Cercozoa, Rhizaria) a Leaf-Associated

Total Page:16

File Type:pdf, Size:1020Kb

Cercozoa, Rhizaria) a Leaf-Associated Functional Roles of Cercozoa in the Rhizosphere and Phyllosphere of Plants Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Sebastian Flues aus Friedrichshafen Köln, 2018 Berichterstatter: Prof. Dr. Michael Bonkowski Prof. Dr. Hartmut Arndt Vorsitz der Prüfung: Prof. Dr. Frank Schäbitz Beisitzer: Dr. Kenneth Dumack Tag der mündlichen Prüfung: 15.12.2017 Table of Contents Table of Contents Summary ............................................................................................... 6 Zusammenfassung ............................................................................... 8 General Introduction .......................................................................... 10 Protists ................................................................................................................... 10 Functional roles of protists in soil ........................................................................... 12 Protists in the rhizosphere of plants ....................................................................... 13 Leaf-associated protists in the phyllosphere of plants ............................................ 14 Cercozoa ................................................................................................................ 16 Cercomonadida - the dominant terrestrial amoeboflagellates........................................ 17 Testacea in the Cercozoa ............................................................................................. 17 Aims ....................................................................................................................... 18 Chapter 1 - Diversity of Cercomonad Species in the Phyllosphere and Rhizosphere of Different Plant Species with a Description of Neocercomonas epiphylla (Cercozoa, Rhizaria) a Leaf-Associated Protist .................................................................................................. 22 Abstract .................................................................................................................. 22 Introduction ............................................................................................................ 23 Material and Methods ............................................................................................. 25 Results ................................................................................................................... 28 Discussion .............................................................................................................. 40 Supporting Information ........................................................................................... 43 Chapter 2 - Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function ........................................................................................ 47 Abstract .................................................................................................................. 47 Introduction ............................................................................................................ 48 Material and Methods ............................................................................................. 50 3 Table of Contents Results ................................................................................................................... 55 Discussion .............................................................................................................. 65 Supporting Information ........................................................................................... 69 Chapter 3 - Spatial and Temporal Dynamics between Leaf-Associated Cercomonad Cercozoa and Phyllosphere Bacteria on Bean Leaves (Phaseolus vulgaris)............................................... 76 Introduction ............................................................................................................ 76 Material and Methods ............................................................................................. 78 Results and Discussion .......................................................................................... 81 Conclusion ............................................................................................................. 92 Chapter 4 - Rhogostomidae (Cercozoa) from soils, roots and plant leaves (Arabidopsis thaliana): Description of Rhogostoma epiphylla sp. nov. and R. cylindrica sp. nov. .................................................... 94 Abstract .................................................................................................................. 94 Introduction ............................................................................................................ 95 Material and Methods ............................................................................................. 97 Results ................................................................................................................. 100 Discussion ............................................................................................................ 109 Supporting Information ......................................................................................... 111 General Discussion .......................................................................... 112 Diversity of leaf-associated Cercozoa .................................................................. 113 Functional roles of leaf-associated Cercozoa ...................................................... 114 Grazing structures bacterial community composition and interaction .......................... 115 Grazing alters bacterial community function ................................................................ 116 Leaf-associated Cercozoa are more than bacterial feeders ........................................ 117 Dynamics between Cercozoa and bacteria on leaves.......................................... 117 Diversity and functional roles of Cercozoa in the rhizosphere .............................. 119 Leaf-associated protists and their relevance for phytobiome research ................ 120 References ........................................................................................ 122 4 Table of Contents Acknowledgements .......................................................................... 149 Subpublications and Record of Achievement ................................ 150 Erklärung gemäß § 4 Absatz 1 Punkt 9 der Prüfungsordnung ...... 152 5 Summary Summary Protists are a group of highly diverse unicellular eukaryotic organisms. They are globally distributed and inhabit all types of terrestrial and aquatic habitats. Protists represent an enormous functional diversity and occupy various ecological niches as bacterivores, fungivores, algivores, predators, primary producers, saprotrophs or parasites of plants and animals. Among protists, the Cercozoa are one of the most diverse, speciose and ecologically important of all protist phyla. Protists in terrestrial systems often show an association to plants and they are well-known predators on plant surfaces. However, a comprehensive understanding about the distribution and functions of plant-associated protists in the rhizosphere (i.e. belowground compartments of plants) and the phyllosphere (i.e. aboveground compartments of plants, mainly leaves) is lacking. Therefore this thesis aims to increase the knowledge on the diversity and functional roles of plant-associated Cercozoa. In the first chapter several cercomonad Cercozoa strains were isolated from the phyllosphere and rhizosphere of plants from three functional groups. Their potential phyllosphere and rhizosphere as well as plant specificity was investigated and revealed that cercomonad communities show a deterministic assembly in the above- and belowground compartments of plants. During the course of this study, three novel cercomonad species were described and ten new cercomonad genotypes reported. This indicates that cercozoan taxa preferentially associated with the phyllosphere exist and that Cercozoa diversity is far from being completely revealed. The second chapter aims at deciphering the feeding preferences of leaf-associated cercomonads and their predation effects on the composition, function and interaction of phyllosphere bacterial communities. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits and we showed that leaf-associated cercomonads significantly structured bacterial community composition which led to an altered interaction pattern among bacterial taxa. This study further demonstrated that cercomonad predation can have significant impact on the physiological function of bacterial communities. The third chapter of this thesis aimed to reveal the spatial and temporal dynamics between leaf-associated cercomonad Cercozoa and phyllosphere bacteria on leaves. We could prove that leaf-associated cercomonads are active and feeding on bacterial cells on the leaf surface and confirm the activity of protists on plant surfaces is closely connected to moisture on leaves. The last chapter aimed to increase the knowledge on the ecology and function of plant-associated cercozoan testate amoebae. Four different strains of Rhogostoma spp. were isolated from Arabidopsis leaves, agricultural soil and rhizosphere soil of Ocimum basilicum and Nicotiana sp. Detailed
Recommended publications
  • Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland
    fmicb-10-01332 June 8, 2019 Time: 10:19 # 1 ORIGINAL RESEARCH published: 11 June 2019 doi: 10.3389/fmicb.2019.01332 Functional Traits and Spatio-Temporal Structure of a Major Group of Soil Protists (Rhizaria: Cercozoa) in a Temperate Grassland Anna Maria Fiore-Donno1,2*, Tim Richter-Heitmann3, Florine Degrune4,5, Kenneth Dumack1,2, Kathleen M. Regan6, Sven Marhan7, Runa S. Boeddinghaus7, Matthias C. Rillig4,5, Michael W. Friedrich3, Ellen Kandeler7 and Michael Bonkowski1,2 1 Terrestrial Ecology Group, Institute of Zoology, University of Cologne, Cologne, Germany, 2 Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany, 3 Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany, 4 Institute of Biology, Plant Ecology, Freie Universität Berlin, Berlin, Germany, 5 Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany, 6 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, United States, 7 Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany Edited by: Soil protists are increasingly appreciated as essential components of soil foodwebs; Jaak Truu, University of Tartu, Estonia however, there is a dearth of information on the factors structuring their communities. Reviewed by: Here we investigate the importance of different biotic and abiotic factors as key Anne Winding, drivers of spatial and seasonal distribution of protistan communities. We conducted Aarhus University, Denmark 2 Ida Karlsson, an intensive survey of a 10 m grassland plot in Germany, focusing on a major group Swedish University of Agricultural of protists, the Cercozoa. From 177 soil samples, collected from April to November, Sciences, Sweden we obtained 694 Operational Taxonomy Units representing 6 million Illumina reads.
    [Show full text]
  • Novaya Zemlya Archipelago (Russian Arctic)
    This is a repository copy of First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127196/ Version: Accepted Version Article: Mazei, Yuri, Tsyganov, Andrey N, Chernyshov, Viktor et al. (2 more authors) (2018) First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). Polar Biology. ISSN 0722-4060 https://doi.org/10.1007/s00300-018-2273-x Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic) 2 Yuri A. Mazei1,2, Andrey N. Tsyganov1, Viktor A. Chernyshov1, Alexander A. Ivanovsky2, Richard J. 3 Payne1,3* 4 1. Penza State University, Krasnaya str., 40, Penza 440026, Russia. 5 2. Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russia. 6 3. University of York, Heslington, York YO10 5DD, United Kingdom.
    [Show full text]
  • Protozoologica Special Issue: Protists in Soil Processes
    Acta Protozool. (2012) 51: 271–289 http://www.eko.uj.edu.pl/ap ActA doi:10.4467/16890027AP.12.022.0768 Protozoologica Special issue: Protists in Soil Processes Testate Amoebae as Proxy for Water Level Changes in a Brackish Tidal Marsh Marijke OOMS, Louis BEYENS and Stijn TEMMERMAN University of Antwerp, Department of Biology, Ecosystem Management Research Group (ECOBE), Belgium Abstract. Few studies have examined testate amoebae assemblages of estuarine tidal marshes. This study investigates the possibility of us- ing soil testate amoebae assemblages of a brackish tidal marsh (Scheldt estuary, Belgium) as a proxy for water level changes. On the marsh surface an elevation gradient is sampled to be analyzed for testate amoebae assemblages and sediment characteristics. Further, vegetation, flooding frequency and soil conductivity have been taken into account to explain the testate amoebae species variation. The data reveal that testate amoebae are not able to establish assemblages at the brackish tidal marsh part with flooding frequencies equal to or higher than 36.5%. Further, two separate testate amoebae zones are distinguished based on cluster analysis. The lower zone’s testate amoebae species composition is influenced by the flooding frequency (~ elevation) and particle size, while the species variability in the higher zone is related to the organic content of the soil and particle size. These observations suggest that the ecological meaning of elevation shifts over its range on the brackish tidal marsh. Testate amoeba assemblages in such a brackish habitat show thus a vertical zonation (RMSEP: 0.19 m) that is comparable to the vertical zonation of testate amoebae and other protists on freshwater tidal marshes and salt marshes.
    [Show full text]
  • Rhizaria, Cercozoa)
    Protist, Vol. 166, 363–373, July 2015 http://www.elsevier.de/protis Published online date 28 May 2015 ORIGINAL PAPER Molecular Phylogeny of the Widely Distributed Marine Protists, Phaeodaria (Rhizaria, Cercozoa) a,1 a a b Yasuhide Nakamura , Ichiro Imai , Atsushi Yamaguchi , Akihiro Tuji , c d Fabrice Not , and Noritoshi Suzuki a Plankton Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041–8611, Japan b Department of Botany, National Museum of Nature and Science, Tsukuba 305–0005, Japan c CNRS, UMR 7144 & Université Pierre et Marie Curie, Station Biologique de Roscoff, Equipe EPPO - Evolution du Plancton et PaléoOcéans, Place Georges Teissier, 29682 Roscoff, France d Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai 980–8578, Japan Submitted January 1, 2015; Accepted May 19, 2015 Monitoring Editor: David Moreira Phaeodarians are a group of widely distributed marine cercozoans. These plankton organisms can exhibit a large biomass in the environment and are supposed to play an important role in marine ecosystems and in material cycles in the ocean. Accurate knowledge of phaeodarian classification is thus necessary to better understand marine biology, however, phylogenetic information on Phaeodaria is limited. The present study analyzed 18S rDNA sequences encompassing all existing phaeodarian orders, to clarify their phylogenetic relationships and improve their taxonomic classification. The mono- phyly of Phaeodaria was confirmed and strongly supported by phylogenetic analysis with a larger data set than in previous studies. The phaeodarian clade contained 11 subclades which generally did not correspond to the families and orders of the current classification system. Two families (Challengeri- idae and Aulosphaeridae) and two orders (Phaeogromida and Phaeocalpida) are possibly polyphyletic or paraphyletic, and consequently the classification needs to be revised at both the family and order levels by integrative taxonomy approaches.
    [Show full text]
  • Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia Vietnamicasp
    Acta Protozool. (2018) 57: 215–229 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.18.016.10092 PROTOZOOLOGICA LSID urn:lsid:zoobank.org:pub:AEE9D12D-06BD-4539-AD97-87343E7FDBA3 Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia vietnamicasp. nov. Hoan Q. TRANa, Yuri A. MAZEIb, c a Vietnamese-Russian Tropical Center, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Ha Noi, Vietnam b Department of Hydrobiology, Lomonosov Moscow State University, Moscow, Russia c Department of Zoology and Ecology, Penza State University, Penza, Russia Abstract. Testate amoebae in Vietnam are still poorly investigated. We studied species composition of testate amoebae in 47 waterbodies of South Vietnam provinces including natural lakes, reservoirs, wetlands, rivers, and irrigation channels. A total of 109 species and subspe- cies belonging to 16 genera, 9 families were identified from 191 samples. Thirty-five species and subspecies were observed in Vietnam for the first time. New speciesDifflugia vietnamica sp. nov. is described. The most species-rich genera are Difflugia (46 taxa), Arcella (25) and Centropyxis (14). Centropyxis aculeata was the most common species (observed in 68.1% samples). Centropyxis aerophila sphagniсola, Arcella discoides, Difflugia schurmanni and Lesquereusia modesta were characterised by a frequency of occurrence >20%. Other spe- cies were rarer. The species accumulation curve based on the entire dataset of this work was unsaturated and well fitted by equation S = 19.46N0.33. Species richness per sample in natural lakes and wetlands were significantly higher than that of rivers (p < 0.001). The result of the Spearman rank test shows weak or statistically insignificant relationships between species richness and water temperature, pH, dissolved oxygen, and electrical conductivity.
    [Show full text]
  • Protistology Review of Diversity and Taxonomy of Cercomonads
    Protistology 3 (4), 201217 (2004) Protistology Review of diversity and taxonomy of cercomonads Alexander P. Myl’nikov 1 and Serguei A. Karpov 2 1 Institute for the Biology of Inland Waters, Borok, Yaroslavl district, Russia 2 Biological Faculty, Herzen Pedagogical State University, St. Petersburg, Russia Summary Cercomonads are very common heterotrophic flagellates in water and soil. Phylogenetically they are a key group of a protistan phylum Cercozoa. Morphological and taxonomical analysis of cercomonads reveals that the order Cercomonadida (Vickerman) Mylnikov, 1986 includes two families: Cercomonadidae Kent, 1880 (=Cercobodonidae Hollande, 1942) and Heteromitidae Kent, 1880 em. Mylnikov, 2000 (=Bodomorphidae Hollande, 1952), which differ in several characters: body shape, temporary/habitual pseudopodia, presence/absence of plasmodia stage and microtubular cone, type of extrusomes. The family Cercomonadidae includes Cercomonas Dujardin, 1841 and Helkesimastix Woodcock et Lapage, 1914. All species of Cercobodo are transferred to the genus Cercomonas. The family Heteromitidae includes Heteromita Dujardin, 1841 emend. Mylnikov et Karpov, Protaspis Skuja, 1939, Allantion Sandon, 1924, Sainouron Sandon, 1924, Cholamonas Flavin et al., 2000 and Katabia Karpov et al., 2003. The names Bodomorpha and Sciviamonas are regarded as junior synonyms of Heteromita. The genus Proleptomonas Woodcock, 1916 according to its morphology is not a cercomonad, and is not included in the order. The genus Massisteria Larsen and Patterson, 1988 is excluded from
    [Show full text]
  • Checklist, Assemblage Composition, and Biogeographic Assessment of Recent Benthic Foraminifera (Protista, Rhizaria) from São Vincente, Cape Verdes
    Zootaxa 4731 (2): 151–192 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4731.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:560FF002-DB8B-405A-8767-09628AEDBF04 Checklist, assemblage composition, and biogeographic assessment of Recent benthic foraminifera (Protista, Rhizaria) from São Vincente, Cape Verdes JOACHIM SCHÖNFELD1,3 & JULIA LÜBBERS2 1GEOMAR Helmholtz-Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany 2Institute of Geosciences, Christian-Albrechts-University, Ludewig-Meyn-Straße 14, 24118 Kiel, Germany 3Corresponding author. E-mail: [email protected] Abstract We describe for the first time subtropical intertidal foraminiferal assemblages from beach sands on São Vincente, Cape Verdes. Sixty-five benthic foraminiferal species were recognised, representing 47 genera, 31 families, and 8 superfamilies. Endemic species were not recognised. The new checklist largely extends an earlier record of nine benthic foraminiferal species from fossil carbonate sands on the island. Bolivina striatula, Rosalina vilardeboana and Millettiana milletti dominated the living (rose Bengal stained) fauna, while Elphidium crispum, Amphistegina gibbosa, Quinqueloculina seminulum, Ammonia tepida, Triloculina rotunda and Glabratella patelliformis dominated the dead assemblages. The living fauna lacks species typical for coarse-grained substrates. Instead, there were species that had a planktonic stage in their life cycle. The living fauna therefore received a substantial contribution of floating species and propagules that may have endured a long transport by surface ocean currents. The dead assemblages largely differed from the living fauna and contained redeposited tests deriving from a rhodolith-mollusc carbonate facies at <20 m water depth.
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Redalyc.Assessment of Non-Cultured Aquatic Fungal Diversity from Differenthabitats in Mexico
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Valderrama, Brenda; Paredes-Valdez, Guadalupe; Rodríguez, Rocío; Romero-Guido, Cynthia; Martínez, Fernando; Martínez-Romero, Julio; Guerrero-Galván, Saúl; Mendoza- Herrera, Alberto; Folch-Mallol, Jorge Luis Assessment of non-cultured aquatic fungal diversity from differenthabitats in Mexico Revista Mexicana de Biodiversidad, vol. 87, núm. 1, marzo, 2016, pp. 18-28 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42546734003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 87 (2016) 18–28 www.ib.unam.mx/revista/ Taxonomy and systematics Assessment of non-cultured aquatic fungal diversity from different habitats in Mexico Estimación de la diversidad de hongos acuáticos no-cultivables de diferentes hábitats en México a a b b Brenda Valderrama , Guadalupe Paredes-Valdez , Rocío Rodríguez , Cynthia Romero-Guido , b c d Fernando Martínez , Julio Martínez-Romero , Saúl Guerrero-Galván , e b,∗ Alberto Mendoza-Herrera , Jorge Luis Folch-Mallol a Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico b Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico c Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col.
    [Show full text]
  • The Revised Classification of Eukaryotes
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D.
    [Show full text]
  • A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-12-2014 A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Marine Biology Commons, and the Microbiology Commons Scholar Commons Citation Rubelmann, Haydn III, "A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5432 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments by Haydn Rubelmann III A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: James R. Garey, Ph.D. Randy Larsen, Ph.D. Kathleen Scott, Ph.D. David Merkler, Ph.D. Date of Approval: November 12, 2014 Keywords: environmental microbiology, extremophiles, shallow-water hydrothermal vents, anoxic marine pits Copyright © 2014, Haydn Rubelmann III DEDICATION I would like to dedicate this dissertation to three of my personal champions: my grandfather, Haydn Rubelmann Sr. (1929 - 2004), who encouraged me to pursue an academic career; my stepfather, Dale Jones (1954 - 2008), who was the best father anyone could ever hope for, and my husband, Eduardo Godoy, who suffered through not only 8 years of my doctoral tenure, but a grueling civil liberty injustice that almost wedged the Caribbean Sea between us.
    [Show full text]