For New Science

Total Page:16

File Type:pdf, Size:1020Kb

For New Science VOL. 101 | NO. 5 40 Years of Science MAY 2020 at Mount St. Helens Farming Changes Are Improving Cuba's Water Coastal Wetlands Save Millions of Dollars NEW SPARKS FOR LIGHTNING SCIENCE FROM THE EDITOR Editor in Chief Heather Goss, AGU, Washington, D.C., USA; [email protected] A G U S t a Investigating the Spark Vice President, Communications, Amy Storey Marketing, and Media Relations here’s a term in French that describes falling in love Editorial Manager, News and Features Editor Caryl-Sue Micalizio at first sight: coup de foudre,” said Yoav Yair. “Liter- “ Science Editor Timothy Oleson ally translated, it means ‘bolt of lightning.’” Yair is News and Features Writer Kimberly M. S. Cartier T Jenessa Duncombe the dean of the School of Sustainability at the Interdisciplinary News and Features Writer Center Herz liya in Israel and Eos’s Science Adviser for AGU’s Production & Design Atmospheric and Space Electricity section. “This is how I felt Manager, Production and Operations Faith A. Ishii about atmospheric electricity when I started my master’s Senior Production Specialist Melissa A. Tribur degree at Tel Aviv University back in the 1980s: instant fasci- Assistant Director, Design & Branding Beth Bagley nation, deep curiosity, and a desire to know more.” Senior Graphic Designer Valerie Friedman Graphic Designer J. Henry Pereira I was excited when Yair suggested that we cover lightning in our May issue of Eos. As a magazine editor, I certainly think Marketing you can’t beat the photography, but more than that, I was Director, Marketing, Branding & Advertising Jessica Latterman intrigued by the number of questions that remain about this Assistant Director, Marketing & Advertising Liz Zipse phenomenon nearly all of us have grown up experiencing, watching from our windows as Advertising storms roll in. “Lightning is indeed beautiful, dangerous, and multifaceted, and it hides a lot Display Advertising Dan Nicholas and reveals a lot. And although it has been known to humanity for millennia—feared and wor- [email protected] Recruitment Advertising Kristin McCarthy shiped—we still don’t fully understand it,” explained Yair. [email protected] Chris Schultz of NASA’s Short-term Prediction Research and Transition Center assures me we are living in a “second golden age” of lightning observations. In “Lightning Research Science Advisers Flashes Forward” (p. 28), meteorologist Ashley Ravenscraft explains how she uses data recently Geomagnetism, Paleomagnetism, Julie Bowles and Electromagnetism made available to the National Weather Service from the Geostationary Lightning Mapper on Space Physics and Aeronomy Christina M. S. Cohen board the GOES-R satellite (p. 5) that show the rate of lightning strikes in an area. She uses Cryosphere Ellyn Enderlin these data—sometimes these data alone, when necessary—as a proxy to predict tornadoes Study of the Earth’s Deep Interior Edward J. Garnero Geodesy Brian C. Gunter and issue warnings to the nearby Huntsville, Ala., community. Like so many meteorologists, History of Geophysics Kristine C. Harper she got into the field to save lives, and with this new information, she’s giving her neighbors Planetary Sciences Sarah M. Hörst sometimes as long as 45 minutes to get to safety. Natural Hazards Michelle Hummel Volcanology, Geochemistry, and Petrology Emily R. Johnson “In recent decades, we have made tremendous progress and devised sophisticated ways to Societal Impacts and Policy Sciences Christine Kirchho decipher lightning and its associated impacts on the atmosphere,” said Yair, “here on Earth Seismology Keith D. Koper and also on other planets.” In “Planetary Lightning: Same Physics, Distant Worlds” (p. 22), Tectonophysics Jian Lin Near-Surface Geophysics Juan Lorenzo we take a trip through the solar system to investigate why lightning is pervasive on Jupiter, Earth and Space Science Informatics Kirk Martinez how Neptune and Uranus are similar in so many ways except in generating lightning, and, in Paleoceanography and Paleoclimatology Figen Mekik this case and so many others, why Venus is just so weird. Mineral and Rock Physics Sébastien Merkel Finally, where are all these lightning data when you need them? On page 18, learn about Ocean Sciences Jerry L. Miller Global Environmental Change Hansi Singh WALDO—the Worldwide Archive of Low-frequency Data and Observations—in “Returning Education Eric M. Riggs Lightning Data to the Cloud.” Morris Cohen, professor of electrical engineering at Georgia Hydrology Kerstin Stahl Institute of Technology (and president-elect of AGU’s Atmospheric and Space Electricity sec- Tectonophysics Carol A. Stein Atmospheric Sciences Mika Tosca tion), and a colleague manage this database of radio measurements meant to facilitate research Nonlinear Geophysics Adrian Tuck not only in lightning but also in space weather, terrestrial gamma rays, and gravity waves, Biogeosciences Merritt Turetsky among other phenomena. Hydrology Adam S. Ward Earth and Planetary Surface Processes Andrew C. Wilcox “As our society becomes more technological, urban, [and] densely populated, and as our Atmospheric and Space Electricity Yoav Yair climate is changing, we need to know what lightning will be like in the future,” said Yair. We GeoHealth Ben Zaitchik hope this issue gives you some idea of how lightning affects us, as well as of the interdisci- plinary nature of the exciting science questions it presents. ©2020. AGU. All Rights Reserved. Material in this issue may be photocopied by individual scientists for research or classroom use. Permission is also granted to use short quotes, fi gures, and tables for publication in scientifi c books and journals. For permission for any other uses, contact the AGU Publications O ce. Eos (ISSN 0096-3941) is published monthly by AGU, 2000 Florida Ave., NW, Washington, DC 20009, USA. Periodical Class postage paid at Washington, D.C., and at additional mailing o ces. POSTMASTER: Send address changes to Member Service Center, 2000 Florida Ave., NW, Washington, DC 20009, USA Member Service Center: 8:00 a.m.–6:00 p.m. Eastern time; Tel: +1-202-462-6900; Heather Goss, Editor in Chief Fax: +1-202-328-0566; Tel. orders in U.S.: 1-800-966-2481; [email protected]. Submit your article proposal or suggest a news story to Eos at bit.ly/Eos-proposal. Views expressed in this publication do not necessarily refl ect o cial positions of AGU unless expressly stated. SCIENCE NEWS BY AGU // Eos.org 1 CONTENT 18 28 22 34 Features 18 Returning Lightning Data 28 Lightning Research Flashes to the Cloud Forward By Morris Cohen By Heather Goss No longer lost among the Betamax tapes in a dusty A new wave of instruments is helping researchers make warehouse, these low-frequency observations have a big leaps in their knowledge of the “big spark.” new digital home. 34 Lessons from a Post-Eruption 22 Planetary Lightning: Same Landscape Physics, Distant Worlds By Jon J. Major et al. By Kimberly M. S. Cartier Scientists have had 4 decades to watch the biophysical Lightning is a powerful tool to learn about the complex responses to the cataclysmic eruption on Mount environments around the solar system and beyond. St. Helens. On the Cover Brandon Morgan/Unsplash 2 Eos // MAY 2020 CONTENT 15 42 Columns From the Editor AGU News 1 Investigating the Spark 41 The Future Needs Science. The U.S. Elections Need You | STEM Supports 67% of U.S. Jobs News 4 Speleothem Documents Belgium’s Historic Climate Research Spotlight 5 Mapping Lightning Strikes from Space 42 How to Read Atmospheric History Written 6 Earth’s Skies Transmitted Signs of Life During in Flowstones Lunar Eclipse 43 Investigating Rates of Microbial Methane Munching 8 Microbes Discovered Hanging Out in the Ocean’s in the Ocean | Missing Lakes Under Antarctic Ice Crust Sheets 9 Researchers Quantify a Seeded Snowpack 44 Santa Ana Winds and Wildfires Influence 10 The Ecological Costs of Removing California’s Air Pollution | New Study Shifts Paradigm of Coastal Offshore Oil Rigs Sediment Modeling 12 Could Wildfire Ash Feed the Ocean’s Tiniest 45 Solving the Global Nitrogen Imbalance Life-Forms? 13 Coastal Wetlands Save $1.8 Million per Year Positions Available for Each Square Kilometer 46 Current job openings in the Earth and space sciences 15 Sustainable Agriculture Reflected in Cuba’s Water Quality Postcards from the Field Opinion 48 Researchers prepare to ski across a glacier in the Canadian Rockies, carrying a ground-penetrating 16 Don’t @ Me: What Happened When Climate Skeptics radar to measure ice thickness. Misused My Work AmericanGeophysicalUnion @AGU_Eos company/american-geophysical-union AGUvideos americangeophysicalunion americangeophysicalunion SCIENCE NEWS BY AGU // Eos.org 3 NEWS Speleothem Documents Belgium’s Historic Climate eep in the south of Belgium, near the appeared in sig- winding Lesse River, lies a cave rich nificantly higher Dwith history and geologic wonders. amounts in more The Han-sur-​­ Lesse​­ cave system has long fas- recent samples, cinated visitors, with its well-defined​­ calcium hinting at anthro- carbonate formations (speleothems) mar- pogenic pollution. veled at for centuries. Trace elements Recently, scientists from various Belgian also revealed more institutions studied one of the cave’s fastest subtle properties growing stalagmites, Proserpine, to learn about the cave and more about the evolution of the region’s cli- the region’s past mate. By analyzing such data as stable iso- climate. For exam- topes and trace elements, the researchers ple, elevated levels found clear evidence of increasingly dry
Recommended publications
  • Annualreport2005 Web.Pdf
    Vision Statement The Space Science Institute is a thriving center of talented, entrepreneurial scientists, educators, and other professionals who make outstanding contributions to humankind’s understanding and appreciation of planet Earth, the Solar System, the galaxy, and beyond. 2 | Space Science Institute | Annual Report 2005 From Our Director Excite. Explore. Discover. These words aptly describe what we do in the research realm as well as in education. In fact, they defi ne the essence of our mission. Our mission is facilitated by a unique blend of on- and off-site researchers coupled with an extensive portfolio of education and public outreach (EPO) projects. This past year has seen SSI grow from $4.1M to over $4.3M in grants, an increase of nearly 6%. We now have over fi fty full and part-time staff. SSI’s support comes mostly from NASA and the National Sci- ence Foundation. Our Board of Directors now numbers eight. Their guidance and vision—along with that of senior management—have created an environment that continues to draw world-class scientists to the Institute and allows us to develop educa- tion and outreach programs that benefi t millions of people worldwide. SSI has a robust scientifi c research program that includes robotic missions such as the Mars Exploration Rovers, fl ight missions such as Cassini and the Spitzer Space Telescope, Hubble Space Telescope (HST), and ground-based programs. Dr. Tom McCord joined the Institute in 2005 as a Senior Research Scientist. He directs the Bear Fight Center, a 3,000 square-foot research and meeting facility in Washington state.
    [Show full text]
  • Logic and Methodology of Science: an Introduction to the Philosophy of Science 1 P
    CONTENTS CONTENTS HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY History and Philosophy of Science and Technology - Volume 1 No. of Pages: 402 ISBN: 978-1-84826-323-9 (eBook) ISBN: 978-1-84826-773-2 (Print Volume) History and Philosophy of Science and Technology - Volume 2 No. of Pages: 416 ISBN: 978-1-84826-324-6 (eBook) ISBN: 978-1-84826-774-9 (Print Volume) History and Philosophy of Science and Technology - Volume 3 No. of Pages: 394 ISBN: 978-1-84826-325-3 (eBook) ISBN: 978-1-84826-775-6 (Print Volume) History and Philosophy of Science and Technology - Volume 4 No. of Pages: 412 ISBN: 978-1-84826-326-0 (eBook) ISBN: 978-1-84826-776-3 (Print Volume) For more information on e-book(s) and Print Volume(s) order, please click here Or contact : [email protected] ©Encyclopedia of Life Support Systems (EOLSS) HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY CONTENTS VOLUME I Logic and Methodology of Science: An Introduction to the Philosophy of Science 1 P. Lorenzano, National University of Quilmes (UNQ), Argentina National Council of Scientific and Technical Research (CONICET), Argentina 1. Introduction: Nature and function of the Philosophy of Science 1.1. The Metascientific Studies 1.2. The Philosophical Theorization about Science or Philosophy of Science 1.2.1. Its Nature and Relationship with Other Metascientific Disciplines 1.2.2. The Distinction between General and Special Philosophy of Science 1.2.3. The Distinction between Synchronic and Diachronic Philosophy of Science 1.2.4. A Brief History of the Philosophy of Science 2.
    [Show full text]
  • Tuzo Wilson in China: Tectonics, Diplomacy and Discipline During the Cold War
    University of Pennsylvania ScholarlyCommons Undergraduate Humanities Forum 2012-2013: Penn Humanities Forum Undergraduate Peripheries Research Fellows 4-2013 Tuzo Wilson in China: Tectonics, Diplomacy and Discipline During the Cold War William S. Kearney University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/uhf_2013 Part of the Geophysics and Seismology Commons, and the Tectonics and Structure Commons Kearney, William S., "Tuzo Wilson in China: Tectonics, Diplomacy and Discipline During the Cold War" (2013). Undergraduate Humanities Forum 2012-2013: Peripheries. 8. https://repository.upenn.edu/uhf_2013/8 This paper was part of the 2012-2013 Penn Humanities Forum on Peripheries. Find out more at http://www.phf.upenn.edu/annual-topics/peripheries. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/uhf_2013/8 For more information, please contact [email protected]. Tuzo Wilson in China: Tectonics, Diplomacy and Discipline During the Cold War Abstract Canadian geophysicist John Tuzo Wilson's transform fault concept was instrumental in unifying the various strands of evidence that together make up plate tectonic theory. Outside of his scientific esearr ch, Wilson was a tireless science administrator and promoter of international scientific cooperation. To that end, he travelled to China twice, once in 1958 as part of the International Geophysical Year and once again in 1971. Coming from a rare non-communist westerner in China both before and after the Cultural Revolution, Wilson's travels constitute valuable temporal and spatial cross-sections of China as that nation struggled to define itself in elationr to its past, to the Soviet Union which inspired its politics, and to the West through Wilson's new science of plate tectonics.
    [Show full text]
  • History of Physics Newsletter Volume VII, No. 3, Aug. 1998 Forum Chair
    History of Physics Newsletter Volume VII, No. 3, Aug. 1998 Forum Chair From the Editor Forum News APS & AIP News Book Review Reports Forum Chair Urges APS Centennial Participation The American Physical Society celebrates its 100th anniversary in Atlanta, Georgia, at an expanded six-day meeting from March 20-26, 1999, which will be jointly sponsored by the American Association of Physics Teachers. This will be the largest meeting of physicists ever held, and the APS Forum on the History of Physics will play a central role in making it a truly memorable event. The 20th century has been the Century of Physics. The startling discoveries of X-rays, radioactivity, and the electron at the end of the 19th century opened up vast new territories for exploration and analysis. Quantum theory and relativity theory, whose consequences are far from exhausted today, formed the bedrock for subsequent developments in atomic and molecular physics, nuclear and particle physics, solid state physics, and all other domains of physics, which shaped the world in which we live in times of both peace and war. A large historical wall chart exhibiting these developments, to which members of the Forum contributed their expertise, will be on display in Atlanta. Also on display will be the well-known Einstein exhibit prepared some years ago by the American Institute of Physics Center for History of Physics. Two program sessions arranged by the Forum at the Atlanta Centennial Meeting also will explore these historic 20th-century developments. The first, chaired by Ruth H. Howes (Ball State University), will consist of the following speakers and topics: John D.
    [Show full text]
  • SIXTY YEARS SINCE the FOUNDATION of the (STATE) INSTITUTE of GEOPHYSICS at the CHARLES UNIVERSITY in PRAGUE Prof. Alois Zátopek
    SIXTY YEARS SINCE THE FOUNDATION OF THE (STATE) INSTITUTE OF GEOPHYSICS AT THE CHARLES UNIVERSITY IN PRAGUE Prof. Alois Zátopek, Studia geoph. et geod. vol. 25, 1981 1. INTRODUCTION The aim of the present article is to give, on the occasion of this remarkable anniversary, a brief description of events associated with the relatively long history of geophysical research on the territory of Czechoslovakia, which resulted in the birth of the named institution and to revive its historical role played in the development of contemporary geophysics in our country. In the author's opinion the date of 29 December 1920, i.e. the day of the foundation of the Institute of Geophysics at the time-honoured Charles University by the Ministry of Education of the first Czechoslovak Republic (1918-1938), decree No. 87.276/20, denotes one of the most significant days of this whole history, in which Professor Dr. Václav LÁSKA (1862-1943), who may well be designated as founder of modern geophysics in Czechoslovakia [1, 3], appears as the most outstanding personality. 2. PREHISTORY Though geophysics was declared an independent and autonomous discipline among the exact natural sciences only in the sixties of the 19th century, geophysical observations in our countries began much earlier [2]. It was in the Klementinum Astronomical Observatory of the Charles University in Prague (established 1751), that, apart from the astronomical programme, also systematic meteorological observations were initiated already in the course of the second half of the eighteenth century. Geomagnetic measurements were also started here some time later, and, in 1839, one of the oldest geomagnetic observatories in the world was put into operation by Carl KREIL (Director of the Zentralanstalt für Meteorologie und Geodynamik in Vienna since 1851), who compiled the first geomagnetic maps of Bohemia and Moravia on the basis of his geomagnetic field measurements performed over this territory.
    [Show full text]
  • VOLCANIC RESEARCH Recognizing Innovation Invitation for Nominations
    VOL. 98 • NO. 12 • DEC 2017 Did Ancient Mayans Foresee Meteor Showers? Legacy of the 1992 Nicaragua Tsunami Earth & Space Science News A Grand Tour of Ocean Basins Drones Aid VOLCANIC RESEARCH Recognizing Innovation Invitation for Nominations Nominations open online until 31 December 2017 www.psipw.org e-mail: [email protected] PSIPW 8th Ad 8.375x10.875 inches_2 Final.indd 1 3/12/2017 10:00:07 AM Earth & Space Science News Contents DECEMBER 2017 PROJECT UPDATE VOLUME 98, ISSUE 12 22 A Grand Tour of the Ocean Basins A new teaching resource facilitates plate Recognizing Innovation tectonics studies using a virtual guided tour of ocean basins around the world. Invitation for Nominations PROJECT UPDATE 28 The Legacy of the 1992 Nicaragua Tsunami A powerful tsunami struck Nicaragua’s Pacific coast 25 years ago. In its wake emerged the first coordinated collaboration among international tsunami scientists. 16 OPINION COVER Three Steps to Successful Nominations open online 13Collaboration with Data Drone Peers into Open Volcanic Vents Scientists An unmanned aerial vehicle provided high-​­resolution data that allowed scientists to A step-by-step cartoon guide to efficient, until 31 December 2017 construct their first detailed map of erupting vents at Stromboli, one of the world’s effective collaboration between Earth most active volcanoes. scientists and data scientists. www.psipw.org e-mail: [email protected] Earth & Space Science News Eos.org // 1 PSIPW 8th Ad 8.375x10.875 inches_2 Final.indd 1 3/12/2017 10:00:07 AM Contents DEPARTMENTS Editor in Chief Barbara T. Richman: AGU, Washington, D.
    [Show full text]
  • It's a Plane! It's a Spacesuit?
    National Aeronautics and Space Administration www.nasa.gov Volume 2 Issue 4 March 2006 View It’s a Bird! It’s a Plane! It’s a Spacesuit? Pg 2 NASA Scientist Looks at Olympic Ice in a Frozen Light Pg 3 BIG Welcomes Honor Students Pg 9 Goddard 02 It’s a Bird! It’s a Plane! Table of Contents It’s a Spacesuit? Inside Goddard By Amy Pruett It’s a Bird! It’s a Plane! It’s a Spacesuit? - 2 For three solid weeks, a most peculiar satellite orbited the Earth as part of an educational Goddard Updates mission, that satellite was SuitSat. SuitSat consisted of an unmanned Russian spacesuit NASA Scientist Looks at Olympic Ice in a Frozen Light - 3 pushed into space by two International Space Station crewmembers. It was equipped Volunteers Help NASA Track Return of the Dragon - 4 with three batteries, a radio transmitter and internal sensors to measure its temperature First Annual Safety Awareness Campaign a Success! - 5 and battery power and transmit messages. Over 300 individuals from around the world NASA’s Spitzer Makes Hot Alien World the Goddard reported successful reception of the messages that anyone with a HAM radio had the Closest Directly Detected Extra Solar Planet - 6 opportunity to tune into as the satellite passed over one’s area. GLBTAC Open House Emphasizes Respect for All - 7 Proposal Opportunities - 7 “SuitSat was a Russian brainstorm,” Frank Bauer of NASA’s Goddard Space Flight Center Goddard Education explains. “Some of our Russian partners in the ISS program had an idea; maybe we Libraries Rocket into Space - 8 can turn old spacesuits into useful satellites.
    [Show full text]
  • History of Geophysical Technology Through Advertisements in GEOPHYSICS
    GEOPHYSICS, VOL. 50, NO. 12 (DECEMBER 1985); P. 2299-2408, 186 FIGS. History of geophysical technology through advertisements in GEOPHYSICS Robert E. Sheriff* Exploration geophysics has been largely a free-enterprise another photograph of the Sonograph Analyzer (Figure 7). venture and new developments have been "sold" through ad­ Rieber had two facing ads (the first such instance) in the vertisements in the journal GEOPHYSICS. Thus, a review of March 1937 issue (Figures 8a and 8b). Figure 8a announced advertisements provides an eclectic history of geophysics. the opening of a Houston office because "the Sonograph can The following is the view obtained from advertisements be extremely helpful in outlining complex structural con­ alone. The dates cited are usually when ads for innovations ditions occurring in the Gulf Coast region, due to fauIting and first appeared. New features often had been applied earlier, irregularities and sedimentation," and Figure 8b promised before they were advertised. that "structures which produced 'no reflections' by older methods are made to reveal themselves." THE EARLY YEARS: 1936-1945 "This new torsion balance is the smallest, lightest and fastest instrument on the market," an October 1936 ad (Figure Big advertisers in the early days were mainly suppliers of 9) touted; "fastest" meant several hours to a reading. DuPont expendables and equipment. I1Iustrations in volume 1 of GEO­ offered a free book on explosives and e1ectric blasting caps, PHYSICS, then published by the Society of Petroleum Geo­ including
    [Show full text]
  • PHYS 1401: Descriptive Astronomy Notes: Chapter
    PHYS 1401: Descriptive Astronomy Notes: Chapter 07 CHAPTER 07: THE JOVIAN PLANETS NOTES AND SKETCHES 7.1: OBSERVATIONS OF JUPITER AND SATURN The View From Earth ✦ Jupiter and Saturn are naked-eye objects ✦ Uranus and Neptune can be seen using telescopes Spacecraft Exploration Pioneers ✦ Pioneer 10: Launch Mar 72, Jupiter flyby Dec 73 (data relayed through Apr 02) ✦ Pioneer 11: Launch Apr 73, Jupiter Dec 74, Saturn Sep 79 (daily operation stopped Sep 95) Voyager I ✦ Launched Sep 77 ✦ Jupiter flyby Mar 79 ✦ Saturn flyby Nov 80 ✦ Family Portrait Feb 90 ✦ Still transmitting!!! Voyager II ✦ Launched Aug 77 ✦ Jupiter: Jul 79 ✦ Saturn: Aug 81 ✦ Uranus: Jan 86 ✦ Neptune: Aug 89 Galileo ✦ Launched Oct 89 ✦ Reached Jupiter Dec 95 ✦ Orbit until Sep 03 ✦ Decommissioned by sending it crashing into Jupiter Cassini-Huygens ✦ Launched Oct 97 ✦ Jupiter flyby Dec 00 ✦ Arrived at Saturn Jul 04 ✦ Huygens probe separates for Titan: Jan 05 ✦ Still operational New Horizons ✦ Launched Jan 06 ✦ Jupiter flyby Feb 07 ✦ Headed for Pluto then Kuiper belt 7.2: DISCOVERIES OF URANUS AND NEPTUNE ✦ Uranus: 1781, William & Caroline Herschel use telescope ✦ Neptune: 1846, Adams & Leverrier (independently) use gravity 7.3: BULK PROPERTIES OF THE JOVIAN PLANETS Physical Characteristics ✦ All jovians are much less dense than terrestrials ✦ Saturn is least dense; less dense than water ✦ No solid surface; gaseous atmosphere gets hotter & denser deeper below surface until it becomes liquid ✦ Solid core larger than Earth (not Fe-Ni, probably rocky) Rotation Rates ✦ All are spinning
    [Show full text]
  • Saturn Eddy Momentum Fluxes and Convection
    Icarus 189 (2007) 479–492 www.elsevier.com/locate/icarus Saturn eddy momentum fluxes and convection: First estimates from Cassini images Anthony D. Del Genio a,∗, John M. Barbara b, Joseph Ferrier b, Andrew P. Ingersoll c, Robert A. West d, Ashwin R. Vasavada d, Joseph Spitale e, Carolyn C. Porco e a NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA b Sigma Space Partners, LLC, Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA c Division of Geological and Planetary Sciences, California Institute of Technology, 150-21, Pasadena, CA 91125, USA d Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA e Cassini Imaging Central Laboratory for Operations, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA Received 26 June 2006; revised 28 November 2006 Available online 16 March 2007 Abstract We apply an automated cloud feature tracking algorithm to estimate eddy momentum fluxes in Saturn’s southern hemisphere from Cassini Imaging Science Subsystem near-infrared continuum image sequences. Voyager Saturn manually tracked images had suggested no conversion of eddy to mean flow kinetic energy, but this was based on a small sample of <1000 wind vectors. The automated procedure we use for the Cassini data produces an order of magnitude more usable wind vectors with relatively unbiased sampling. Automated tracking is successful in and around the westward jet latitudes on Saturn but not in the vicinity of most eastward jets, where the linearity and non-discrete nature of cloud − features produces ambiguous results.
    [Show full text]
  • Overview of Saturn Lightning Observations
    OVERVIEW OF SATURN LIGHTNING OBSERVATIONS G. Fischer*, U. A. Dyudina, W. S. Kurth , D. A. Gurnettz, P. Zarka§, T. Barry¶, M. Delcroix, C. Go**, D. Peach, R. Vandebergh , and A. Wesley{ Abstract The lightning activity in Saturn's atmosphere has been monitored by Cassini for more than six years. The continuous observations of the radio signatures called SEDs (Saturn Electrostatic Discharges) combine favorably with imaging observa- tions of related cloud features as well as direct observations of flash–illuminated cloud tops. The Cassini RPWS (Radio and Plasma Wave Science) instrument and ISS (Imaging Science Subsystem) in orbit around Saturn also received ground{based support: The intense SED radio waves were also detected by the giant UTR{2 ra- dio telescope, and committed amateurs observed SED{related white spots with their backyard optical telescopes. Furthermore, the Cassini VIMS (Visual and Infrared Mapping Spectrometer) and CIRS (Composite Infrared Spectrometer) instruments have provided some information on chemical constituents possibly created by the lightning discharges and transported upward to Saturn's upper atmosphere by ver- tical convection. In this paper we summarize the main results on Saturn lightning provided by this multi{instrumental approach and compare Saturn lightning to lightning on Jupiter and Earth. 1 Radio Observations of SEDs by Cassini RPWS Saturn Electrostatic Discharges (SEDs) are short and strong radio bursts that were ini- tially detected by the radio instrument on{board Voyager 1 near Saturn [Warwick et
    [Show full text]
  • History of Oceanography, Number 14
    No. 14 September 2002 CONTENTS EDITORIAL........................................................................................................................ 1 IN MEMORIAM PHILIP F. REHBOCK............................................................................ ARTICLE.......................................................................................................................... Scientific research, management advice; evolution of ICES’s dual identity ICHO VII IN KALINGRAD 2003....................................................................................... CLASSES IN HISTORY OF MARINE SCIENCES........................................................... BOOK ANNOUNCEMENTS AND REVIEWS................................................................. KEITH RUNCORN PAPERS.............................................................................................. NEWS AND EVENTS........................................................................................................ ANNUAL BIBLIOGRAPHY AND BIOGRAPHIES.......................................................... INTERNATIONAL UNION OF THE HISTORY AND PHILOSOPHY OF SCIENCE DIVISION OF THE HISTORY OF SCIENCE COMMISSION OF OCEANOGRAPHY President Eric L. Mills Department of Oceanography Dalhousie University Halifax, Nova Scotia B3H 4J1 CANADA Vice Presidents Jacqueline Carpine-Lancre La Verveine 7, Square Kraemer 06240 Beausoleil, FRANCE Margaret B. Deacon 3 Rewe Court, Heazille Barton Rewe, Exeter EX5 4HQ Devon, UNITED KINGDOM Walter Lenz Institut für Klima-und
    [Show full text]