Isomorphism Problem for Universal Enveloping Algebras of Solvable Lie Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Isomorphism Problem for Universal Enveloping Algebras of Solvable Lie Algebras UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG INSTITUTO DE CIENCIAS^ EXATAS DEPARTAMENTO DE POS-GRADUAC¸´ AO~ EM MATEMATICA´ Isomorphism Problem for Universal Enveloping Algebras of Solvable Lie Algebras Jos´eLuis Vilca Rodr´ıguez Belo Horizonte - MG 2019 UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG INSTITUTO DE CIENCIAS^ EXATAS DEPARTAMENTO DE POS-GRADUAC¸´ AO~ EM MATEMATICA´ Jos´eLuis Vilca Rodr´ıguez Advisor: Csaba Schneider Isomorphism Problem for Universal Enveloping Algebras of Solvable Lie Algebras Thesis presented to the Federal Uni- versity of Minas Gerais in fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Belo Horizonte - MG 2019 Siempre que biene el tiempo fresco, o sea al medio del otonio, a m´ıme da la loca de pensar ideas de tipo es´entrico y es´otico, como ser por egenplo que me gustar´ıavenirme golondrina para agarrar y volar a los pa´ıxadonde haiga calor, o de ser hormiga para meterme bien adentro de una cueva y comer los productos guardados en el verano o de ser una b´ıvora como las del sol´ojico, que las tienen bien guardadas en una jaula de vidrio con calefaci´onpara que no se queden duras de fr´ıo,que es lo que les pasa a los pobres seres humanos que no pueden comprarse ropa con lo cara quest´a,ni pueden calentarse por la falta del queros´en,la falta del carb´on,la falta de lenia, la falta de petrolio y tami´enla falta de plata, porque cuando uno anda con biyuya ensima puede entrar a cualquier boliche y mandarse una buena grapa que hay que ver lo que calienta, aunque no conbiene abusar, porque del abuso entra el visio y del visio la dejenerad´estanto del cuerpo como de las taras moral de cada cual, y cuando se viene abajo por la pendiente fatal de la falta de buena condupta en todo sentido, ya nadie ni nadies lo salva de acabar en el m´asespantoso tacho de basura del desprasti- jio humano, y nunca le van a dar una mano para sacarlo de adentro del fango enmundo entre el cual se rebuelca, ni m´asni meno que si fuera un c´ondorque cuando joven supo correr y volar por la punta de las altas montanias, pero que al ser viejo cay´oparabajo como bombardero en picada que le falia el motor moral. <Y ojal´aque lo que estoy escribiendol´e sirbalguno para que mire bien su comportamiento y que no searrepienta cuando es tarde y ya todo se haiga ido al corno por culpa suya! CESAR´ BRUTO, Lo que me gustar´ıaser a m´ısi no fuera lo que soy. S´ı, ya s´e,hay m´asproblem´ologos que solu- cion´ologos, pero >qu´e vamos a hacerle? QUINO, Mafalda. 1 Agradecimientos El presente trabajo es el fruto de significativos esfuerzos de muchas personas. Juntos pudimos concretar la fabricaci´onde esta peque~napieza, en la gran maquina que es la matem´atica. As´ıcomo una pared no se construye s´olocon ladrillos, este trabajo no se construyo s´olocon investigaci´on,hizo falta la mano de muchas personas que me brindaron apoyo y motivaci´ona lo largo de mi vida. Lleg´ola hora de agradecer a todos ellos. • A mis padres. Gracias por transmitirme lo importante que es la educaci´on y apoyarme siempre en todas mis decisiones. Gracias por lo mucho que se sacrificaron por m´ı, para que pueda tener las oportunidades que ustedes no tuvieron. La conclusi´onde este doctorado es tambi´enla conclusi´onde sus esfuerzos. • A mis hermanos. Por la camarader´ıa,apoyo, motivaci´ony confianza en todos estos a~nosfuera de casa, y por todas las vivencias en todo el tiempo que estuve f´ısicamente m´ascerca de ustedes. Ustedes son mis mejores amigos. Para ustedes mis agradecimientos. • A mis abuelos, Leoncio y Valeriana. Gracias por todo el tiempo que me dedi- caron y por el apoyo incondicional que me brindaron. • A mi orientador, el profesor Csaba Schneider. Gracias por la dedicaci´on,tiempo, esfuerzo y paciencia para orientarme en mi vida profesional. Creo que debe ser muy dif´ıcilorientarme. Aprend´ımucho con usted. • A los profesores que examinaron este trabajo: Ana Cristina, Andr´eContiero, Lucas Calixto, V´ıctorPetrogradsky y Wagner Cortes. Gracias por el tiempo que dedicaron a leer este trabajo, y por las muchas sugerencias y contribuciones que sirvieron para enriquecerlo. • Al profesor Walter Torres, uno de mis grandes mentores. El ´unicoprofesor que sin usar una pizarra me hizo entender la matem´atica.Gracias por siempre motivarme a estudiar matem´atica. 2 • A la CNPq y la CAPES por el apoyo financiero. • A los funcionarios de la secretaria. En especial a Andrea y Kelli. Gracias por ayudarme en todos los momentos de correr´ıa. Siempre me atendieron con amabilidad y eficiencia, y sab´ıanm´asde mi vida acad´emicaque yo mismo. • A los amigos que conoc´ıdentro y fuera de mi vida acad´emica.A Carlos (papa frita), Eduardo (manito), Leo (el psic´ologo), Jhon (uai fai), Katy (la tata), Simeona (ya se ver´a...), gracias a ustedes por m´asde una d´ecadade amistad. A Ricardo (Homer), Joel (Desmond), Carlos Salazar (Andi), Alfonso (Matute), Matute (Alfonso), Tauan (baiano), Mario, Rafael, Vinicius, Ayane (Hahihani), Myrla (aTESTAda), Diogo (t´amaluco?), Moacir (Moacicinho), Aislan (pisado), Eduardo (Gordon), Aline (vamos pro forr´o?), Rensso, Guillermo, V´ıctor,An- drea, Elena. Gracias a todos ustedes por mostrarme que lejos de casa amigo es sin´onimode familia. 3 Abstract We dedicate this thesis to study the isomorphism problem for solvable Lie algebras of dimension at most 4. The principal contribution is to show that the isomorphism problem has a positive solution for 4-dimensional solvable Lie algebras over a field of characteristic zero. That is, we show that given two 4-dimensional Lie algebras L and H over a field F of characteristic 0, then UpLq – UpHq imply L – H. To reach our goal we use three tools. The first is the Frobenius semiradical and its relationship with the structure of a universal enveloping algebra of a Lie algebra. Using the Frobenius semiradical we show that for certain Lie algebras L the dimen- sion of ZpLq is determined by the isomorphism type of UpLq. The second tool is a construction. Given a Lie algebra L and an abelian ideal M of L, we produce a Lie algebra LM which is invariant under a group of automorphisms of UpLq. We show that in several cases the Lie algebras L and LM are isomorphic. Finally, the third tool is the study of structure of the universal enveloping algebras for Lie algebras with an ideal of codimension one. Analysing this type of Lie algebras we show that the isomorphism type of L{L2 is determined by the isomorphism type of UpLq, and as a consequence of this fact the isomorphisms problem has a positive solution for metabelian Lie algebras in which the codimension of the derived algebra is one. Although our main result is given in dimension four, in several of our results we require only that the Lie algebra be finite-dimensional. Further, many of our results hold for an arbitrary base field independently of the characteristic. Key words: Solvable Lie algebras, universal enveloping algebras, isomorphism prob- lem. 4 Resumo Dedicamos esta tese, basicamente, a estudar o problema do isomorfismo para ´algebrasde Lie sol´uveis de dimens~aono m´aximo4. A principal contribui¸c~ao ´emostrar que o problema do isomorfismo tem uma solu¸c~ao positiva para ´algebrasde Lie sol´uveis de dimens~ao4 sobre um corpo de caracter´ısticazero. Isto ´e,mostramos que, dadas duas ´algebras de Lie 4-dimensionais L e H sobre um corpo F de caracter´ıstica0, ent~ao UpLq – UpHq implica L – H. Para alcan¸carnosso objetivo, usamos basicamente tr^esferramentas. A primeira ´e o semirradical de Frobenius e sua rela¸c~aocom a estrutura de uma ´algebra envolvente universal de uma ´algebrade Lie. Usando o semirradical de Frobenius, mostramos que, para certas ´algebrade Lie L, a dimens~aode ZpLq ´edeterminada pelo tipo de isomorfismo de UpLq. A segunda ferramenta ´euma constru¸c~ao. Dada uma ´algebrade Lie L e um ideal abeliano M de L, produzimos uma ´algebrade Lie LM que ´einvariante por um grupo de automorfismos de UpLq. Mostramos que, em v´arioscasos, as ´algebras de Lie L e LM s~aoisomorfas. Finalmente, a terceira ferramenta ´eo estudo da estrutura das ´algebras envolventes universais para ´algebrasde Lie com um ideal de codimens~ao um. Analisando este tipo de ´algebrasde Lie, mostramos que o tipo de isomorfismo L{L2 ´edeterminado pelo tipo de isomorfismo de UpLq, e como consequ^enciadeste fato temos que o problema dos isomorfismos tem uma solu¸c~aopositiva para ´algebras de Lie metabelianas para as quais a codimens~aoda ´algebraderivada ´eum. Embora nosso principal resultado seja dado em dimens~ao4, em v´ariosdos nossos resultados, exigimos apenas que a ´algebrade Lie seja de dimens~aofinita. Al´emdisso, muitos dos nossos resultados valem para um corpo arbitr´ario,independentemente da caracter´ıstica. Palavras Chave: Algebras´ de Lie sol´uveis, ´algebrasenvolventes universais, problema do isomorfismo. 5 Contents Resumo Estendido 8 1 Introduction 17 1.1 Historical background . 17 1.2 Center, semicenter and Frobenius semiradical . 21 1.3 Structure of UpLq for certain Lie algebras . 23 2 Background 25 2.1 Lie algebras and their universal enveloping algebras . 25 2.2 Ring of quotients of the universal enveloping algebra . 36 2.3 Isomorphism between universal enveloping algebras of Lie algebras . 39 2.4 Hopf algebras . 41 3 Solvable Lie algebras of dimension at most 4 47 3.1 The classification by de Graaf .
Recommended publications
  • Morita Equivalence and Continuous-Trace C*-Algebras, 1998 59 Paul Howard and Jean E
    http://dx.doi.org/10.1090/surv/060 Selected Titles in This Series 60 Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace C*-algebras, 1998 59 Paul Howard and Jean E. Rubin, Consequences of the axiom of choice, 1998 58 Pavel I. Etingof, Igor B. Frenkel, and Alexander A. Kirillov, Jr., Lectures on representation theory and Knizhnik-Zamolodchikov equations, 1998 57 Marc Levine, Mixed motives, 1998 56 Leonid I. Korogodski and Yan S. Soibelman, Algebras of functions on quantum groups: Part I, 1998 55 J. Scott Carter and Masahico Saito, Knotted surfaces and their diagrams, 1998 54 Casper Goffman, Togo Nishiura, and Daniel Waterman, Homeomorphisms in analysis, 1997 53 Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, 1997 52 V. A. Kozlov, V. G. Maz'ya> and J. Rossmann, Elliptic boundary value problems in domains with point singularities, 1997 51 Jan Maly and William P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, 1997 50 Jon Aaronson, An introduction to infinite ergodic theory, 1997 49 R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, 1997 48 Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, 1997 47 A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May (with an appendix by M. Cole), Rings, modules, and algebras in stable homotopy theory, 1997 46 Stephen Lipscomb, Symmetric inverse semigroups, 1996 45 George M. Bergman and Adam O. Hausknecht, Cogroups and co-rings in categories of associative rings, 1996 44 J. Amoros, M. Burger, K. Corlette, D.
    [Show full text]
  • A Correspondence Between Maximal Abelian Sub-Algebras and Linear
    Under consideration for publication in Math. Struct. in Comp. Science A Correspondence between Maximal Abelian Sub-Algebras and Linear Logic Fragments THOMAS SEILLER† 1 † I.H.E.S., Le Bois-Marie, 35, Route de Chartres, 91440 Bures-sur-Yvette, France [email protected] Received December 15th, 2014; Revised September 23rd, 2015 We show a correspondence between a classification of maximal abelian sub-algebras (MASAs) proposed by Jacques Dixmier (Dix54) and fragments of linear logic. We expose for this purpose a modified construction of Girard’s hyperfinite geometry of interaction (Gir11). The expressivity of the logic soundly interpreted in this model is dependent on properties of a MASA which is a parameter of the interpretation. We also unveil the essential role played by MASAs in previous geometry of interaction constructions. Contents 1 Introduction 1 2 von Neumann Algebras and MASAs 4 3 Geometry of Interaction 14 4 Subjective Truth and Matricial GoI 29 5 Dixmier’s Classification and Linear Logic 46 6 Conclusion 58 References 59 arXiv:1408.2125v2 [math.LO] 23 Sep 2015 1. Introduction 1.1. Geometry of Interaction. Geometry of Interaction is a research program initiated by Girard (Gir89b) a year after his seminal paper on linear logic (Gir87a). Its aim is twofold: define a semantics of proofs that accounts for the dynamics of cut-elimination, and then construct realisability models for linear logic around this semantics of cut-elimination. The first step for defining a GoI model, i.e. a construction that fulfills the geometry of 1 This work was partly supported by the ANR-10-BLAN-0213 Logoi.
    [Show full text]
  • Armand Borel 1923–2003
    Armand Borel 1923–2003 A Biographical Memoir by Mark Goresky ©2019 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. ARMAND BOREL May 21, 1923–August 11, 2003 Elected to the NAS, 1987 Armand Borel was a leading mathematician of the twen- tieth century. A native of Switzerland, he spent most of his professional life in Princeton, New Jersey, where he passed away after a short illness in 2003. Although he is primarily known as one of the chief archi- tects of the modern theory of linear algebraic groups and of arithmetic groups, Borel had an extraordinarily wide range of mathematical interests and influence. Perhaps more than any other mathematician in modern times, Borel elucidated and disseminated the work of others. family the Borel of Photo courtesy His books, conference proceedings, and journal publica- tions provide the document of record for many important mathematical developments during his lifetime. By Mark Goresky Mathematical objects and results bearing Borel’s name include Borel subgroups, Borel regulator, Borel construction, Borel equivariant cohomology, Borel-Serre compactification, Bailey- Borel compactification, Borel fixed point theorem, Borel-Moore homology, Borel-Weil theorem, Borel-de Siebenthal theorem, and Borel conjecture.1 Borel was awarded the Brouwer Medal (Dutch Mathematical Society), the Steele Prize (American Mathematical Society) and the Balzan Prize (Italian-Swiss International Balzan Foundation). He was a member of the National Academy of Sciences (USA), the American Academy of Arts and Sciences, the American Philosophical Society, the Finnish Academy of Sciences and Letters, the Academia Europa, and the French Academy of Sciences.1 1 Borel enjoyed pointing out, with some amusement, that he was not related to the famous Borel of “Borel sets." 2 ARMAND BOREL Switzerland and France Armand Borel was born in 1923 in the French-speaking city of La Chaux-de-Fonds in Switzerland.
    [Show full text]
  • The American Mathematical Society
    THE AMERICAN MATHEMATICAL SOCIETY Edited by John W. Green and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings . • . • . • . • . • • • . • . 168 PRELIMINARY ANNOUNCEMENT OF MEETING...................... 169 DOCTORATES CONFERRED IN 1961 ••••••••••••••••••••••••••••.•• 173 NEWS ITEMS AND ANNOUNCEMENTS • • • • • • • • • • • • • • • • • • • 189, 194, 195, 202 PERSONAL ITEMS •••••••••••••••••••••••••••••••.••••••••••• 191 NEW AMS PUBLICATIONS •••••••••••••••••••••••••••••••••••.•• 195 LETTERS TO THE EDITOR •.•.•.•••••••••.•••••.••••••••••••••• 196 MEMORANDA TO MEMBERS The Employment Register . • . • . • . • • . • . • • . • . • . • 198 Dues of Reciprocity Members of the Mathematical Society of Japan • . • . • . 198 SUPPLEMENTARY PROGRAM -No. 11 ••••••••••••••••••••••••••••• 199 ABSTRACTS OF CONTRIBUTED PAPERS •.•••••••••••.••••••••••••• 203 ERRATA •••••••••••••••••••••••••••••••••••••••••••••••.• 231 INDEX TO ADVERTISERS • • • • • • • • • • • • • . • . • • • • • • • • • • • . • • • • • • • • • • 243 RESERVATION FORM •••.•.•••••••••••.•••••••••••.••••••••••• 243 MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date a~ch this issue of the NOTICES was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change. This is particularly true of the meetings to which no numbers have yet been assigned. Meet-
    [Show full text]
  • Transcription of an Interview of Jacques Dixmier by Martin Raussen
    Transcription of an interview of Jacques Dixmier by Martin Raussen (Aalborg, Denmark) 1 Education Can we start with your early years ? You were born in 1924. Where did you grow up and what was school education like in the years between the two world wars ? I was born in Saint-Étienne, not far from Lyon. Since my parents were tea- chers, both of them, we travelled around France, so I am not from a particular place. I lived in Rouen then Lille and then in Versailles, from when I was nine years old. That was the most important place for me. Your school education was mostly in Versailles ? Yes, in Versailles from 6th degree to mathématiques spéciales (2 years after the baccalauréat 1) except, due to the war, one year in St.-Brieuc, which is a small town in Bretagne. Even there I had a very good teacher in mathematics. And that was probably important ? That was extremely important. I had very good teachers in mathematics for my whole period in school. Only during the 6th grade, the teacher was absolutely zero. But after that, during almost 10 years, each year I had a wonderful professor of mathematics. That is probably one of the main rea- sons for my vocation. Can you remember a particular instance that made you think : mathematics, that is something for me ? I always liked mathematics but originally I did not believe that I was able to do research. I realised that I liked teaching and I thought I would be a good professor of mathematics.
    [Show full text]
  • Formality Related to Universal Enveloping Algebras and Study of Hom-(Co)Poisson Algebras Olivier Elchinger
    Formality related to universal enveloping algebras and study of Hom-(co)Poisson algebras Olivier Elchinger To cite this version: Olivier Elchinger. Formality related to universal enveloping algebras and study of Hom-(co)Poisson algebras. Mathematics [math]. Université de Haute Alsace - Mulhouse, 2012. English. tel-01225555 HAL Id: tel-01225555 https://tel.archives-ouvertes.fr/tel-01225555 Submitted on 6 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Public Domain Université de Haute Alsace École Doctorale Jean-Henri Lambert Laboratoire de Mathématiques, Informatique et Applications Formality related to universal enveloping algebras and study of Hom-(co)Poisson algebras presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics proposed by Olivier Elchinger Thesis directed by Martin Bordemann and Abdenacer Makhlouf defended the 12th of November 2012 in front of the jury composed by: M. Benjamin Enriquez Université de Strasbourg (Referee) M. Joakim Arnlind University of Linköping (Referee) M. Camille Laurent-Gengoux Université de Metz (Referee) M. Martin Schlichenmaier Université de Luxembourg M. Martin Bordemann Université de Haute Alsace (Advisor) M. Abdenacer Makhlouf Université de Haute Alsace (Advisor) M.
    [Show full text]
  • Topology, C*-Algebras, and String Duality
    Conference Board of the Mathematical Sciences CBMS Regional Conference Series in Mathematics Number 111 Topology, C*-Algebras, and String Duality Jonathan Rosenberg American Mathematical Society with support from the National Science Foundation Topology, C*-Algebras, and String Duality http://dx.doi.org/10.1090/cbms/111 Conference Board of the Mathematical Sciences CBMS Regional Conference Series in Mathematics Number 111 Topology, C*-Algebras, and String Duality Jonathan Rosenberg Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society Providence, Rhode Island with support from the National Science Foundation NSF-CBMS-Regional Conference in the Mathematical Sciences on Topology, C∗-Algebras, and String Duality held at Texas Christian University, Forth Worth, Texas May 18–22, 2009 Partially supported by the National Science Foundation. The author acknowledges support from the Conference Board of Mathematical Sciences and NSF Grant #0735233 2000 Mathematics Subject Classification. Primary 81T30; Secondary 81T75, 19K99, 46L80, 58B34, 55R10, 55P65, 55R50, 14J32, 53Z05. For additional information and updates on this book, visit www.ams.org/bookpages/cbms-111 Library of Congress Cataloging-in-Publication Data Rosenberg, J. (Jonathan), 1951– Topology, C∗-algebras, and string duality / Jonathan Rosenberg. p. cm. — (Regional conference series in mathematics ; no. 111) Includes bibliographical references and index. ISBN 978-0-8218-4922-4 (alk. paper) 1. Algebraic topology. 2. C∗-algebras. 3. Duality theory (Mathematics) I. Conference Board of the Mathematical Sciences. II. Title. QA612.R58 2009 514.2—dc22 2009032465 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research.
    [Show full text]
  • Notices of the American Mathematical Society Is Publishing Process and Make Accessible the Available Literature
    Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetingS and conferences approved prior to the date this issue should be submitted on special forms which are available in many departments of went to press The summer and annual meetings are joint meetings of the Mathematical mathematics and from the headquarters office of the Society. Abstracts of papers to Association cl America and the American Mathematical Society. Abstracts of papers be presented at the meeting must be recalved at the headquarters of the Society in presented at a meeting of the Society are published in the joumal Abstracts of papers Providence, Rhode Island, on or before the deadline given below for the meeting. Note presented to the American Mathematical Society I~ th~ issue co~respon_dlng to that of that the deadline for abstracts for consideration for presentation at special sessions is the Notices which contains the program of the maeting, msofar as IS possible. Abstracts usually three weeks earlier than that specified below. Meetings -----·----- Abstract Program Meeting# Date Place Deadline Issue 880 * April9-10, 1993 Salt Lake City, Utah Expired April 881 * April17-18, 1993 Washington, D.C. Expired April 882 * May 2Q-23, 1993 DeKalb, Illinois Expired May-June 883 * August 15-19, 1993 (96th Summer Meeting) Vancouver, British Columbia May18 July-August (Joint Meeting with the Canadian Mathematical Society) 884 * September 18-19, 1993 Syracuse, New York May18 September 885 * October 1-3, 1993 Heidelberg,
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title On Maximal Amenable Subalgebras of Amalgamated Free Product von Neumann Algebras Permalink https://escholarship.org/uc/item/0xk9x52t Author Leary, Brian Andrew Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Los Angeles On Maximal Amenable Subalgebras of Amalgamated Free Product von Neumann Algebras A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics by Brian Andrew Leary 2015 c Copyright by Brian Andrew Leary 2015 Abstract of the Dissertation On Maximal Amenable Subalgebras of Amalgamated Free Product von Neumann Algebras by Brian Andrew Leary Doctor of Philosophy in Mathematics University of California, Los Angeles, 2015 Professor Sorin Popa, Chair In this thesis, we establish a sufficient condition for an amenable von Neumann algebra to be a maximal amenable subalgebra of an amalgamated free product von Neumann algebra. In particular, if P is a diffuse maximal amenable von Neumann subalgebra of a finite von Neumann algebra N1, and B is a von Neumann subalgebra of N1 with the property that no corner of P embeds into B inside N1 in the sense of Popa's intertwining by bimodules, then we conclude that P is a maximal amenable subalgebra of the amalgamated free product of N1 and N2 over B, where N2 is another finite von Neumann algebra containing B. To this end, we utilize Popa's asymptotic orthogonality property. We also observe several special cases in which this intertwining condition holds, and we note a connection to the Pimsner-Popa index in the case when we take P = N1 to be amenable.
    [Show full text]
  • AMS Bookstore Summer Sale
    AMERICAN MATHEMATICAL SOCIETY The AMS Bookstore Summer Sale www.amsbookstore.org Catch up on summer reading with these “hot” AMS titles and substantial discounts when you order via the AMS Bookstore. In keeping with the summer season, these excellent sale titles are on topics of broad interest. There are also selections to help you prepare for the upcoming fall semester. You'll note that among the sale items are some of our bestselling titles, Chaotic Elections by Don Saari, How to Teach Mathematics by Steve Krantz, Triangle of Thoughts by Alain Connes, André Lichnerowicz, and Marcel Paul Schützenberger, and many more. Visit the AMS Bookstore to get low prices on these and other great selections from the AMS Summer Sale at www.amsbookstore.org. Sale prices are available ONLY through AMS Bookstore orders. Direct sales only. Not available to bookstores or agents. Sale ends September 19, 2002. Go to www.amsbookstore.org to place your order. Stephen Smale:The grand avenue of knowledge on which we are On Being a Department KOLMOGOROV mathematician who broke riding.With resuscitations of some fading Head, a Personal View IN PERSPECTIVE photographs and an impressive list of more than History of the dimension barrier John B. Conway, University of Mathematics 300 references, this book is a very valuable addi- Volume 20 Tennessee, Knoxville Steve Batterson, Emory University, tion to the literature on Ramanujan. —CHOICE Atlanta, GA Provokes the reader to think through some of Delightful reading … a useful reference on the difficult issues … There are few books that This well-researched book provides a great deal English analysts and number theorists of deal so directly with running a University depart- of personal and historical information on Smale, Hardy’s time … has many pictures, some of ment and therefore this book should be read by and also attempts to portray his mathematics them quite marvelous … What Berndt and American for a general reader.
    [Show full text]
  • Th`Ese De Doctorat
    Universit´eParis VII - Denis Diderot Ecole´ Doctorale de Science Math´ematiquesde Paris Centre These` de doctorat Discipline : Math´ematique pr´esent´eepar Simon Henry Des topos `ala g´eom´etrienon commutative par l'´etudedes espaces de Hilbert internes dirig´eepar Alain Connes Soutenue le 25 septembre 2014 devant le jury compos´e de : M. Alain Connes Coll`egede France/IHES directeur M. Alain Proute´ Universit´eParis 7 examinateur M. Jean Renault Universit´ed'Orl´eans examinateur M. Georges Skandalis Universit´eParis 7 examinateur M. Isar Stubbe Univ. du Littoral-C^oted'Opale rapporteur M. Steve Vickers University of Birmingham rapporteur Institut de Math´ematiques de UPMC Jussieu Ecole Doctorale de Sciences 5, rue Thomas Mann Math´ematiquesde Paris Centre 75 013 Paris 4 place Jussieu 75252 Paris Cedex 05 Boite courrier 290 2 Remerciement Mes remerciements vont tout d'abord `aAlain Connes pour avoir accept´ede diriger cette th`ese.Il a ´et´epour moi un mentor incroyablement talentueux, disponible et g´en´ereuxqui m'a ´enorm´ement appris aussi bien sur la g´eom´etrie non-commutative et les math´ematiques en g´en´eralque sur l'´ecriturescientifique. Je le remercie pour toutes les discusions qui ont jalonn´emon apprentissage des math´ematiqueset guid´ema d´ecouverte de la recherche. Je tiens aussi `ale re- mercier tout particuli`erement pour m'avoir soutenu et encourag´equand, apr`es quelques mois de th`ese,j'ai d´ecid´ede m'aventurer dans un nouveau sujet de recherche qu'on aurait pu croire ´eloign´ede ses propres centres d'int´er^etscienti- fiques.
    [Show full text]
  • Arxiv:1505.04091V1 [Math.OA] 15 May 2015 R Prtr Nara Ibr Space
    Contemporary Mathematics Structure and applications of real C∗-algebras Jonathan Rosenberg Dedicated to Dick Kadison, with admiration and appreciation Abstract. For a long time, practitioners of the art of operator al- gebras always worked over the complex numbers, and nobody paid much attention to real C∗-algebras. Over the last thirty years, that situation has changed, and it’s become apparent that real C∗-algebras have a lot of extra structure not evident from their complexifications. At the same time, interest in real C∗-algebras has been driven by a number of compelling applications, for exam- ple in the classification of manifolds of positive scalar curvature, in representation theory, and in the study of orientifold string the- ories. We will discuss a number of interesting examples of these, and how the real Baum-Connes conjecture plays an important role. 1. Real C∗-algebras Definition 1.1. A real C∗-algebra is a Banach ∗-algebra A over R isometrically ∗-isomorphic to a norm-closed ∗-algebra of bounded operators on a real Hilbert space. arXiv:1505.04091v1 [math.OA] 15 May 2015 Remark 1.2. There is an equivalent abstract definition: a real C∗- algebra is a real Banach ∗-algebra A satisfying the C∗-identity ka∗ak = 2010 Mathematics Subject Classification. Primary 46L35; Secondary 19K35 19L64 22E46 81T30 46L85 19L50. Key words and phrases. real C∗-algebra, orientifold, KR-theory, twisting, T- duality, real Baum-Connes conjecture, assembly map, positive scalar curvature, Frobenius-Schur indicator. Partially supported by NSF grant DMS-1206159. I would like to thank Jeffrey Adams and Ran Cui for helpful discussions about Section 3.2 and Patrick Brosnan for helpful discussions about Example 2.9.
    [Show full text]