% %$% &&*., &&% (%& (. %$(, .L>H:@> *$% (((- *) &&. '. &$, +')( &($% *$% &&.. ' )* ', %$%) /ABC=H>E &$*#&($-! 70 ($' '&&' ,& ++ &' '$' +&&( &($& &$+ )%+% &( *+ ,( %$'(

714 &$& ,), '* '( ) %$- /ABC=H>E &$*#&($-! .L>H:@> &%$+ ($, ).%& '( &(+ )% %$&, +'(' &)$% '--' )' &.- &* &$* 70 ($' ($' (%-( (( .% &. %$&, +'(( &)$% &.%- '& &(* &) &$& 714 %$. %$. --' &% '+ * %$%* xxxxx +%.. &)$' )*.* ' +& ,* %$% G#L:CK> L$ I<>EJI &)#'%$-! +'(- '%$% )'+& ' '*+ &, %$% +&.* &.$' *$% *,') & &(- )& %$%& +&,) '%$- &.&- ' .& '& %$& +&+& &.$' ,$% *&)- + &,& (% %$%) .L>H:@> &,$& '+&, '& &'* '- %$. +%+) &.$+ .$% &''* % (+ () %$%% 70 '$( &',* ') +- '( &$& .=FC>I<>EJI &)#'%$-! +'&' '%$% *$% &)(-) && *'& '- %$%' 714 %$*. ('. + &- + %$( .L>H:@> &,$& -$) +).+ +) &*, *% %$'* +%') '&$% *-* % (' &- %$% 70 '$%% ($&- +%'* ''+ &)' '+ %$,) +&,. '&$- '-)- &* &&% '+ %$* 714 %$*( %$-* &+&% +% (- , %$'%

+%%& ''$% &&)&) - '.& (. %$& G#L:CK> L$ H:@> ',$* ))-& '% &(& (* %$+ +%(- (,$' '%$% -.(, % &,' *' %$%% 70 *$+ (,-' (' .& &) %$. +%(& (.$% (*$% *(*( % &%& *( %$%% 714 &$( -+- , '& ( %$' .L>H:@> ',$( &($, **)+ '$% &(*$) )& %$%& +%%. )*$% '&() . *( )% %$) 70 *$, &%$) *-%) '$. &%%$% (% %$%' +%&& )+$% )-(& & &*) (& %$% 714 &$( '$) &(+- %$, '($+ , %$%%

+%&% ),$% '''( % &%. '% %$% G#L:CK> L$

+%%- *%$% &+-& % *' (' %$% +&*% )&$'xxxxx (*$% &(** % (* (. %$%% " )%! +&+- *&$% &,'- ) &%& &, %$' +&(* )($* '&$% .).( , &(( ,& %$%*

+%&, *.$% (%&* % &'- ') %$% " )%! +%(+ ).$' ()$% &+(. % (' *& %$%% +%'% +%$% ''&) % ,& (& %$% +&(- ).$' )&$% &)'+ & ,' '% %$%& +%&+ +)$% -,&+ & ()( '* %$% +%)% *%$% '%$% &.&- % (* ** %$%% +%&( +*$% )++* % &-, '* %$% .L>H:@> )+$+ (%$' (&++ ' +& ), %$%&

5C=>H .=KCJI 5C=>H .L>H:@> *)$& ()+, ' &(( ', %$& 70 )$% .$( (*)) ($% )($( &. %$%' 70 ,$. ''.+ ( .& , %$& 714 &$- )$& &*-* &$) &.$) . %$%&

5C=>H .=KCJI 5C=>H xxxxx 714 '$+ ,+* & (% ' %$% G#L:CK> L$

xxxxx Page 63 of 74 Diabetes

3GCC?:@:AF6? 467?: &'% .A9>H>9G6? !$8:?? CDB?>;:D6F>BA :JCD:EE:9 6E B; >AFD6>E?:F />()# 8:??E >A ABA$9>67:F>8 6A9 4&, C6A8D:6F6% 19,-" !$45::@ ?=:965?2A9C5 @2;>:5@% +BAFDB? 4&, 4BF6? />()# 5:6DE 4BF6? />()# A21, *<: />()# *<: />()# .AFD6>E?:F !$8:??E A21, +6E: # I>F= .AFD6>E?:F !$8:??E +6E: # !5:6DE" !$8:??E !5:6DE" !$8:??E />()# 8:??E ! 4BF6?" ,>67:F:E />()# 8:??E ! 4BF6?" ,()( '*%& *( './ ((%(( ,&+( '(%& '%& (* ,// )%*) ,()) '*%& (' '&( (&%+/ ,(,. '(%& )%& )+ ''/ (/%*' ,'+) '+%( (* '), '-%,+ ,((. ')%& &%& ''& *() (,%&& ,&-+ ',%& ') /( '*%') ,'') ')%' '%, ) . )-%+& ,()& ',%& ,. ')/ *.%/( ,&.* '*%( *%& ,. ',) *'%-( ,(-/ '/%& (( '(, '-%*, ,(,' ',%& '*%( .*. '/.. *(%,, ,'-/ ('%. '+ ., '-%** *H:D6<: ')%* *%& '.' +,- )&%'( ,&+- ((%& * () '-%)/ 3, '%+( +%( )(/ -)/ '*%,- ,')' (*%( -/ (() )+%*) 3-0 &%,( (%' ')* )&( +%// ,()+ )&%& ''+ )-. )&%*( C$H6?G: !H% 8BAFDB?" &%&' xxxxxx &%'+ &%&. &%)' xxxxxx

,&)& )&%' (/ '&( (.%*) xxxxxx ,&&* ))%& ,/ )/( '-%,& *H:D6<: ('%) *( ',, ()%/- 3, ,%. )* ''* '&%', 3-0 (%& '& )) (%/) Diabetes Page 64 of 74

5IEEA?F>D !@F?69C2 EAE5> 44 79>>D"$ EAE5> 44# 79>>D !@F?69C"$ 3=-.# DA?5EADE5E=@# 79>>D !@F?69C1 EAE5> DA?5EADE5E=@ 79>>D"$ EAE5> DA?5EADE5E=@# 79>>D !@F?69C"$ 3=-.# ;=@# 79>>D !@F?69CD2 EAE5> ;=@ 79>>D"$ EAE5> ;=@# 79>>D !@F?69C" 7AF@E98% "@&5" =@8=75E9D E<9 ?95DFC9?9@E =D @AE 5BB>=756>9 :AC E<9 75D9 AC E<9 75D9 D5?B>9 H5D @AE 5G5=>56>9 :AC E<=D 5@5>ID=D% 44 ,

1@)*# 1@)*# 7<8FG 1@)*# 6DH8A 1@)*# 6DH8A 1@)*# 1@)*# 6DH8A +>< 44# /?F< (,%, xxxxxx ) ,*. '%*' * (--( '%() ' (,( '%'' 5- (%+ xxxxxx * *.( '%*+ , (*.* '%() ' /* '%'' 5.2 '%,. xxxxxx ( (,( '%(+ ) ,-' '%', ' *+ '%''

xxxxxx -',) ()%' ( ' )0- '%'' + 0', '%++ ' -+ '%'' -((* (*%( (%- ' (.- '%'' ' ((-. '%'' ' ()0 '%'' -'/+ (+%) + ' )(/ '%'' * (0*- '%(, ' -/ '%'' -'/0 (+%* / ' ,) '%'' ' -.- '%'' ' +* '%'' -'+0 (,%' (' ' ' '%'' ( ()/+ '%'/ ' )') '%'' -'/* (,%) (( ' .( '%'' ( (0., '%', ' (+, '%'' -'/. (.%, + ' (*, '%'' ' ' '%'' ' /, '%'' 6'- -(+, (/%' (( ' ('+ '%'' ( 00/ '%(' ' ). '%'' -'-+ (0%- 0 ' *- '%'' ' ' '%'' ( *, )%/- +J< (,%+ -%- ' ()( '%'' ( 00* '%'0 ' /0 '%*) 5- )%, +%' ' 0, '%'' ( .(( '%(+ ' ,0 '%0, 5.2 '%/) (%* ' *) '%'' ' )*. '%', ' )' '%*) E%J8AI< !J& :DCHFDA" '%0* xxxxxx '%(* '%') '%', '%*' '%)+ '%-- '%+/ '%'+ '%+/

xxxxxx Page 65 of 74 Diabetes 5IEEA?F< D= @CHF8@GAGEC @A?@BN FGEBA>=G9IAK= H9CFB=H& "D'9" ADEG I@= ;9H= EG I@= ;9H= H9CFB= L9H DEI 9K9AB9:B= >EG I@AH 9D9BNHAH& 4GEHH%@9I;@=< :EM=H AD

1@)*# 1@)*# 7<8FG 1@)*# 0CHF8@GA< 44# 0CHF8@GA

.*++ ),&( D'9 ( ,) (&(( )+ */* ,&/0 ( ,- (&(( .)-+ )-&* D'9 ). )+( )*&+) * 0( *&-( ( .) (&(( .(/- ).&( D'9 ) *( -&(( * )* ).&./ ( +0 (&(( xxxxxx

+J< )-&) xxxxxx . ., . . )*) 0 ( ,0 (&(( ,DCHFDA 5- )&( xxxxxx 1 -0 . . )+- 0 ( )* ( 5.2 (&-0 xxxxxx - +, , , /0 , (/(

xxxxxx .(-* )*&( ) ( 11 (&(( , ,*1 (&1+ ( ),, (&(( .))+ )+&) )&. ( ) (&(( ( )0 (&(( ( )1 (&(( .(0, ),&* , ( *) (&(( + ,) /&+* ( +* (&(( +J< )+&) *&* ( ,( (&(( * ).+ *&/- ( .- (&(( 6'- 5- )&) )&. ( -* ( * *+) +&10 ( .1 (&(( 5.2 (&., (&1* ( +( (&(( ) )++ *&+( ( ,( (&((

E%J8AI< !J& :DCHFDA" (&(0,,xxxxxx (&++ (&.+ (&)0 (&,, (&0( (&+- xxxxx (&.1 xxxxx

xxxxxx xxxxx xxxxx Diabetes Page 66 of 74

4JFFB=C=DI9B 59:B= &*$ 0D 0-6 HI9M >EG DED#58B" 4:8 I84BC!" A4?6B84C G8<:;D :!" A4?6B84C DB4?C8 ;!" 4?7 7EB4D<@? @9 203 CD4I 74IC!$"?%4" 84CEB8>8?DC G8B8 ?@D 4F4<=45=8 9@B D;4D 64C8$ 0B@CC#;4D6;87 5@H8C 84CEB8>8?D 6@E=7 ?@D 58 64=6E=4D87$ -EDIGEB 5&. 39D;G=9H .JG9IAED E> 8=9GH 39D;G=9H .JG9IAED E> D32. ,?= 39D;G=9H ,?= 39D;G=9H 5G9DHAI 0-6 4I9M D32. -9H= # LAI@ 5G9DHAI 0-6 4I9M -9H= # 8=9GH! 7=A?@I 8=9GH! 7=A?@I ?! 5AC= @! .9MH! .A9:=I=H 5AC= @! .9MH! ,(&& &$&&+ *$(/& (*$(- ($* ,&,) *$* )$& ''$(& '+$') )$(- ,('* &$&'* '$&&& ''$.+ +$/+ ,(&/ +$& &$) '($+& )+$&& &$'* ,',* &$&)& ($/.& ',$)) ')$-+ ,&,( '&$- ,$& '.$(& (&$/- *$(, ,('. &$&.& &$-)& '/$++ ,$&' ,(,+ ''$& .$& '.$*. '/$/. )$+' ,((( &$'-& +$--& '*$.& )$)- ,&+( '($& '$& (($'& '*$-+ '$.* ,''- &$))& +$*&& '+$,- )$)( ,(,. '($& )$& *'$' '-$+& )$). ,''+ &$*(& )$/&& '*$') ''$'/ ,(,* '($& /$& (&$)+ (&$(& ($') ,&/( &$+&& +$)&& '&$.) *$'' ,((. ')$& &$& )&$)+ '+$++ '&$&* 0D>9DIH %#&$)! ,K=G9?= &$'/* )$,- '+$/) ,$(, ,(*) ')$& +$& (/$)+ ')$*. *$/, 4. &$'/- '$/+ *$)' *$&/ ,'') ')$' '$, ))$+& /$&. +$'&

4/1 &$&-& &$,/ '$+( '$*+ -@AB

xxxxx ,(+) '/$& .+$) ')$&+ ,$'* ,((* ('$& '$+ +,$&/ -$)) )$)* ,(-/ '/$& .&$( *+$(+ )$). ,'/. (($& )$& ?%4 +$*. ('$-' ,()* (&$& */$/ ',$*+ )$-- ,(*+ (($& -$& )'$+. '+$+( )$&- ,

,&&* ))$& ?%4 +$/( *$++ ! )%! ,&), */$( )*$& )'$') ()$() )$,) ,&&( )/$& ?%4 '$+& )$.. ,'). */$( *'$& //$,& '.$&& +$&) ,&'+ )/$& ?%4 *$/+ )$)) ,&*& +&$& (&$& ,*$/& '/$,+ '$,( ,K=G9?= (-$+ .'$)* ''$-, *$-& ,K=G9?= *,$, )&$( +&$.) '-$,) )$*/ 4. +$+. )&$-) -$.. *$'* 4. *$& /$) )'$(* *$.( '$(* 4/1 '$(. -$&+ '$.' &$/+ 4/1 '$. *$' ')$/- ($', &$++ 2B<=G ,

,&'' *,$& ?%4 ?%4 (.$'+ xxxxxxxxx ,&'& *-$& ?%4 ',$&. &$/+ ,&&. +&$& ?%4 ?%4 '&$*, ! )%! ,',. +'$& ..$. '/$-+ ,$/' ,&'- +/$& ?%4 *$/( '$), ,&(& ,&$& ?%4 ($/+ *$*) ,&', ,*$& ?%4 '($') ($,- ,&') ,+$& ?%4 +$(& *$),

2B<=G ,0 % @<@49 6C@<=94?:86 348?97@ 28,-"!# @<@49 6C@<=94?:86 3!# @<@49 8;@>48?97@ 28,-" 6799? ;A:57>!$

,LG 6;7EF 0?'(# 4CK) # 0?'(# 4CK),LG# 0?'(# 4CK),LG# 5CG7@ 4CK),LG# 5CG7@ /BGE7?F@;G B32- ,7F; # +=; J?G> ,;@@F ! 5CG7@ /BGE7?F@;G ,;@@F ,;@@F 0?'(# ,;@@F -?78;G;F ! 5CG7@ 4CK),LG" 0?'(#" ,&// '*$(& ;%4 ( ')&& , &$'+ ))$)) ,'+) '+$(& ;%4 (( ++* (. )$/- -.$+- ,&-+ ',$&& ;%4 (+ -.& *+ )$(' ++$+, ,&/, ',$&& ;%4 ' +*- ' &$'. '&&$&& ,&/. '-$.& ;%4 ' +/( ' &$'- '&&$&&

,CBGEC@ ,(-/ '/$&& ;%4 ('( (&*- (+/ '&$), .'$.+

xxxxxx

+I;E7=; ',$* xxxxxx ** /-& +- )$&' -*$./

4- '$-+ xxxxxx .) ,&& '&' )$/. (,$'- 4.1 &$-' xxxxxx )* (*+ *' '$,( '&$,. xxxxxx ,&+( '($& '$& '&& --- '(( '($.- .'$/- ,'') ')$' '$, '- *+* (. )$-* ,&$-' ,&.* '*$( *$& ,- +*, /& '($(- -*$** ,&./ '*$) .$& ( .+) ') &$() '+$). ,&*/ '+$& '&$& ( )*+ * &$+. +&$&&

5&- ,'*+ '.$& ''$& & (++ ( &$&& &$&& +I;E7=; '*$* +$/ )' +). *) *$/+ *-$&/ 4- ($&* *$) *( ()- +' ,$&, )($.' 4.1 &$.) '$. '- /- (' ($*- ')$)/

D$I7@H; !I% 9CBGEC@" &$'' xxxxxx &$-+ &$') &$-. &$+) &$'*

xxxxxx Diabetes Page 68 of 74

4HDD@;A;BG7@ 578@; &(* 1H9@;7E 4CK) :H9G7@ 9;@@ DEC@?<;E7G?CB !# 19,-" 2=B/" 7A6@4: 68::? 0 % @=@4:!$

/?'(# 4CK)1H9# 6;7EF /?'(# 4CK)1H9# -H9G7@ ,;@@F B32- ,7F; # +=; J?G> -H9G7@ ,;@@F -H9G7@ ,;@@F -?78;G;F ! 5CG7@ -H9G ,;@@F" ,&// '*$( <%4 )'+ & &$&& ,'+) '+$( <%4 (.( & &$&& ,&-+ ',$& <%4 ))' & &$&& ,&/, ',$& <%4 -,' & &$&& ,&/. '-$. <%4 (/-- + &$'-

,CBGEC@ ,(-/ '/$& <%4 +/( ' &$'-

+I;E7=; ',$* xxxxxxx .-, ' &$&, xxxxxxx

4- '$-+ xxxxxxx '&*, ( &$&/

xxxxxxx

4.0 &$-' xxxxxxx *(- ' &$&* ,&+( '($&xxxxxxx '$& '-. & &$&& ,'') ')$' '$, .) & &$&& ,&.* '*$( *$& ++/ & &$&& ,&*/ '+$& '&$& (.& & &$&& ,'*+ '.$& ''$& '/- & &$&&

5&- ,'/+ '/$( +$& '-/ & &$&& +I;E7=; '+$) +$* (*, & &$&& 4- ($. *$( ',, & &$&& 4.0 '$' '$- ,. & &$&& xxxxxxx

D$I7@H; !I% 9CBGEC@" &$*) xxxxxxx &$'. &$(+ &$'*

xxxxxxx Page 69 of 74 Diabetes

0D@@<7=7>C3< 134<7 &'% 0?G(*HC# ;B<7C 7>6?5A;>7 57<?>$6;347C;5 3>6 1&+ B3=@<7B% 5AE6> 4H@# 8:>>D !@F?7:C"$ 4AG13HE# 8:>>D !@F?7:C2 A; DH@# 8:>>D"$ 6@9 4H@# 4AG13HE# 8:>>D !@F?7:C2 A; 4AG13HE# 8:>>D"& "@'6" =@9=86E:D E<: ?:6DFC:?:@E =D @AE 6BB>=867>: ;AC E<: 86D:& 3CADD%<6E8<:9 7AG:D =@9=86E:D E<6E E<: ?:6DFC:?:@E 8AF>9 @AE 7: 86>8F>6E:9&

0H># 0?G(*HC# 273AB 0?G(*HC# *7<# 0?G(*HC# *7</.+ *3B7 # F;C: 0H># *7<# !273AB" *7<

)E7A397 ++&( xxxxx /)0* ,// ,/. 11&1( .&/* *?>CA?< 0+ -&* xxxxx *(0. ).1 ).0 (&)/ )&,1 xxxxx

0,- +&( xxxxx )*(, 10 1/ (&)( (&0. .*)* *(&(xxxxx -&( .0/+ ))(. ))(( 11&,. ).&(1 .(*- *+&0 )1&( *.01 *11 *10 11&./ ))&)* .*)) *,&( ,&( .-)- 10/ 10, 11&/( )-&)- )E7A397 **&. 1&+ -+-1 /1/ /1, 11&.) ),&)* 1&+ 0+ *&+ 0&, *+)1 ,+. ,++ (&)+ *&., 0,- )&+ ,&0 )++1 *-* *-( (&(/ )&-*

xxxxx @$E3CA?<" (&(+ (&+/ (&+( (&+( (&(0 (&()+ xxxxx

xxxxx Diabetes Page 70 of 74

0EAA=8>8?D4= 145=8 &'% 0@H')ID (/2 6@$A@C ?@?$7<458D<6 4?7 1&* C4>A=8C% 7DH9A 358# ;=AAG$ 6DJ14KH# ;=AAG !CIB:=F2 D> 358# ;=AAG"$ 6DJ14KH# 358# ;=AAG !CIB:=F2 D> 6DJ14KH# ;=AAG"& "C'9" @C<@;9H=G H?= B=9GIF=B=CH @G CDH 9EEA@;9:A= >DF H?= ;9G=& 4FDGG%?9H;?=< :DJ=G @C<@;9H=G H?9H H?= B=9GIF=B=CH ;DIA< CDH := ;9A;IA9H=<&

0@H')ID#(/2# 0@H')ID# )8==C (:8 384BC G

(F8B4:8 *- xxxxxxx ,**+ ))+/ ))+( 11&+, *0&.) )@?DB@= 0* -&. xxxxxxx ***- --1 -.) (&00 0&() xxxxxxx

0+, +&* xxxxxxx )*0, +*+ +*, (&-) ,&.+

xxxxxxx .*)* *(&( -&( ,(,- ))(. )(01 10&,. */&+, .(*- *+&0 )1&( )-./ *11 *1. 11&(( )1&(0 .*)) *,&( ,&( ,-,, 10/ 1.. 1/&0/ *)&/* (F8B4:8 **&. 1&+ ++0- /1/ /0, 10&,, **&/) 1&* 0* *&+ 0&, )-1, ,+. ,*/ (&-. ,&** 0+, )&+ ,&0 1*) *-* *,. (&+* *&,,

A$F4=E8 !F% 6@?DB@=" (&-+ xxxxxxx (&.* (&,- (&,, (&*) (&+*

xxxxxxx Page 71 of 74 Diabetes

5JFFB=C=DI9B 69:B= (&% 3GEBA>=G9IAD? +47# ?BJ;9?ED D=?9IAK= ;=BBH >GEC DED$H"$ 6B./# 379# 5<@% 4>CCI !EKD;>H2 F? 379# 5<@% <>CCI"& "E':" BE=B<:J>I JA> D>:IKH>D>EJ BI EFJ :GGCB<:;C> ?FH JA> <:I>& 4HFII%A:J= ;FL>I BE=B<:J>I JA:J JA> D>:IKH>D>EJ <:C=& 0A)*# +47# /;?$ +?= 8=9GH LAI@ +47# /;?$ 0A)*# +47# ,=BBH D32- ,9H= # !8=9GH" -A9:=I=H ,=BBH /;?$ ,=BBH ! E> +47# /;?$ ,=BBH" .(/- ).&( E': ,)1 / )&./ .)+) *,&* E': ,*-- *+ (&-, .*+- +(&( E': .1( 1. )+&1)

xxxxxxxxx

+K=G9?= *+&, xxxxxxxxx )/00 ,* -&+/

xxxxxxxxx ,EDIGEB 5- /&( *),) ,/ /&,* xxxxxxxxx

5.1 ,&) xxxxxxxxx )*+. */ ,&*0

xxxxxxxxx .))+ )+&) )&. +/+ )0 ,&0+ .(0, ),&* ,&( +-( +/ )(&-/ .*.) ).&( ),&* ,,, )-1 +-&0) +K=G9?= ),&, .&. +01 /) )/&(/ 6'- 5- )&- .&/ ,1 // ).&,0 5.1 (&0 +&1 *0 ,, 1&-* F$K9BJ= !K% ;EDIGEB" (&)( xxxxxxxxx (&+* (&.( (&++ xxxxxxxxx

xxxxxxxxx Diabetes Page 72 of 74 1EAA=9>9?D5= 256=9 '&% (8@=9C79?D CH?5AD@A;HCA 4HA"! 9;?? CDB?><;D7F>BA AG@8;D0 % FBF7?!# FBF7? >E?;F ;A:B9D>A; 9;?? AG@8;D!$

495BC 23.+,# 1H?# (:9 23.+,# 1H?# ?0/* )5C9 # G

4EAA=:>:?D8= %%$ 561,/# 4@G(*HD# )?8=HC 4AG./HE" 9;>>D @F?8;C!# =D>;ED @F?8;C!# 56302" 4AG./HE" 9;>>D @F?8;C B;C =D>;E!# 7@: =D>;E ;@:A9C=@; BCA>=<;C7E=A@ 7D ?;7DFC;: 8H 1=+," 4H@" 9;>>D % EAE7>!$

561,/# ?32+ );: 561,/# .<&'# 4H?# -C=:DC !#" *HD *8C: # !7:8BC" 4@G(# 9:==C 4@G( # 9:==C ! 5@D8= 4H?#" !# A:B -C=:D" +%.. &)$' % &.. %$%%% %$%+% +%.+ &+$% % &() %$%%% %$&*% +%.- &,$- % '+, %$%%% %$%*% +'*( &.$% % &'+ %$%%% %$'-% +'(* (%$% % &-* %$%%% &$)%% +%(% (%$& % -' %$%%% %$*.% )F:B8;: '&$' % &++ %$%%% %$)'' 4+ ,$& % +* %$%%% %$*&. 4,0 '$. % '+$, %$%%% %$'&' Diabetes Page 74 of 74

4HDD@5A73B E7;9:C !9"# ;B<7C 7>6?5A;>7 57<< 3A73 ! C?C3<"# 3>6 ;B<7C 7>6?5A;>7 57<< =3BB !9"% ">&3" ;>6;53C7B @3>5A73B E7;9:C E3B >?C =73BDA76 8?A C:3C 53B7% 1A?BB$:3C5:76 4?F7B ;>6;53C7B C:3C C:7 =73BDA7=7>C 5?D<6 >?C 47 53<5D<3C76% -CBGEC@ 5'. 0F@ /B;C:E?B< -8F< # "7<8EF# 6G "=# ,E<8 "7<8EF# 6G "=# ,E<8 18FF "=# .?89

-)*) (+%' +0%+' )%(. (%'.' -'/+ (+%) +%' >&3 '%0, xxxxxx

-)** (+%' -'%0* )%.) (%-,/ -'/0 (+%* /%' ,-%/' '%*.xxxxxx '%)(( -'00 (+%) /,%,- *%,) *%''0 -'+0 (,%' ('%' (,%/' (%0/ '%*() -(,* (,%) -.%., )%*. (%-'. -'/* (,%) ((%' +(%./ (%*0 '%,/' -'., (-%' +.%)0 (%+- '%-0' -)'. (-%' ('%' **%)' '%+) '%(+( -'0- (-%' ,(%,' (%/, '%0,, -)-( (-%' (+%) >&3 *%/( xxxxxx -)*' (-%' --%). )%() (%+'+ -(+/ (.%( .%' )-%*- '%+'xxxxxx '%('+ -)). (.%' -'%+' (%,' '%0'- -'/. (.%, +%' ,/%+' '%+* '%),+ -).( (.%' 0.%00 (%(( (%'0' -(+, (/%' ((%' +)%(0 (%'' '%+)) -'0/ (.%/ 0(%(' *%'* )%.,- -)*. (/%' ()%' *)%,( (%(. '%*/( -),* (0%' /,%)0 (%*+ (%(*0 -(0, (0%) ,%' )0%/' '%,0 '%(., -).0 (0%' /'%(. (%)( '%0.' -(-( (0%) .%' *0%/' '%.' '%).. -)*+ )'%' (0%/- *%'- '%-'. -'-+ (0%- 0%' +-%(, (%(, '%,*) ,;C@&3 )%(. xxxxxx -))+ )(%'xxxxx (%, ,-%'0 '%** '%(/) -(.0 )(%/ .)%+' (%') xxxxxx'%.*- -(0/ ))%' *%' >&3 '%*0 xxxxxx

xxxxxx xxxxxx -''( ))%' >&3 )%,' -)+, ))%' .%' *(%,/ )%). '%.(/ xxxxxx -',. ))%' ('+%*- )%*/ )%+/, -')- ))%+ (+%' -.%*' (%*( '%//, -(-) ))%. /(%,' (%'' '%/(/ -'.' ))%- .%' *0%(' '%-) '%)+*

-''* )*%' >&3 )%+) xxxxxx -'-0 ))%0 .%' ,,%.' *%(( (%.*+

-')0 )+%' .0%*' (%+) xxxxxx(%(). -'), )*%/ (0%' >&3 '%-, xxxxxx

-(*( )+%) ('/%0) (%00 )%(-- -)+. )+%' '%- ,0%.. '%-'xxxxxx '%*,.

-',* ),%' >&3 (%)( xxxxxx -)(( )+%' +%' **%'' '%.. '%),*

-()- ),%) /'%)' (%(+ xxxxxx'%0(( -(0- )-%' (,%' )/%(0 (%'' '%)/) -',/ ).%' ,)%-/ )%*( (%)(0 -'+( )-%* )*%' *)%,' '%/* '%).' -'+/ *'%' (*0%'' (%)( (%-/' -'*0 )/%. ()%' +)%)' (%-0 '%.(* -)*, *'%' (')%*( (%-+ (%-.. -'// *(%) ,%' *)%'' (%*. '%+*0 -'*' *'%( 0-%*' (%*) (%).( -'/( *(%+ (,%' -)%+* '%,0 '%*-0 -))0 *(%' +,%-' )%*+ (%'-, -'*, *)%( )/%' +)%(' (%-- '%.'( 7CHB= ,;H@GF "('$)+# 7CHB= -'*+ *)%' .,%+' (%/0 (%+)/ ,;H@GF "('$)+# 7CHB= -',+ *,%( *'%' )0%+, (%'0 '%*)( xxxxxx -''+ **%' >&3 (%-' -'*/ *.%) )'%' *0%,' (%(+ '%+,( xxxxxx

-'') *0%' >&3 )%'( xxxxxx -'*( *0%' *,%' +'%)' '%0-- '%*//

-'(, *0%' >&3 )%') xxxxxx ,I

,I

4/1 (%* ,%/- '%() '%(, D$I8@H< "I% :CBGEC@# '%0**' xxxxx '%'''' '%*'/* '%'''' -''0 +,%' >&3 (%00 xxxxxx -'*- (0%)xxxxx *+%' *(%(* '%0) '%)/, -'(( +-%' >&3 (%,0 xxxxxx -(,' +(%) *,%' ).%(+ '%*. '%(''

xxxxxx -'(' +.%' >&3 )%+( ! *&# -(*, +*%, )(%' *(%*0 )%)( '%-0, -''/ ,'%' >&3 '%0- xxxxxx -(*/ +0%) +(%' 00%-- '%+' '%+'* ! *&# xxxxxx -(-/ ,(%' //%.- (%*' (%(,/ -'+' ,'%' )'%' -+%0' '%-( '%*0- xxxxxx -'(. ,0%' >&3 (%./ ,I&3 )%// 4. xxxxxx ()%, 0%* *(%)- '%.- '%)(-

-'(- -+%' >&3 )%+. xxxxxx 4/1 ,%- +%( (*%0/ '%*+ '%'0. 2@;

-'(* -,%' >&3 (%0' xxxxxx D$I8@H< "I% :CBGEC@# '%')/* xxxxxxxxxxxxxxxxxxxxx

2@;

4. .%0 xxxxxxx '%-' xxxxxx

4/1 )%- xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx