Microstructural Geochronology of Zircon Across the Central Uplift of the Vredefort Impact Structure, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

Microstructural Geochronology of Zircon Across the Central Uplift of the Vredefort Impact Structure, South Africa Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-15-2016 12:00 AM Microstructural Geochronology of Zircon Across the Central Uplift of the Vredefort Impact Structure, South Africa Connor Lawrence Davis The University of Western Ontario Supervisor Dr. Desmond Moser The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Connor Lawrence Davis 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Davis, Connor Lawrence, "Microstructural Geochronology of Zircon Across the Central Uplift of the Vredefort Impact Structure, South Africa" (2016). Electronic Thesis and Dissertation Repository. 4185. https://ir.lib.uwo.ca/etd/4185 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The Vredefort central uplift, or ‘dome,’ represents the erosional remnant of one of the largest (~300 km diameter) and oldest (~2.020 Ga) terrestrial impact structures. This investigation was performed to help elucidate the complexity of the shock process on zircon, incorporating various electron beam methods, including BSE and SE imaging, EBSD, CL, and EDS (mapping and semi-quantitative compositional analysis). A new shock microstructural progression in terrestrial zircon is suggested, as well as a complete structure-wide analysis of impact melt inclusions in zircon. Regional trends in the effects of shock on zircon are included. Impact melt glass inclusion compositions vary widely, from felsic to mafic inclusions, and are related to the partial melting of local minerals. This study is significant for the future study of similar impact structures on other rocky planets, and the quantification and qualification of shock conditions as recorded in zircon. Keywords Vredefort impact structure, zircon, impact melting, shock microstructures, shock metamorphism, impact melt glass inclusions. Acknowledgments First and foremost, I would like to acknowledge Desmond Moser for his incredible support and guidance over the past two years. His passion and insight into the geology of Vredefort has been invaluable to the success of my thesis. I sincerely thank Des for providing me the opportunity to do field work in South Africa, and for all the other opportunities to attend conferences, field camps, and extracurricular courses. Thank you also for the help in editing and tying this thesis together. I would also like to thank Ivan Barker, who’s technical assistance in the ZAPLab was instrumental to my success. Thank you for putting up with my questions, and always being there to help me figure out the numerous issues we encountered. I appreciate the help of the ASTRO-CSA group for funding some of my conference travel, such as the ASTRO short course in Edmonton, AB. I am also thankful for all the other field trips I was a part of, including Oman, southwest U.S., and across Canada. It was the opportunities like this that truly made my graduate experience. I thank the members of my thesis defense committee, Sean Shieh, Robert Klassen, and Kim Tait, for their efforts in critiquing my thesis. Thank you also to the defense chair, Bill Church. I could not have gotten through the last two years without the support of my friends and family. Thank you to my family, Rita, Jim, and Corrin, whose support has been so important to me. Thank you to all my fellow graduated (and soon to be) Western friends, specifically Marcus, Taylor, and Diego, as well as many others. The practical jokes will never be forgotten. And finally, thanks, Obama, for providing the inspiration to rise above and prove your harshest critics wrong (Diego). ii Table of Contents Abstract ................................................................................................................................ i Acknowledgments............................................................................................................... ii Table of Contents ............................................................................................................... iii List of Tables .................................................................................................................... vii List of Figures .................................................................................................................... ix List of Appendices ........................................................................................................... xvi 1 Introduction .................................................................................................................... 1 1.1 Introduction ............................................................................................................. 1 1.2 The importance of impact cratering ........................................................................ 3 1.3 The impact cratering process .................................................................................. 4 1.3.1 The shock wave........................................................................................... 4 1.3.2 Stage 1: Contact and Compression ............................................................. 5 1.3.3 Stage 2: Excavation..................................................................................... 6 1.3.4 Stage 3: Modification and collapse ............................................................. 7 1.3.5 Types of impact craters ............................................................................... 7 1.3.6 Impact Melting .......................................................................................... 10 1.4 The Vredefort impact structure, South Africa ...................................................... 11 1.4.1 Geology of the Vredefort central uplift or ‘dome’.................................... 13 1.4.2 Evidence of an impact origin for Vredefort .............................................. 16 1.4.3 Shock microstructures in quartz and other minerals ................................. 18 1.5 Zircon .................................................................................................................... 20 1.5.1 Shock microstructures in zircon................................................................ 21 iii 1.5.2 Melt inclusions in zircon ........................................................................... 25 1.5.3 Alkali mobility in glasses under an electron beam ................................... 26 1.5.4 Geochronology of zircon .......................................................................... 27 1.6 Sample Suites ........................................................................................................ 28 1.7 Overview of thesis ................................................................................................ 29 1.8 References ............................................................................................................. 31 2 Microstructural evolution of in-situ zircon across the central uplift of highly shocked Archean crust at the Vredefort impact structure, South Africa .................................... 41 2.1 Introduction ........................................................................................................... 41 2.1.1 Shock metamorphic studies of quartz and other rock-forming minerals .. 42 2.1.2 Zircon shock microstructures .................................................................... 44 2.1.3 Purpose of this study ................................................................................. 46 2.2 Geological Setting ................................................................................................. 47 2.3 Methods & Sample Locations ............................................................................... 48 2.3.1 Methods..................................................................................................... 48 2.3.2 Sample Locations ...................................................................................... 49 2.4 Results ................................................................................................................... 50 2.4.1 Shock microstructures across the core-collar transect .............................. 50 2.4.2 Proportions of pre-impact and shock-related features in zircon populations ................................................................................................................... 67 2.4.3 Types of shock-related features in zircon populations ............................. 70 2.5 Discussion ............................................................................................................. 73 2.5.1 Proportion of pre-impact and shocked zircon features in impacted crust . 73 2.5.2 Microstructural evolution.......................................................................... 75 2.6 Conclusion & Scientific Implications ................................................................... 86 2.7 References ............................................................................................................. 89 iv 3 Impact melt glass inclusions in zircon from the central uplift of the Vredefort impact structure, South Africa ................................................................................................
Recommended publications
  • Exceptionally Well-Preserved Fossils in a Middle Ordovician Impact Crater
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 29, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-101 The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater Derek E.G. Briggs1,2*, Huaibao P. Liu3, Robert M. McKay3 & Brian J. Witzke4 1 Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 2 Yale Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA 3 Iowa Geological Survey, IIHR – Hydroscience & Engineering, University of Iowa, 340 Trowbridge Hall, Iowa City, IA 52242, USA 4 Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge Hall, Iowa City, IA 52242, USA D.E.G.B., 0000-0003-0649-6417 * Correspondence: [email protected] Abstract: The Winneshiek Shale (Middle Ordovician, Darriwilian) was deposited in a meteorite crater, the Decorah impact structure, in NE Iowa. This crater is 5.6 km in diameter and penetrates Cambrian and Ordovician cratonic strata. It was probably situated close to land in an embayment connected to the epicontinental sea; typical shelly marine taxa are absent. The Konservat-Lagerstätte within the Winneshiek Shale is important because it represents an interval when exceptional preservation is rare. The biota includes the earliest eurypterid, a giant form, as well as a new basal chelicerate and the earliest ceratiocarid phyllocarid. Conodonts, some of giant size, occur as bedding plane assemblages. Bromalites and rarer elements, including a linguloid brachiopod and a probable jawless fish, are also present. Similar fossils occur in the coeval Ames impact structure in Oklahoma, demonstrating that meteorite craters represent a novel and under-recognized setting for Konservat- Lagerstätten.
    [Show full text]
  • AND GEOLOGY of the SURROUNDING AREA I
    . " ... , - .: ~... GP3/10 ~ " . :6',;, J .~~- -i-~ .. '~ MANITOBA MINES BRANCH DEPARTMENT OF MfNES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO~EXPLOSION CRATER .. AND GEOLOGY OF THE SURROUNDING AREA i . , - by H. R. McCabe and B. B. Bannatyne Geological Paper 3/70 Winnipeg 1970 Electronic Capture, 2011 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. (i) GP3/10 MANITOBA M]NES BRANCH DEPARTMENT OF MINES AND NATURAL RESOURCES LAKE ST. MARTIN CRYPTO·EXPLOSION CRATER AND GEOLOGY OF THE SURROUNDING AREA by H. R. McCabe and B. B. Bannatync • Geological Paper 3/70 Winnipeg 1970 (ii) TABLE OF CONTENTS Page Introduction' r Previous work I .. Present work 2 Purpose 4 Acknowledgcmcnts 4 Part A - Regional geology and structural setting 4 Post-Silurian paleogeography 10 Post-crater structure 11 Uthology 11 Precambrian rocks 12 Winnipeg Fomlation 13 Red River Fomlation 14 Stony Mountain Formation 15 Gunn Member 15 Gunton Member 16 Stoncwall Formation 16 Interlake Group 16 Summary 17 Part B - Lake St. Martin crypto-explosion crater 33 St. Martin series 33 Shock metamorphism 33 Quartz 33 Feldspar 35 Biotite 35 Amphibole 36 Pseudotachylyte 36 Altered gneiss 37 Carbonate breccias 41 Polymict breccias 43 Aphanitic igneous rocks - trachyandcsitc 47 Post·crater Red Beds and Evaporites (Amaranth Formation?) 50 Red Bed Member 50 Evaporite Member 52 Age of Red Bed·Evaporite sequence 53 Selected References 67 .
    [Show full text]
  • Carnegie/DOE Alliance Center (CDAC): a CENTER of EXCELLENCE for HIGH PRESSURE SCIENCE and TECHNOLOGY
    CARNEGIE/DOE ALLIANCE CENTER A Center of Excellence for High Pressure Science and Technology Supported by the Stockpile Stewardship Academic Alliances Program of DOE/NNSA Year Three Annual Report September 2006 Russell J. Hemley, Director Ho-kwang Mao, Associate Director Stephen A. Gramsch, Coordinator Carnegie/DOE Alliance Center (CDAC): A CENTER OF EXCELLENCE FOR HIGH PRESSURE SCIENCE AND TECHNOLOGY YEAR THREE ANNUAL REPORT 1. Overview 1.1 Mission of CDAC 3 1.2 Highlights from Year 3 4 1.3 Year 3 Work Plan and Milestones 6 2. Scientific Progress 2.1 High P-T Phase Relations and Structures 10 2.2 P-V-T EOS Measurements 19 2.3 Phonons, Vibrational Thermodynamics and Elasticity 22 2.4 Plasticity, Yield Strength and Deformation 26 2.5 Electronic and Magnetic Structure and Dynamics 27 2.6 High P-T Chemistry 36 3. Education, Training, and Outreach 3.1 CDAC Graduate Students and Post-doctoral Associates 40 3.2 CDAC Collaborators 43 3.3 Undergraduate Student Participation 47 3.4 DC Area High School Outreach 49 3.5 Synergy of 21st Century High-Pressure Science and Technology Workshop 50 3.6 Visitors to CDAC 56 3.7 High Pressure Seminars 58 4. Technology Development 4.1 High P-T Experimental Techniques 60 4.2 Facilities at Brookhaven, LANSCE, and Carnegie 64 4.3 Commissioning and Activities at HPCAT 66 5. Interactions with NNSA/DP National Laboratories 5.1 Overview 67 5.2 Academic Alliance and Laboratory Collaborations 69 6. Management and Oversight 6.1 CDAC Organization and Staff 71 6.2 CDAC Oversight 73 6.3 Second Year Review 74 7.
    [Show full text]
  • Geology and Impact Features of Vargeo Dome, Southern Brazil
    Meteoritics & Planetary Science 1–21 (2011) doi: 10.1111/j.1945-5100.2011.01312.x Geology and impact features of Vargea˜o Dome, southern Brazil Alvaro P. CRO´STA1*,Ce´sar KAZZUO-VIEIRA2, Lidia PITARELLO3, Christian KOEBERL3,4, and Thomas KENKMANN5 1Institute of Geosciences, University of Campinas, Campinas, Brazil 2Petro´leo Brasileiro S.A.––Petrobras, Brazil 3Department of Lithospheric Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 4Natural History Museum, Burgring 7, A-1010 Vienna, Austria 5Institut fu¨ r Geowissenschaften––Geologie, Albert-Ludwigs-Universita¨ t Freiburg, Albertstrasse 23-b, 79104 Freiburg, Germany *Corresponding author. E-mail: [email protected] (Received 14 December 2010; revision accepted 2 November 2011) Abstract–Vargea˜o Dome (southern Brazil) is a circular feature formed in lava flows of the Lower Cretaceous Serra Geral Formation and in sandstones of the Parana´Basin. Even though its impact origin was already proposed in the 1980s, little information about its geological and impact features is available in the literature. The structure has a rim-rim diameter of approximately 12 km and comprises several ring-like concentric features with multiple concentric lineaments. The presence of a central uplift is suggested by the occurrence of deformed sandstone strata of the Botucatu and Pirambo´ia formations. We present the morphological ⁄ structural characteristics of Vargea˜o Dome, characterize the different rock types that occur in its interior, mainly brecciated volcanic rocks (BVR) of the Serra Geral Formation, and discuss the deformation and shock features in the volcanic rocks and in sandstones. These features comprise shatter cones in sandstone and basalt, as well as planar microstructures in quartz.
    [Show full text]
  • The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
    UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact.
    [Show full text]
  • Shocked Monazite Chronometry: Integrating Microstructural and in Situ Isotopic Age Data for Determining Precise Impact Ages
    Contrib Mineral Petrol (2017) 172:11 DOI 10.1007/s00410-017-1328-2 ORIGINAL PAPER Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages Timmons M. Erickson1 · Nicholas E. Timms1 · Christopher L. Kirkland1 · Eric Tohver2 · Aaron J. Cavosie1,3 · Mark A. Pearce4 · Steven M. Reddy1 Received: 30 August 2016 / Accepted: 10 January 2017 © Springer-Verlag Berlin Heidelberg 2017 Monazite is a robust geochronometer and {110}, {212}, and type two (irrational) twin planes with Abstract ̄ ̄ ̄ ̄ occurs in a wide range of rock types. Monazite also records rational shear directions in [011] and [110]. SIMS U–Th– shock deformation from meteorite impact but the effects Pb analyses of the plastically deformed parent domains of impact-related microstructures on the U–Th–Pb sys- reveal discordant age arrays, where discordance scales with tematics remain poorly constrained. We have, therefore, increasing plastic strain. The correlation between discord- analyzed shock-deformed monazite grains from the central ance and strain is likely a result of the formation of fast uplift of the Vredefort impact structure, South Africa, and diffusion pathways during the shock event. Neoblasts in impact melt from the Araguainha impact structure, Brazil, granular monazite domains are strain-free, having grown using electron backscatter diffraction, electron microprobe during the impact events via consumption of strained par- elemental mapping, and secondary ion mass spectrometry ent grains. Neoblastic monazite from the Inlandsee leu- (SIMS). Crystallographic orientation mapping of monazite cogranofels at Vredefort records a 207Pb/206Pb age of grains from both impact structures reveals a similar com- 2010 ± 15 Ma (2σ, n = 9), consistent with previous impact bination of crystal-plastic deformation features, includ- age estimates of 2020 Ma.
    [Show full text]
  • Ebberly Ann Maclagan
    Constraints on emplacement and timing of the Steen River impact structure, Alberta, Canada by Ebberly Ann MacLagan A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Earth and Atmospheric Sciences University of Alberta © Ebberly Ann MacLagan, 2018 ABSTRACT The Steen River impact structure (SRIS) is a buried, complex crater located in NW Alberta, Canada. It was discovered in the mid 1900’s and was initially thought to be an endogenic igneous intrusion. With the growth of impact studies on Earth and other planets, the SRIS was recognized as such in the 1960’s. Since then, numerous exploratory wells have been drilled in and around the structure to assess its economic potential. While many of these wells are proprietary, three cores collected in 2000 are available for research and have been the focus of the most recent SRIS studies. A ubiquitous product of impact events is impact breccia, which may contain clasts of target material and melt. At the well-studied Ries impact structure in Germany, this breccia is classified as suevite. The impact breccia observed at the SRIS is similar to the Ries suevite; however, the term “suevite” has been applied to many impact structures and its formation mechanism is still debated. In previous studies, three cores from the SRIS (ST001, ST002, and ST003) were logged by hand and characterized in detail using thin sections; however, a representative, yet detailed, mineralogical overview of the core was lacking. In this thesis, hyperspectral imaging was used to quickly scan the three cores and make detailed mineralogical maps of each.
    [Show full text]
  • New Insights Into the Zircon-Reidite Phase Transition
    American Mineralogist, Volume 104, pages 830–837, 2019 New insights into the zircon-reidite phase transition CLAUDIA STANGARONE1,†, ROSS J. ANGEL1,*, MAURO PRENCIPE2, BORIANA MIHAILOVA3, AND MATTEO ALVARO1 1Department of Earth and Environmental Sciences, University of Pavia, Via A. Ferrata 1, I-27100 Pavia, Italy 2Earth Sciences Department, University of Torino, Via Valperga Caluso 35, I-10125 Torino, Italy 3Department of Earth Sciences, University of Hamburg, Grindelallee 48, D-20146 Hamburg, Germany ABSTRACT The structure, the elastic properties, and the Raman frequencies of the zircon and reidite polymorphs of ZrSiO4 were calculated as a function of hydrostatic pressure up to 30 GPa using HF/DFT ab initio calculations at static equilibrium (0 K). The softening of a silent (B1u) mode of zircon leads to a phase transition to a “high-pressure–low-symmetry” (HPLS) ZrSiO4 polymorph with space group I42d and cell parameters a = 6.4512 Å, c = 5.9121 Å, and V = 246.05 Å3 (at 20 GPa). The primary coordina- tion of SiO4 and ZrO8 groups in the structure of zircon is maintained in the high-pressure phase, and the new phase deviates from that of zircon by the rotation of SiO4 tetrahedra and small distortions of the ZrO8 dodecahedra. The new polymorph is stable with respect to zircon at 20 GPa and remains a dynamically stable structure up to at least 30 GPa. On pressure release, the new phase reverts back to the zircon structure and, therefore, cannot be quenched in experiments. In contrast, the transformation from zircon to reidite is reconstructive in nature and results in a first-order transition with a volume and density change of about 9%.
    [Show full text]
  • Evidence for Subsolidus Quartz-Coesite Transformation in Impact Ejecta from the Australasian Tektite Strewn field
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 264 (2019) 105–117 www.elsevier.com/locate/gca Evidence for subsolidus quartz-coesite transformation in impact ejecta from the Australasian tektite strewn field Fabrizio Campanale a,b,⇑, Enrico Mugnaioli b, Luigi Folco a, Mauro Gemmi b Martin R. Lee c, Luke Daly c,e,f, Billy P. Glass d a Dipartimento di Scienze della Terra, Universita` di Pisa, V. S. Maria 53, 56126 Pisa, Italy b Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia (IIT), Piazza San Silvestro 12, 56127 Pisa, Italy c Department of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK d Department of Geosciences, University of Delaware, Newark, DE, USA e Australian Centre for Microscopy and Microanalysis, University of Sydney, Sydney 2006, NSW, Australia f Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Bentley, 6102 WA, Australia Received 1 April 2019; accepted in revised form 11 August 2019; Available online 21 August 2019 Abstract Coesite, a high-pressure silica polymorph, is a diagnostic indicator of impact cratering in quartz-bearing target rocks. The formation mechanism of coesite during hypervelocity impacts has been debated since its discovery in impact rocks in the 1960s. Electron diffraction analysis coupled with scanning electron microscopy and Raman spectroscopy of shocked silica grains from the Australasian tektite/microtektite strewn field reveals fine-grained intergrowths of coesite plus quartz bearing planar deformation features (PDFs).À Quartz and euhedral microcrystalline coesite are in direct contact, showing a recurrent pseudo iso-orientation, with the ½111* vector of quartz near parallel to the [0 1 0]* vector of coesite.
    [Show full text]
  • Infrared and Raman Spectra of Zrsio4 Experimentally Shocked at High Pressures
    Mineralogical Magazine, October 2004, Vol. 68(5), pp. 801–811 Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures 1 2, 1 2 2 2 A. GUCSIK ,M.ZHANG *, C. KOEBERL ,E.K.H.SALJE ,S.A.T.REDFERN AND J. M. PRUNEDA 1 Institute of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 2 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK ABSTRACT Zircon- and reidite-type ZrSiO4 produced by shock recovery experiments at different pressures have been studied using infrared (IR) and Raman spectroscopy. The n3 vibration of theSiO 4 group in shocked natural zircon shows a spectral change similar to that seen in radiation-damaged zircon: a decrease in frequency and increase in linewidth. The observation could imply a possible similar defective crystal structure between the damaged and shocked zircon. The shock-pressure-induced structural phasetransition from zircon ( I41/amd) to reidite (I41/a) is proven by the occurrence of additional IR and Raman bands. Although theSiO 4 groups in both zircon- and reidite-ZrSiO4 are isolated, the more condensed scheelite gives rise to SiÀO stretching bands at lower frequencies, suggesting a weakening of the bond strength. Low-temperature IR data of the reidite-type ZrSiO4 show an insignificant effect of cooling on the phonon modes, suggesting that the structural response of reidite to cooling-induced compression is weak and its thermal expansion is very small. KEYWORDS: ZrSiO4, zircon, reidite, scheelite structure, high pressure,
    [Show full text]
  • Shock-Metamorphosed Zircon in Terrestrial Impact Craters
    Meteoritics & Planetary Science 41, Nr 3, 433–454 (2006) Abstract available online at http://meteoritics.org Shock-metamorphosed zircon in terrestrial impact craters A. WITTMANN*, T. KENKMANN, R. T. SCHMITT, and D. ST÷FFLER Institut f¸r Mineralogie, Museum f¸r Naturkunde, Humboldt Universit‰t zu Berlin, Invalidenstrasse 43, 10115 Berlin, Germany *Corresponding author. E-mail: [email protected] (Received 06 June 2005; revision accepted 11 October 2005) Abstract–To ascertain the progressive stages of shock metamorphism of zircon, samples from three well-studied impact craters were analyzed by optical microscopy, scanning electron microscopy (SEM), and Raman spectroscopy in thin section and grain separates. These samples are comprised of well-preserved, rapidly quenched impactites from the Ries crater, Germany, strongly annealed impactites from the Popigai crater, Siberia, and altered, variably quenched impactites from the Chicxulub crater, Mexico. The natural samples were compared with samples of experimentally shock-metamorphosed zircon. Below 20 GPa, zircon exhibits no distinct shock features. Above 20 GPa, optically resolvable planar microstructures occur together with the high-pressure polymorph reidite, which was only retained in the Ries samples. Decomposition of zircon to ZrO2 only occurs in shock stage IV melt fragments that were rapidly quenched. This is not only a result of post-shock temperatures in excess of ∼1700 °C but could also be shock pressure–induced, which is indicated by possible relics of a high-pressure polymorph of ZrO2. However, ZrO2 was found to revert to zircon with a granular texture during devitrification of impact melts. Other granular textures represent recrystallized amorphous ZrSiO4 and reidite that reverted to zircon.
    [Show full text]
  • New Insights Into the Zircon-Reidite Phase Transition
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2019-6827 1 REVISION 1 2 New insights into the zircon-reidite phase transition 3 Claudia Stangarone1*, Ross J. Angel1, Mauro Prencipe2, Boriana Mihailova3, Matteo Alvaro1 4 1 Department of Earth and Environmental Sciences, University of Pavia, Via A. Ferrata 1, I-27100 Pavia, Italy, 5 2 Earth Sciences Department, University of Torino, Via Valperga Caluso 35, I-10125 Torino, Italy 6 3 Department of Earth Sciences, University of Hamburg, Grindelallee 48, D-20146 Hamburg, Germany 7 *Current address: Institute for Planetary Research, Deutschen Zentrums für Luft- und Raumfahrt, Rutherfordstraße 2, 8 D-12489 Berlin, Germany 9 10 Corresponding author: R.J. Angel, [email protected] 11 Submitted to American Mineralogist: 27-Sept-2018 12 Revised version of 8-March-2019 13 14 ABSTRACT 15 The structure, the elastic properties and the Raman frequencies of the zircon and reidite polymorphs 16 of ZrSiO4 were calculated as a function of hydrostatic pressure up to 30 GPa using HF/DFT ab-initio 17 calculations at static equilibrium (0 K). The softening of a silent (B1u) mode of zircon leads to a phase 18 transition to a “high-pressure - low-symmetry” (HPLS) ZrSiO4 polymorph with space group �4#2� 19 and cell parameters a=6.4512 Å c=5.9121Å V = 246.05Å3 (at 20 GPa). The primary coordination of 20 SiO4 and ZrO8 groups in the structure of zircon is maintained in the high-pressure phase, and the new 21 phase deviates from that of zircon by the rotation of SiO4 tetrahedra and small distortions of the ZrO8 22 dodecahedra.
    [Show full text]